Description

Thanks to this Professional master’s degree 100% online, you will have access to specialized training in the application of AI techniques in financial markets”

##IMAGE##

Why Study at TECH?

TECH is the world's largest 100% online business school. It is an elite business school, with a model based on the highest academic standards. A world-class centre for intensive managerial skills training.   

TECH is a university at the forefront of technology, and puts all its resources at the student's disposal to help them achieve entrepreneurial success"

At TECH Global University

idea icon

Innovation

The university offers an online learning model that combines the latest educational technology with the most rigorous teaching methods. A unique method with the highest international recognition that will provide students with the keys to develop in a rapidly-evolving world, where innovation must be every entrepreneur’s focus.

"Microsoft Europe Success Story", for integrating the innovative, interactive multi-video system.  
head icon

The Highest Standards

Admissions criteria at TECH are not economic. Students don't need to make a large investment to study at this university. However, in order to obtain a qualification from TECH, the student's intelligence and ability will be tested to their limits. The institution's academic standards are exceptionally high...  

95% of TECH students successfully complete their studies.
neuronas icon

Networking

Professionals from countries all over the world attend TECH, allowing students to establish a large network of contacts that may prove useful to them in the future.  

100,000+ executives trained each year, 200+ different nationalities.
hands icon

Empowerment

Students will grow hand in hand with the best companies and highly regarded and influential professionals. TECH has developed strategic partnerships and a valuable network of contacts with major economic players in 7 continents.  

500+ collaborative agreements with leading companies.
star icon

Talent

This program is a unique initiative to allow students to showcase their talent in the business world. An opportunity that will allow them to voice their concerns and share their business vision. 

After completing this program, TECH helps students show the world their talent. 
earth icon

Multicultural Context 

While studying at TECH, students will enjoy a unique experience. Study in a multicultural context. In a program with a global vision, through which students can learn about the operating methods in different parts of the world, and gather the latest information that best adapts to their business idea. 

TECH students represent more than 200 different nationalities.   
##IMAGE##
human icon

Learn with the best

In the classroom, TECH teaching staff discuss how they have achieved success in their companies, working in a real, lively, and dynamic context. Teachers who are fully committed to offering a quality specialization that will allow students to advance in their career and stand out in the business world. 

Teachers representing 20 different nationalities. 

TECH strives for excellence and, to this end, boasts a series of characteristics that make this university unique:   

brain icon

Analysis 

TECH explores the student’s critical side, their ability to question things, their problem-solving skills, as well as their interpersonal skills.  

micro icon

Academic Excellence 

TECH offers students the best online learning methodology. The university combines the Relearning method (a postgraduate learning methodology with the highest international rating) with the Case Study. A complex balance between tradition and state-of-the-art, within the context of the most demanding academic itinerary.  

corazon icon

Economy of Scale 

TECH is the world’s largest online university. It currently boasts a portfolio of more than 10,000 university postgraduate programs. And in today's new economy, volume + technology = a ground-breaking price. This way, TECH ensures that studying is not as expensive for students as it would be at another university.  

At TECH, you will have access to the most rigorous and up-to-date case studies in the academic community”

Syllabus

This academic program will provide entrepreneurs with comprehensive training in the integration of advanced technologies in the management and analysis of financial markets. As such, various content will be covered, including Artificial Intelligence for technical and fundamental analysis, the implementation of algorithmic trading strategies, and the processing of large volumes of financial data. In addition, the ethical and regulatory implications of AI in finance will be addressed, preparing professionals to innovate in a responsible manner and in accordance with the regulations in force. 

You will apply data visualization tools and Machine Learning techniques to optimize your investment decisions, managing critical aspects such as data security and privacy” 

Syllabus

The curriculum will provide comprehensive training in technical and fundamental analysis of financial markets, using Artificial Intelligence to enhance indicator visualization, pattern recognition and trading automation. In this way, entrepreneurs will be able to implement advanced techniques, such as convolutional neural networks, to identify investment opportunities and use Reinforcement Learning to develop effective algorithmic trading strategies. 

Crucial aspects of fundamental analysis and large-scale financial data processing will also be covered, using Big Data tools, such as Hadoop and Spark, to handle large volumes of information efficiently and securely. Machine Learning and NLP techniques for modeling financial performance, fraud detection and accurate valuations will also be examined. At the same time, it will focus on the design of algorithmic trading strategies and associated risk management. 

In this way, TECH has developed a complete university program in a completely online format, which allows graduates to access educational materials from any device with an Internet connection. This eliminates the need to move to a physical location and adhere to fixed schedules. Additionally, it employs the revolutionary Relearning methodology, which focuses on the repetition of fundamental concepts to ensure a deep understanding of the content. 

This Professional master’s degree takes place over 12 months and is divided into 20 modules:

Module 1. Fundamentals of Artificial Intelligence
Module 2. Data Types and Data Life Cycle
Module 3. Data in Artificial Intelligence
Module 4. Data Mining: Selection, Pre-Processing and Transformation
Module 5. Algorithm and Complexity in Artificial Intelligence 
Module 6. Intelligent Systems 
Module 7. Machine Learning and Data Mining
Module 8. Neural Networks, the Basis of Deep Learning
Module 9. Deep Neural Networks Training 
Module 10. Model Customization and Training with TensorFlow 
Module 11. Deep Computer Vision with Convolutional Neural Networks
Module 12.
Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention
Module 13.
Autoencoders, GANs and Diffusion Models 
Module 14.
Bio-Inspired Computing
Module 15.
Artificial Intelligence: Strategies and Applications
Module 16.
Technical Analysis of Financial Markets with AI
Module 17.
Fundamental Analysis of Financial Markets with AI
Module 18.
Large Scale Financial Data Processing
Module 19.
Algorithmic Trading Strategies
Module 20.
Ethical and Regulatory Aspects of AI in Finance

##IMAGE##

Where, When and How is it Taught?

TECH offers the possibility to develop this Professional master’s degree in Artificial Intelligence in Stock Exchanges and Financial Markets completely online. Throughout the 12 months of the educational program, the students will be able to access all the contents of this program at any time, allowing them to self-manage their study time. 

Module 1. Fundamentals of Artificial Intelligence

1.1. History of Artificial Intelligence

1.1.1. When Do We Start Talking About Artificial Intelligence?
1.1.2. References in Film
1.1.3. Importance of Artificial Intelligence
1.1.4. Technologies that Enable and Support Artificial Intelligence

1.2. Artificial Intelligence in Games

1.2.1. Game Theory
1.2.2. Minimax and Alpha-Beta Pruning
1.2.3. Simulation: Monte Carlo

1.3. Neural Networks

1.3.1. Biological Fundamentals
1.3.2. Computational Model
1.3.3. Supervised and Unsupervised Neural Networks
1.3.4. Simple Perceptron
1.3.5. Multilayer Perceptron

1.4. Genetic Algorithms

1.4.1. History
1.4.2. Biological Basis
1.4.3. Problem Coding
1.4.4. Generation of the Initial Population
1.4.5. Main Algorithm and Genetic Operators
1.4.6. Evaluation of Individuals: Fitness

1.5. Thesauri, Vocabularies, Taxonomies

1.5.1. Vocabulary
1.5.2. Taxonomy
1.5.3. Thesauri
1.5.4. Ontologies
1.5.5. Knowledge Representation: Semantic Web

1.6. Semantic Web

1.6.1. Specifications RDF, RDFS and OWL
1.6.2. Inference/ Reasoning
1.6.3. Linked Data

1.7. Expert Systems and DSS

1.7.1. Expert Systems
1.7.2. Decision Support Systems

1.8. Chatbots and Virtual Assistants

1.8.1. Types of Assistants: Voice and Text Assistants
1.8.2. Fundamental Parts for the Development of an Assistant: Intents, Entities and Dialog Flow
1.8.3. Integrations: Web, Slack, Whatsapp, Facebook
1.8.4. Assistant Development Tools: Dialog Flow, Watson Assistant

1.9. AI Implementation Strategy
1.10. Future of Artificial Intelligence

1.10.1. Understand How to Detect Emotions Using Algorithms
1.10.2. Creating a Personality: Language, Expressions and Content
1.10.3. Trends of Artificial Intelligence
1.10.4. Reflections

Module 2. Data Types and Data Life Cycle

2.1. Statistics

2.1.1. Statistics: Descriptive Statistics, Statistical Inferences
2.1.2. Population, Sample, Individual
2.1.3. Variables: Definition, Measurement Scales

2.2. Types of Data Statistics

2.2.1. According to Type

2.2.1.1. Quantitative: Continuous Data and Discrete Data
2.2.1.2. Qualitative: Binomial Data, Nominal Data and Ordinal Data

2.2.2. According to Its Shape

2.2.2.1. Numeric
2.2.2.2. Text:
2.2.2.3. Logical

2.2.3. According to Its Source

2.2.3.1. Primary
2.2.3.2. Secondary

2.3. Life Cycle of Data

2.3.1. Stages of the Cycle
2.3.2. Milestones of the Cycle
2.3.2. FAIR Principles

2.4. Initial Stages of the Cycle

2.4.1. Definition of Goals
2.4.2. Determination of Resource Requirements
2.4.3. Gantt Chart
2.4.4. Data Structure

2.5. Data Collection

2.5.1. Methodology of Data Collection
2.5.2. Data Collection Tools
2.5.3. Data Collection Channels

2.6. Data Cleaning

2.6.1. Phases of Data Cleansing
2.6.2. Data Quality
2.6.3. Data Manipulation (with R)

2.7. Data Analysis, Interpretation and Result Evaluation

2.7.1. Statistical Measures
2.7.2. Relationship Indexes
2.7.3. Data Mining

2.8. Datawarehouse

2.8.1. Elements that Comprise It
2.8.2. Design
2.8.3. Aspects to Consider

2.9. Data Availability

2.9.1. Access
2.9.2. Uses
2.9.3. Security

2.10. Regulatory Framework

2.10.1. Data Protection Law 
2.10.2. Good Practices 
2.10.3. Other Regulatory Aspects

Module 3. Data in Artificial Intelligence

3.1. Data Science

3.1.1. Data Science
3.1.2. Advanced Tools for Data Scientists

3.2. Data, Information and Knowledge

3.2.1. Data, Information and Knowledge
3.2.2. Types of Data
3.2.3. Data Sources

3.3. From Data to Information

3.3.1. Data Analysis
3.3.2. Types of Analysis
3.3.3. Extraction of Information from a Dataset

3.4. Extraction of Information Through Visualization

3.4.1. Visualization as an Analysis Tool
3.4.2. Visualization Methods
3.4.3. Visualization of a Data Set

3.5. Data Quality

3.5.1. Quality Data
3.5.2. Data Cleaning
3.5.3. Basic Data Pre-Processing

3.6. Dataset

3.6.1. Dataset Enrichment
3.6.2. The Curse of Dimensionality
3.6.3. Modification of Our Data Set

3.7. Unbalance

3.7.1. Classes of Unbalance
3.7.2. Unbalance Mitigation Techniques
3.7.3. Balancing a Dataset

3.8. Unsupervised Models

3.8.1. Unsupervised Model
3.8.2. Methods
3.8.3. Classification with Unsupervised Models

3.9. Supervised Models

3.9.1. Supervised Model
3.9.2. Methods
3.9.3. Classification with Supervised Models

3.10. Tools and Good Practices

3.10.1. Good Practices for Data Scientists
3.10.2. The Best Model
3.10.3. Useful Tools

Module 4. Data Mining: Selection, Pre-Processing and Transformation

4.1. Statistical Inference

4.1.1. Descriptive Statistics vs. Statistical Inference
4.1.2. Parametric Procedures
4.1.3. Non-Parametric Procedures

4.2. Exploratory Analysis

4.2.1. Descriptive Analysis
4.2.2. Visualization
4.2.3. Data Preparation

4.3. Data Preparation

4.3.1. Integration and Data Cleaning
4.3.2. Normalization of Data
4.3.3. Transforming Attributes

4.4. Missing Values

4.4.1. Treatment of Missing Values
4.4.2. Maximum Likelihood Imputation Methods
4.4.3. Missing Value Imputation Using Machine Learning

4.5. Noise in the Data

4.5.1. Noise Classes and Attributes
4.5.2. Noise Filtering
4.5.3. The Effect of Noise

4.6. The Curse of Dimensionality

4.6.1. Oversampling
4.6.2. Undersampling
4.6.3. Multidimensional Data Reduction

4.7. From Continuous to Discrete Attributes

4.7.1. Continuous Data Vs. Discreet Data
4.7.2. Discretization Process

4.8. The Data

4.8.1. Data Selection  
4.8.2. Prospects and Selection Criteria 
4.8.3. Selection Methods

4.9. Instance Selection

4.9.1. Methods for Instance Selection 
4.9.2. Prototype Selection 
4.9.3. Advanced Methods for Instance Selection 

4.10. Data Pre-processing in Big Data Environments

Module 5. Algorithm and Complexity in Artificial Intelligence

5.1. Introduction to Algorithm Design Strategies

5.1.1. Recursion 
5.1.2. Divide and Conquer 
5.1.3. Other Strategies 

5.2. Efficiency and Analysis of Algorithms

5.2.1. Efficiency Measures 
5.2.2. Measuring the Size of the Input 
5.2.3. Measuring Execution Time 
5.2.4. Worst, Best and Average Case 
5.2.5. Asymptotic Notation 
5.2.6. Mathematical Analysis Criteria for Non-Recursive Algorithms 
5.2.7. Mathematical Analysis of Recursive Algorithms 
5.2.8. Empirical Analysis of Algorithms 

5.3. Sorting Algorithms

5.3.1. Concept of Sorting 
5.3.2. Bubble Sorting 
5.3.3. Sorting by Selection 
5.3.4. Sorting by Insertion 
5.3.5. Merge Sort 
5.3.6. Quick Sort 

5.4. Algorithms with Trees

5.4.1. Tree Concept 
5.4.2. Binary Trees 
5.4.3. Tree Paths 
5.4.4. Representing Expressions 
5.4.5. Ordered Binary Trees 
5.4.6. Balanced Binary Trees 

5.5. Algorithms Using Heaps

5.5.1. Heaps 
5.5.2. The Heapsort Algorithm 
5.5.3. Priority Queues 

5.6. Graph Algorithms

5.6.1. Representation 
5.6.2. Traversal in Width 
5.6.3. Depth Travel 
5.6.4. Topological Sorting 

5.7. Greedy Algorithms

5.7.1. Greedy Strategy 
5.7.2. Elements of the Greedy Strategy 
5.7.3. Currency Exchange 
5.7.4. Traveler’s Problem 
5.7.5. Backpack Problem 

5.8. Minimal Path Finding

5.8.1. The Minimum Path Problem 
5.8.2. Negative Arcs and Cycles 
5.8.3. Dijkstra's Algorithm 

5.9. Greedy Algorithms on Graphs

5.9.1. The Minimum Covering Tree 
5.9.2. Prim's Algorithm 
5.9.3. Kruskal’s Algorithm 
5.9.4. Complexity Analysis 

5.10. Backtracking

5.10.1 Backtracking 
5.10.2. Alternative Techniques 

Module 6. Intelligent Systems

6.1. Agent Theory 

6.1.1. Concept History 
6.1.2. Agent Definition 
6.1.3. Agents in Artificial Intelligence 
6.1.4. Agents in Software Engineering 

6.2. Agent Architectures 

6.2.1. The Reasoning Process of an Agent 
6.2.2. Reactive Agents 
6.2.3. Deductive Agents 
6.2.4. Hybrid Agents 
6.2.5. Comparison 

6.3. Information and Knowledge 

6.3.1. Difference between Data, Information and Knowledge 
6.3.2. Data Quality Assessment 
6.3.3. Data Collection Methods 
6.3.4. Information Acquisition Methods 
6.3.5. Knowledge Acquisition Methods 

6.4. Knowledge Representation 

6.4.1. The Importance of Knowledge Representation 
6.4.2. Definition of Knowledge Representation According to Roles 
6.4.3. Knowledge Representation Features 

6.5. Ontologies 

6.5.1. Introduction to Metadata 
6.5.2. Philosophical Concept of Ontology 
6.5.3. Computing Concept of Ontology 
6.5.4. Domain Ontologies and Higher-Level Ontologies 
6.5.5. How to Build an Ontology 

6.6. Ontology Languages and Ontology Creation Software 

6.6.1. Triple RDF, Turtle and N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introduction to Ontology Creation Tools 
6.6.6. Installing and Using Protégé 

6.7. Semantic Web 

6.7.1. Current and Future Status of the Semantic Web 
6.7.2. Semantic Web Applications 

6.8. Other Knowledge Representation Models 

6.8.1. Vocabulary 
6.8.2. Global Vision 
6.8.3. Taxonomy 
6.8.4. Thesauri 
6.8.5. Folksonomy 
6.8.6. Comparison 
6.8.7. Mind Maps 

6.9. Knowledge Representation Assessment and Integration 

6.9.1. Zero-Order Logic 
6.9.2. First-Order Logic 
6.9.3. Descriptive Logic 
6.9.4. Relationship between Different Types of Logic 
6.9.5. Prolog: Programming Based on First-Order Logic 

6.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems 

6.10.1. Concept of Reasoner 
6.10.2. Reasoner Applications 
6.10.3. Knowledge-Based Systems 
6.10.4. MYCIN: History of Expert Systems 
6.10.5. Expert Systems Elements and Architecture 
6.10.6. Creating Expert Systems 

Module 7. Machine Learning and Data Mining

7.1. Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning 

7.1.1. Key Concepts of Knowledge Discovery Processes 
7.1.2. Historical Perspective of Knowledge Discovery Processes 
7.1.3. Stages of the Knowledge Discovery Processes 
7.1.4. Techniques Used in Knowledge Discovery Processes 
7.1.5. Characteristics of Good Machine Learning Models 
7.1.6. Types of Machine Learning Information 
7.1.7. Basic Learning Concepts 
7.1.8. Basic Concepts of Unsupervised Learning 

7.2. Data Exploration and Pre-Processing 

7.2.1. Data Processing 
7.2.2. Data Processing in the Data Analysis Flow 
7.2.3. Types of Data 
7.2.4. Data Transformations 
7.2.5. Visualization and Exploration of Continuous Variables 
7.2.6. Visualization and Exploration of Categorical Variables 
7.2.7. Correlation Measures 
7.2.8. Most Common Graphic Representations 
7.2.9. Introduction to Multivariate Analysis and Dimensionality Reduction 

7.3. Decision Trees 

7.3.1. ID Algorithm 
7.3.2. Algorithm C 
7.3.3. Overtraining and Pruning 
7.3.4. Result Analysis

7.4. Evaluation of Classifiers 

7.4.1. Confusion Matrixes 
7.4.2. Numerical Evaluation Matrixes 
7.4.3. Kappa Statistic 
7.4.4. ROC Curves

7.5. Classification Rules 

7.5.1. Rule Evaluation Measures 
7.5.2. Introduction to Graphic Representation 
7.5.3. Sequential Overlay Algorithm 

7.6. Neural Networks 

7.6.1. Basic Concepts 
7.6.2. Simple Neural Networks 
7.6.3. Backpropagation Algorithm 
7.6.4. Introduction to Recurrent Neural Networks 

7.7. Bayesian Methods 

7.7.1. Basic Probability Concepts 
7.7.2. Bayes' Theorem 
7.7.3. Naive Bayes 
7.7.4. Introduction to Bayesian Networks 

7.8. Regression and Continuous Response Models 

7.8.1. Simple Linear Regression 
7.8.2. Multiple Linear Regression 
7.8.3. Logistic Regression 
7.8.4. Regression Trees 
7.8.5. Introduction to Support Vector Machines (SVM) 
7.8.6. Goodness-of-Fit Measures 

7.9. Clustering 

7.9.1. Basic Concepts 
7.9.2. Hierarchical Clustering 
7.9.3. Probabilistic Methods 
7.9.4. EM Algorithm 
7.9.5. B-Cubed Method 
7.9.6. Implicit Methods 

7.10 Text Mining and Natural Language Processing (NLP) 

7.10.1. Basic Concepts 
7.10.2. Corpus Creation 
7.10.3. Descriptive Analysis 
7.10.4. Introduction to Feelings Analysis 

Module 8. Neural Networks, the Basis of Deep Learning

8.1. Deep Learning  

8.1.1. Types of Deep Learning 
8.1.2. Applications of Deep Learning 
8.1.3. Advantages and Disadvantages of Deep Learning 

8.2. Surgery  

8.2.1. Sum 
8.2.2. Product 
8.2.3. Transfer 

8.3. Layers  

8.3.1. Input Layer 
8.3.2. Hidden Layer 
8.3.3. Output Layer 

8.4. Union of Layers and Operations  

8.4.1. Architecture Design 
8.4.2. Connection between Layers 
8.4.3. Forward Propagation 

8.5. Construction of the First Neural Network 

8.5.1. Network Design 
8.5.2. Establish the Weights 
8.5.3. Network Training 

8.6. Trainer and Optimizer 

8.6.1. Optimizer Selection 
8.6.2. Establishment of a Loss Function 
8.6.3. Establishing a Metric 

8.7. Application of the Principles of Neural Networks 

8.7.1. Activation Functions 
8.7.2. Backward Propagation 
8.7.3. Parameter Adjustment 

8.8 From Biological to Artificial Neurons 

8.8.1. Functioning of a Biological Neuron 
8.8.2. Transfer of Knowledge to Artificial Neurons 
8.8.3. Establish Relations Between the Two 

8.9. Implementation of MLP (Multilayer Perceptron) with Keras 

8.9.1. Definition of the Network Structure 
8.9.2. Model Compilation 
8.9.3. Model Training 

8.10. Fine Tuning Hyperparameters of Neural Networks 

8.10.1. Selection of the Activation Function 
8.10.2. Set the Learning Rate 
8.10.3. Adjustment of Weights 

Module 9. Deep Neural Networks Training

9.1. Gradient Problems 

9.1.1. Gradient Optimization Techniques 
9.1.2. Stochastic Gradients 
9.1.3. Weight Initialization Techniques

9.2. Reuse of Pre-Trained Layers 

9.2.1. Transfer Learning Training 
9.2.2. Feature Extraction 
9.2.3. Deep Learning 

9.3. Optimizers 

9.3.1. Stochastic Gradient Descent Optimizers 
9.3.2. Adam and RMSprop Optimizers 
9.3.3. Moment Optimizers 

9.4. Learning Rate Programming 

9.4.1. Automatic Learning Rate Control 
9.4.2. Learning Cycles 
9.4.3. Smoothing Terms 

9.5. Overfitting 

9.5.1. Cross Validation 
9.5.2. Regularization 
9.5.3. Evaluation Metrics 

9.6. Practical Guidelines

9.6.1. Model Design 
9.6.2. Selection of Metrics and Evaluation Parameters 
9.6.3. Hypothesis Testing 

9.7. Transfer Learning 

9.7.1. Transfer Learning Training 
9.7.2. Feature Extraction 
9.7.3. Deep Learning 

9.8. Data Augmentation 

9.8.1. Image Transformations 
9.8.2. Synthetic Data Generation 
9.8.3. Text Transformation 

9.9. Practical Application of Transfer Learning 

9.9.1. Transfer Learning Training 
9.9.2. Feature Extraction 
9.9.3. Deep Learning 

9.10. Regularization 

9.10.1. L and L 
9.10.2. Regularization by Maximum Entropy 
9.10.3. Dropout 

Module 10. Model Customization and Training with TensorFlow

10.1. TensorFlow 

10.1.1. Use of the TensorFlow Library 
10.1.2. Model Training with TensorFlow 
10.1.3. Operations with Graphs in TensorFlow 

10.2. TensorFlow and NumPy 

10.2.1. NumPy Computing Environment for TensorFlow 
10.2.2. Using NumPy Arrays with TensorFlow 
10.2.3. NumPy Operations for TensorFlow Graphs 

10.3. Model Customization and Training Algorithms 

10.3.1. Building Custom Models with TensorFlow 
10.3.2. Management of Training Parameters 
10.3.3. Use of Optimization Techniques for Training 

10.4. TensorFlow Features and Graphs 

10.4.1. Functions with TensorFlow 
10.4.2. Use of Graphs for Model Training 
10.4.3. Grap Optimization with TensorFlow Operations 

10.5. Loading and Preprocessing Data with TensorFlow 

10.5.1. Loading Data Sets with TensorFlow 
10.5.2. Pre-Processing Data with TensorFlow 
10.5.3. Using TensorFlow Tools for Data Manipulation 

10.6. The API tfdata 

10.6.1. Using the tfdataAPI for Data Processing 
10.6.2. Construction of Data Streams with tfdata 
10.6.3. Using the tfdata API for Model Training 

10.7. The TFRecord Format 

10.7.1. Using the TFRecord API for Data Serialization 
10.7.2. Loading TFRecord Files with TensorFlow 
10.7.3. Using TFRecord Files for Training Models 

10.8. Keras Preprocessing Layers 

10.8.1. Using the Keras Preprocessing API 
10.8.2. Construction of Pre-Processing Pipelined with Keras 
10.8.3. Using the Keras Pre-processing API for Model Training 

10.9. The TensorFlow Datasets Project 

10.9.1. Using TensorFlow Datasets for Data Loading 
10.9.2. Data Pre-Processing with TensorFlow Datasets 
10.9.3. Using TensorFlow Datasets for Model Training 

10.10. Building a Deep Learning       application with TensorFlow 

10.10.1. Practical Application 
10.10.2. Building a Deep Learning Application with    TensorFlow 
10.10.3. Training a model with TensorFlow 
10.10.4. Use of the Application for the Prediction of    Results

Module 11. Deep Computer Vision with Convolutional Neural Networks

11.1. The Cortex Visual Architecture 

11.1.1. Functions of the Visual Cortex 
11.1.2. Theories of Computational Vision 
11.1.3. Models of Image Processing 

11.2. Convolutional Layers 

11.2.1 Reuse of Weights in Convolution 
11.2.2. Convolution D 
11.2.3. Activation Functions 

11.3. Grouping Layers and Implementation of Grouping Layers with Keras 

11.3.1. Pooling and Striding 
11.3.2. Flattening 
11.3.3. Types of Pooling 

11.4. CNN Architecture 

11.4.1.  VGG Architecture 
11.4.2.  AlexNet Architecture 
11.4.3.  ResNet Architecture 

11.5. Implementing a CNN ResNet - Using Keras 

11.5.1. Weight Initialization 
11.5.2. Input Layer Definition 
11.5.3. Output Definition 

11.6. Use of Pre-Trained Keras Models 

11.6.1. Characteristics of Pre-Trained Models 
11.6.2. Uses of Pre-Trained Models 
11.6.3. Advantages of Pre-Trained Models 

11.7. Pre-Trained Models for Transfer Learning 

11.7.1. Transfer Learning 
11.7.2. Transfer Learning Process 
11.7.3. Advantages of Transfer Learning 

11.8. Classification and Localization in Deep Computer Vision 

11.8.1. Image Classification 
11.8.2. Localization of Objects in Images 
11.8.3. Object Detection 

11.9. Object Detection and Object Tracking 

11.9.1. Object Detection Methods 
11.9.2. Object Tracking Algorithms 
11.9.3. Tracking and Localization Techniques 

11.10. Semantic Segmentation 

11.10.1. Deep Learning for Semantic Segmentation 
11.10.2. Edge Detection 
11.10.3. Rule-Based Segmentation Methods 

Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention

12.1. Text Generation using RNN 

12.1.1. Training an RNN for Text Generation 
12.1.2. Natural Language Generation with RNN 
12.1.3. Text Generation Applications with RNN 

12.2. Training Data Set Creation 

12.2.1. Preparation of the Data for Training an RNN 
12.2.2. Storage of the Training Dataset 
12.2.3. Data Cleaning and Transformation 
12.2.4. Sentiment Analysis 

12.3. Classification of Opinions with RNN 

12.3.1. Detection of Themes in Comments 
12.3.2. Sentiment Analysis with Deep Learning Algorithms 

12.4. Encoder-Decoder Network for Neural Machine Translation 

12.4.1. Training an RNN for Machine Translation 
12.4.2. Use of an encoder-decoder network for machine translation 
12.4.3. Improving the Accuracy of Machine Translation with RNNs 

12.5. Attention Mechanisms 

12.5.1. Application of Care Mechanisms in RNN 
12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models 
12.5.3. Advantages of Attention Mechanisms in Neural Networks 

12.6. Transformer models 

12.6.1. Using Transformers Models for Natural Language Processing 
12.6.2. Application of Transformers Models for Vision 
12.6.3. Advantages of Transformers Models 

12.7. Transformers for vision 

12.7.1. Use of Transformers Models for Vision 
12.7.2. Image Data Preprocessing 
12.7.3. Training a Transformers Model for Vision 

12.8. Hugging Face Transformer Library 

12.8.1. Using Hugging Face's Transformers Library 
12.8.2. Hugging Face’s Transformers Library Application 
12.8.3. Advantages of Hugging Face’s Transformers Library 

12.9. Other Transformers Libraries Comparison 

12.9.1. Comparison Between Different Transformers Libraries 
12.9.2. Use of the other Transformers libraries 
12.9.3. Advantages of the Other Transformers Libraries 

12.10. Development of an NLP     Application with RNN    and Attention. Practical Application 

12.10.1. Development of a Natural Language     Processing Application with RNN    and Attention 
12.10.2. Use of RNN, Attention Mechanisms and    Transformers Models in the Application 
12.10.3. Evaluation of the Practical Application

Module 13. Autoencoders, GANs and Diffusion Models

13.1. Representation of Efficient Data 

13.1.1. Dimensionality Reduction 
13.1.2. Deep Learning 
13.1.3. Compact Representations 

13.2. PCA Realization with an Incomplete Linear Automatic Encoder 

13.2.1. Training Process 
13.2.2. Implementation in Python 
13.2.3. Use of Test Data 

13.3. Stacked Automatic Encoders 

13.3.1. Deep Neural Networks 
13.3.2. Construction of Coding Architectures 
13.3.3. Use of Regularization 

13.4. Convolutional Autoencoders 

13.4.1. Design of Convolutional Models 
13.4.2. Convolutional Model Training 
13.4.3. Results Evaluation 

13.5. Noise Suppression of Automatic Encoders 

13.5.1. Filter Application 
13.5.2. Design of Coding Models 
13.5.3. Use of Regularization Techniques 

13.6. Sparse Automatic Encoders 

13.6.1. Increasing Coding Efficiency 
13.6.2. Minimizing the Number of Parameters 
13.6.3. Using Regularization Techniques 

13.7. Variational Automatic Encoders 

13.7.1. Use of Variational Optimization 
13.7.2. Unsupervised Deep Learning 
13.7.3. Deep Latent Representations 

13.8. Trendy MNIST Image Generation 

13.8.1. Pattern Recognition 
13.8.2. Image Generation 
13.8.3. Deep Neural Networks Training 

13.9. Generative Adversarial Networks and Diffusion Models 

13.9.1.  Content Generation from Images 
13.9.2.  Modeling of Data Distributions 
13.9.3.  Use of Adversarial Networks 

13.10 Model Implementation 

13.10.1. Practical Application 
13.10.2. Implementation of the Models 
13.10.3. Use of Real Data 
13.10.4. Results Evaluation 

Module 14. Bio-Inspired Computing 

14.1. Introduction to Bio-Inspired Computing 

14.1.1. Introduction to Bio-Inspired Computing 

14.2. Social Adaptation Algorithms 

14.2.1. Bio-Inspired Computing Based on Ant Colonies 
14.2.2. Variants of Ant Colony Algorithms 
14.2.3. Particle Cloud Computing 

14.3. Genetic Algorithms 

14.3.1. General Structure 
14.3.2. Implementations of the Major Operators 

14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms 

14.4.1. CHC Algorithm 
14.4.2. Multimodal Problems 

14.5. Evolutionary Computation Models (I) 

14.5.1. Evolutionary Strategies 
14.5.2. Evolutionary Programming 
14.5.3. Algorithms Based on Differential Evolution 

14.6. Evolutionary Computation Models (II) 

14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA) 
14.6.2. Genetic Programming 

14.7. Evolutionary Programming Applied to Learning Problems 

14.7.1. Rules-Based Learning 
14.7.2. Evolutionary Methods in Instance Selection Problems 

14.8. Multi-Objective Problems 

14.8.1. Concept of Dominance 
14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems 

14.9. Neural Networks (I) 

14.9.1. Introduction to Neural Networks 
14.9.2. Practical Example with Neural Networks 

14.10. Neural Networks (II) 

14.10.1.  Use Cases of Neural Networks in Medical Research 
14.10.2. Use Cases of Neural Networks in Economics 
14.10.3. Use Cases of Neural Networks in    Artificial Vision 

Module 15. Artificial Intelligence: Strategies and Applications 

15.1. Financial Services 

15.1.1. The Implications of Artificial Intelligence (AI) in Financial Services  Opportunities and Challenges  
15.1.2. Case Uses  
15.1.3. Potential Risks Related to the Use of AI 
15.1.4. Potential Future Developments/Uses of AI 

15.2. Implications of Artificial Intelligence in Healthcare Service  

15.2.1. Implications of AI in the Healthcare Sector Opportunities and Challenges  
15.2.2. Case Uses 

15.3. Risks Related to the Use of AI in Healthcare Service 

15.3.1. Potential Risks Related to the Use of AI 
15.3.2. Potential Future Developments/Uses of AI  

15.4. Retail  

15.4.1. Implications of AI in Retail. Opportunities and Challenges  
15.4.2. Case Uses  
15.4.3. Potential Risks Related to the Use of AI  
15.4.4. Potential Future Developments/Uses of AI 

15.5. Industry   

15.5.1. Implications of AI in Industry Opportunities and Challenges 
15.5.2. Case Uses 

15.6. Potential Risks Related to the Use of AI in Industry   

15.6.1. Case Uses 
15.6.2. Potential Risks Related to the Use of AI 
15.6.3. Potential Future Developments/Uses of AI  

15.7. Public Administration  

15.7.1. AI Implications for Public Administration Opportunities and Challenges 
15.7.2. Case Uses  
15.7.3. Potential Risks Related to the Use of AI  
15.7.4. Potential Future Developments/Uses of AI  

15.8. Educational  

15.8.1. AI Implications for Education Opportunities and Challenges 
15.8.2. Case Uses  
15.8.3. Potential Risks Related to the Use of AI  
15.8.4. Potential Future Developments/Uses of AI 

15.9. Forestry and Agriculture  

15.9.1. Implications of AI in Forestry and Agriculture. Opportunities and Challenges  
15.9.2. Case Uses 
15.9.3. Potential Risks Related to the Use of AI 
15.9.4. Potential Future Developments/Uses of AI  

15.10 Human Resources  

15.10.1. Implications of AI for Human Resources    Opportunities and Challenges 
15.10.2. Case Uses  
15.10.3. Potential Risks Related to the Use of AI  
15.10.4. Potential Future Developments/Uses of AI 

Module 16. Technical Analysis of Financial Markets with AI

16.1. Analysis and Visualization of Technical Indicators with Plotly and Dash 

16.1.1. Implementation of Interactive Charts with Plotly 
16.1.2. Advanced Visualization of Time Series with Matplotlib 
16.1.3. Creating Real-Time Dynamic Dashboards with Dash 

16.2. Optimization and Automation of Technical Indicators with Scikit-learn 

16.2.1. Automation of Indicators with Scikit-learn 
16.2.2. Optimization of Technical Indicators 
16.2.3. Creating Personalized Indicators with Keras 

16.3. Financial Pattern Recognition with CNN 

16.3.1. Using CNN in TensorFlow to Identify Patterns in Charts 
16.3.2. Improving Recognition Models with Transfer Learning Techniques 
16.3.3. Validation of Recognition Models in Real-Time Markets 

16.4. Quantitative Trading Strategies with QuantConnect 

16.4.1. Building Algorithmic Trading Systems with QuantConnect 
16.4.2. Backtesting Strategies with QuantConnect 
16.4.3. Integrating Machine Learning into Trading Strategies with QuantConnect 

16.5. Algorithmic Trading with Reinforcement Learning Using TensorFlow  

16.5.1. Reinforcement Learning for Trading 
16.5.2. Creating Trading Agents with TensorFlow Reinforcement Learning 
16.5.3. Simulating and Tuning Agents in OpenAI Gym 

16.6. Time Series Modeling with LSTM in Keras for Price Forecasting 

16.6.1. Applying LSTM to Price Forecasting 
16.6.2. Implementing LSTM Models in Keras for Financial Time Series 
16.6.3. Optimization and Parameter Fitting in Time Series Models 

16.7. Application of Explainable Artificial Intelligence (XAI) in Finance 

16.7.1. Applicability of XAI in Finances 
16.7.2. Applying LIME to Trading Models 
16.7.3. Using SHAP for Feature Contribution Analysis in AI Decisions 

16.8. High-Frequency Trading (HFT) Optimized with Machine Learning Models 

16.8.1. Developing ML Models for HFT 
16.8.2. Implementing HFT Strategies with TensorFlow 
16.8.3. Simulation and Evaluation of HFT in Controlled Environments 

16.9. Volatility Analysis Using Machine Learning 

16.9.1. Applying Intelligent Models to Predict Volatility 
16.9.2. Implementing Volatility Models with PyTorch 
16.9.3. Integrating Volatility Analysis into Portfolio Risk Management 

16.10. Portfolio Optimization with    Genetic Algorithms 

16.10.1. Fundamentals of Genetic Algorithms for    Investment Optimization in Markets 
16.10.2. Implementing Genetic Algorithms for    Portfolio Selection 
16.10.3.  Evaluation of Portfolio Optimization Strategies

Module 17. Fundamental Analysis of Financial Markets with AI

17.1. Predictive Financial Performance Modeling with Scikit-Learn 

17.1.1. Linear and Logistic Regression for Financial Forecasting with Scikit-Learn 
17.1.2. Using Neural Networks with TensorFlow to Forecast Revenues and Earnings 
17.1.3. Validating Predictive Models with Cross-Validation Using Scikit-Learn 

17.2. Valuation of Companies with Deep Learning 

17.2.1. Automating the Discounted Cash Flows (DCF) Model with TensorFlow 
17.2.2. Advanced Valuation Models Using PyTorch 
17.2.3. Integration and Analysis of Multiple Valuation Models with Pandas 

17.3. Analysis of Financial Statements with NLP Using ChatGPT 

17.3.1. Extracting Key Information from Annual Reports with ChatGPT 
17.3.2. Sentiment Analysis of Analyst Reports and Financial News with ChatGPT 
17.3.3. Implementing NLP Models with Chat GPT for Interpreting Financial Texts 

17.4. Risk and Credit Analysis with Machine Learning 

17.4.1. Credit Scoring Models Using SVM and Decision Trees in Scikit-Learn 
17.4.2. Credit Risk Analysis in Corporations and Bonds with TensorFlow 
17.4.3. Visualization of Risk Data with Tableau 

17.5. Credit Analysis with Scikit-Learn 

17.5.1. Implementing Credit Scoring Models 
17.5.2. Credit Risk Analysis with RandomForest in Scikit-Learn 
17.5.3. Advanced Visualization of Credit Scoring Results with Tableau 

17.6. ESG Sustainability Assessment with Data Mining Techniques 

17.6.1. ESG Data Mining Methods 
17.6.2. ESG Impact Modeling with Regression Techniques 
17.6.3. Applications of ESG Analysis in Investment Decisions 

17.7. Sector Benchmarking with Artificial Intelligence Using TensorFlow and Power BI 

17.7.1. Comparative Analysis of Companies Using AI 
17.7.2. Predictive Modeling of Sector Performance with TensorFlow 
17.7.3. Implementing Industry Dashboards with Power BI 

17.8. Portfolio Management with AI Optimization 

17.8.1. Portfolio Optimization 
17.8.2. Use of Machine Learning Techniques for Portfolio Optimization with Scikit-Optimize 
17.8.3. Implementing and Evaluating the Effectiveness of Algorithms in Portfolio Management 

17.9. Financial Fraud Detection with AI Using TensorFlow and Keras 

17.9.1. Basic Concepts and Techniques of Fraud Detection with AI 
17.9.2. Constructing Neural Network Detection Models in TensorFlow 
17.9.3. Practical Implementation of Fraud Detection Systems in Financial Transactions 

17.10. Analysis and Modeling in    Mergers and Acquisitions with AI 

17.10.1. Using Predictive AI Models to Evaluate    Mergers and Acquisitions 
17.10.2. Simulating Post-Merger Scenarios Using    Machine Learning Techniques 
17.10.3. Evaluating the Financial Impact of M&A    with Intelligent Models 

Module 18. Large Scale Financial Data Processing

18.1. Big Data in the Financial Context 

18.1.1. Key Characteristics of Big Data in Finance 
18.1.2. Importance of the 5 Vs (Volume, Velocity, Variety, Veracity, Value) in Financial Data 
18.1.3. Use Cases of Big Data in Risk Analysis and Compliance 

18.2. Technologies for Storage and Management of Financial Big Data 

18.2.1. NoSQL Database Systems for Financial Warehousing 
18.2.2. Using Data Warehouses and Data Lakes in the Financial Sector 
18.2.3. Comparison between On-Premises and Cloud-Based Solutions 

18.3. Real-Time Processing Tools for Financial Data 

18.3.1. Introduction to Tools such as Apache Kafka and Apache Storm 
18.3.2. Real-Time Processing Applications for Fraud Detection 
18.3.3. Benefits of Real-Time Processing in Algorithmic Trading 

18.4. Integration and Data Cleaning in Finance 

18.4.1. Methods and Tools for Integrating Data from Multiple Sources 
18.4.2. Data Cleaning Techniques to Ensure Data Quality and Accuracy 
18.4.3. Challenges in the Standardization of Financial Data 

18.5. Data Mining Techniques Applied to The Financial Markets 

18.5.1. Classification and Prediction Algorithms in Market Data 
18.5.2. Sentiment Analysis in Social Networks for Predicting Market Movements 
18.5.3. Data Mining to Identify Trading Patterns and Investor Behavior 

18.6. Advanced Data Visualization for Financial Analysis 

18.6.1. Visualization Tools and Software for Financial Data 
18.6.2. Design of Interactive Dashboards for Market Monitoring 
18.6.3. The Role of Visualization in Risk Analysis Communication 

18.7. Use of Hadoop and Related Ecosystems in Finance 

18.7.1. Key Components of the Hadoop Ecosystem and Their Application in Finance 
18.7.2. Hadoop Use Cases for Large Transaction Volume Analysis 
18.7.3. Advantages and Challenges of Integrating Hadoop into Existing Financial Infrastructures 

18.8. Spark Applications in Financial Analytics 

18.8.1. Spark for Real-Time and Batch Data Analytics 
18.8.2. Predictive Model Building Using Spark MLlib 
18.8.3. Integration of Spark with Other Big Data Tools in Finance 

18.9. Data Security and Privacy in the Financial Sector 

18.9.1. Data Protection Rules and Regulations (GDPR, CCPA) 
18.9.2. Encryption and Access Management Strategies for Sensitive Data 
18.9.3. Impact of Data Breaches on Financial Institutions 

18.10. Impact of Cloud Computing on    Large-Scale Financial Analysis 

18.10.1. Advantages of the Cloud for Scalability    and Efficiency in Financial Analysis 
18.10.2. Comparison of Cloud Providers and Their    Specific Financial Services 
18.10.3. Case Studies on Migration to the Cloud in    Large Financial Institutions 

Module 19. Algorithmic Trading Strategies

19.1. Fundamentals of Algorithmic Trading 

19.1.1. Algorithmic Trading Strategies 
19.1.2. Key Technologies and Platforms for the Development of Algorithmic Trading Algorithms 
19.1.3. Advantages and Challenges of Automated Trading versus Manual Trading 

19.2. Design of Automated Trading Systems 

19.2.1. Structure and Components of an Automated Trading System 
19.2.2. Algorithm Programming: from the Idea to the Implementation 
19.2.3. Latency and Hardware Considerations in Trading Systems 

19.3. Backtesting and Evaluation of Trading Strategies 

19.3.1. Methodologies for Effective Backtesting of Algorithmic Strategies 
19.3.2. Importance of Quality Historical Data in Backtesting 
19.3.3. Key Performance Indicators for Evaluating Trading Strategies 

19.4. Optimizing Strategies with Machine Learning 

19.4.1. Applying Supervised Learning Techniques in Strategy Improvement 
19.4.2. Using Particle Swarm Optimization and Genetic Algorithms 
19.4.3. Challenges of Overfitting in Trading Strategy Optimization 

19.5. High Frequency Trading (HFT) 

19.5.1. Principles and Technologies behind HFT 
19.5.2. Impact of HFT on Market Liquidity and Volatility 
19.5.3. Common HFT Strategies and Their Effectiveness 

19.6. Order Execution Algorithms 

19.6.1. Types of Execution Algorithms and Their Practical Application 
19.6.2. Algorithms for Minimizing the Market Impact 
19.6.3. Using Simulations to Improve Order Execution 

19.7. Arbitration Strategies in Financial Markets 

19.7.1. Statistical Arbitrage and Price Merger in Markets 
19.7.2. Index and ETF Arbitrage 
19.7.3. Technical and Legal Challenges of Arbitrage in Modern Trading 

19.8. Risk Management in Algorithmic Trading 

19.8.1. Risk Measures for Algorithmic Trading 
19.8.2. Integrating Risk Limits and Stop-Loss in Algorithms 
19.8.3. Specific Risks of Algorithmic Trading and How to Mitigate Them 

19.9. Regulatory Aspects and Compliance in Algorithmic Trading 

19.9.1. Global Regulations Impacting Algorithmic Trading 
19.9.2. Regulatory Compliance and Reporting in an Automated Environment 
19.9.3. Ethical Implications of Automated Trading 

19.10. Future of Algorithmic Trading and   Emerging Trends 

19.10.1. Impact of Artificial Intelligence on the Future    Development of Algorithmic Trading 
19.10.2. New Blockchain Technologies and Their    Application in Algorithmic Trading 
19.10.3. Trends in Adaptability and Customization    of Trading Algorithms 

Module 20. Module 20. Ethical and Regulatory Aspects of AI in Finance 

20.1. Ethics in Artificial Intelligence Applied to Finance 

20.1.1. Fundamental Ethical Principles for the Development and Use of AI in Finance 
20.1.2. Case Studies on Ethical Dilemmas in Financial AI Applications 
20.1.3. Developing Ethical Codes of Conduct for Financial Technology Professionals 

20.2. Global Regulations Affecting the Use of AI in Financial Markets 

20.2.1. Overview of the Main International Financial Regulations on AI 
20.2.2. Comparison of AI Regulatory Policies among Different Jurisdictions 
20.2.3. Implications of AI Regulation on Financial Innovation 

20.3. Transparency and Explainability of AI Models in Finance 

20.3.1. Importance of Transparency in AI Algorithms for User Confidence 
20.3.2. Techniques and Tools to Improve the Explainability of AI Models 
20.3.3. Challenges of Implementing Interpretable Models in Complex Financial Environments 

20.4. Risk Management and Ethical Compliance in the Use of AI 

20.4.1. Risk Mitigation Strategies Associated with the Deployment of AI in Finance 
20.4.2. Ethics Compliance in the Development and Application of AI Technologies 
20.4.3. Ethical Oversight and Audits of AI Systems in Financial Operations 

20.5. Social and Economic Impact of AI in Financial Markets 

20.5.1. Effects of AI on the Stability and Efficiency of Financial Markets 
20.5.2. AI and Its Impact on Employment and Professional Skills in Finance 
20.5.3. Benefits and Social Risks of Large-Scale Financial Automation 

20.6. Data Privacy and Protection in AI Financial Applications 

20.6.1. Data Privacy Regulations Applicable to AI Technologies in Finance 
20.6.2. Personal Data Protection Techniques in AI-Based Financial Systems 
20.6.3. Challenges in Managing Sensitive Data in Predictive and Analytics Models 

20.7. Algorithmic Bias and Fairness in AI Financial Models 

20.7.1. Identification and Mitigation of Bias in Financial AI Algorithms 
20.7.2. Strategies to Ensure Fairness in Automated Decision-Making Models 
20.7.3. Impact of Algorithmic Bias on Financial Inclusion and Equity 

20.8. Challenges of Regulatory Oversight in Financial AI 

20.8.1. Difficulties in the Supervision and Control of Advanced AI Technologies 
20.8.2. Role of Financial Authorities in the Ongoing Supervision of AI 
20.8.3. Need for Regulatory Adaptation in the Face of Advancing AI Technology 

20.9. Strategies for Responsible Development of AI Technologies in Finance 

20.9.1. Best Practices for Sustainable and Responsible AI Development in the Financial Sector 
20.9.2. Initiatives and Frameworks for Ethical Assessment of AI Projects in Finance 
20.9.3. Collaboration between Regulators and Businesses to Encourage Responsible Practices 

20.10. Future of AI Regulation in the    Financial Sector 

20.10.1. Emerging Trends and Future Challenges in   AI Regulation in Finance 
20.10.2. Preparation of Legal Frameworks for Disruptive Innovations in Financial Technology 
20.10.3. International Dialogue and Cooperation for Effective and Unified Regulation of AI in Finance

##IMAGE##

You will address time series modeling and the application of explainable Artificial Intelligence, facilitating informed and accurate decision making in dynamic financial environments” 

Executive Master's Degree in Artificial Intelligence in Stock Exchanges and Financial Markets

The advancement of Artificial Intelligence (AI) has revolutionized the way finance works. Thanks to the ability to process large volumes of data in real time and analyze patterns that were previously invisible, AI allows more informed and accurate decisions to be made. This change has positioned professionals specialized in automated systems and finance as key players in leading the investments of the future. With the Executive Master's Degree in Artificial Intelligence in Stock Exchanges and Financial Markets, you will acquire the necessary skills to integrate these advanced technologies into market dynamics. At TECH Global University, classes are 100% online, which offers you maximum flexibility to organize your time. During this program, you will dive into key areas such as algorithmic trading, predictive analytics and the use of machine learning in investment management. This knowledge will empower you to create data-driven strategies, spot opportunities in financial markets and manage risk more effectively.

Master the financial markets using AI

One of the aspects that you will address in this program is the development of innovative solutions that optimize financial flows and position you at the forefront of technology applied to the stock market. The Executive Master's Degree is taught using the Relearning methodology, an innovative pedagogical technique that facilitates the retention of knowledge through the strategic repetition of key concepts. This model guarantees dynamic and effective learning, allowing you to advance through the program without information overload. In addition, you will be able to immediately apply the knowledge acquired in your work environment, boosting your professional growth in an accelerated manner. Thanks to the online classes, you can combine your professional life with your studies, accessing the content at any time and from anywhere. With the support of TECH Global University, you will take a qualitative leap in your career, specializing in an area with a growing demand in the global financial world.