Titulación universitaria
La mayor facultad de fisioterapia del mundo”
Presentación
Un programa tan innovador como la E-Health, gracias al cual podrás implementar a tu práctica fisioterapéutica las estrategias de Big Data e inteligencia artificial más efectivas y novedosas y de manera 100% online”
La fisioterapia, al igual que el resto de ramas relacionadas con el ámbito sanitario (medicina, enfermería, nutrición, etc.) se ha visto ampliamente beneficiada por el desarrollo de la eSalud y sus herramientas para una asistencia aún más centrada en el paciente. Y es que la evolución del Big Data, la inteligencia artificial y el Internet of Things (IoT) aplicados a este sector ha motivado la creación de técnicas como la neuromodulación no invasiva o el perfeccionamiento de estrategias relacionadas con el diagnóstico a través de imágenes (ultrasonidos, tomografías, resonancias, etc.), lo cual, además de facilitarle la praxis al profesional, le ha permitido ampliar sus tratamientos, así como su efectividad y eficacia.
Por ello, el interés hacia esta área ha crecido en los últimos años, razón por la que TECH Universidad ha considerado necesario el desarrollo de un programa a través del cual el especialista pueda conocer al detalle las novedades de este campo y aplicarlas a su praxis diaria. Y es que este Maestría incluye 1.500 horas de un análisis exhaustivo de la E-Health y sus aplicaciones en el sector actual, desde la gestión y dirección de centros basados en la tecnología más innovadora, hasta las mejores técnicas de reconocimiento e intervención mediante imágenes en biomedicina. También podrá profundizar en la creación y gestión de bases de datos, así como en su procesamiento masivo y hará especial hincapié en los dispositivos quirúrgicos y biomecánicos más importantes y efectivos, centrándose, además, en la aplicación de la inteligencia artificial al ámbito Fisioterapéutico.
Todo ello a través de 12 meses de un programa 100% online, diseñado a medida por expertos en bioingeniería y biomedicina que incluye, a parte del mejor temario teórico, horas de material adicional diverso, el cual estará disponible en el campus virtual desde el inicio del programa y podrá ser descargado en cualquier dispositivo con conexión a internet. Así TECH Universidad garantiza una experiencia académica perfectamente compaginable con cualquier otra actividad laboral, lo cual permitirá al especialista ponerse al día y perfeccionar sus competencias profesionales de manera garantizada y en base a las últimas evidencias científicas del campo de la E-Health y Big Data.
Gracias al conocimiento especializado que adquirirás con este programa, podrás incluir en tu oferta las técnicas de diagnóstico de imagen más innovadoras y efectivas”
Este Maestría en E-Health y Big Data contiene el programa científico más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Tecnologías de la Información y la Comunicación enfocadas al entorno sanitario
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
¿Te gustaría ponerte al día de las novedades relacionadas con la gestión y dirección de centros sanitarios? Con ##este/esta## E-Health y Big Data podrás trabajar en tu negocio en base a tendencias y estrategias de éxito”
El programa incluye, en su cuadro docente, a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá a los profesionales un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual los profesionales deberán tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de videos interactivos realizados por reconocidos expertos.
El mejor programa del sector universitario para ponerse al día sobre las técnicas para la investigación en ciencias de la salud, desde donde quieras y sin horarios prestablecidos"
La titulación incluye 1.500 horas de contenido diverso, desde un temario vanguardista e innovador, hasta material adicional variado de gran calidad. Todo estará disponible desde el inicio del programa"
Temario
TECH Universidad es pionera en todo el sector universitario online en el uso de la metodología Relearning. Esta estrategia pedagógica es especialmente efectiva en las titulaciones relacionadas con el ámbito sanitario, ya que, a través de la reiteración de los conceptos más importantes a lo largo del temario, el profesional no tiene que invertir horas de más en memorizar. Gracias a ello, el especialista de la fisioterapia podrá ahondar en los entresijos de la E-Health y el Big Data, adquiriendo un conocimiento amplio y actualizado sobe los avances en este campo y disfrutando de una experiencia académica a la vanguardia del sector.
El empleo de la metodología Relearning en el desarrollo de este Maestría ha permitido a TECH reducir la carga lectiva sin renunciar ni a un ápice de la calidad de su contenido”
Módulo 1. Medicina molecular y diagnóstico de patologías
1.1. Medicina molecular
1.1.1. Biología celular y molecular. Lesión y muerte celular. Envejecimiento
1.1.2. Enfermedades causadas por microorganismos y defensa del huésped
1.1.3. Enfermedades autoinmunes
1.1.4. Enfermedades toxicológicas
1.1.5. Enfermedades por hipoxia
1.1.6. Enfermedades relacionadas con el medio ambiente
1.1.7. Enfermedades genéticas y epigenética
1.1.8. Enfermedades oncológicas
1.2. Aparato circulatorio
1.2.1. Anatomía y función
1.2.2. Enfermedades del miocardio e insuficiencia cardiaca
1.2.3. Enfermedades del ritmo cardiaco
1.2.4. Enfermedades valvulares y pericárdicas
1.2.5. Ateroesclerosis, arterioesclerosis e hipertensión arterial
1.2.6. Enfermedad arterial y venosa periférica
1.2.7. Enfermedad linfática (la gran ignorada)
1.3. Enfermedades del aparato respiratorio
1.3.1. Anatomía y función
1.3.2. Enfermedades pulmonares obstructivas agudas y crónicas
1.3.3. Enfermedades pleurales y mediastínicas
1.3.4. Enfermedades infecciosas del parénquima pulmonar y bronquios
1.3.5. Enfermedades de la circulación pulmonar
1.4. Enfermedades del aparato digestivo
1.4.1. Anatomía y función
1.4.2. Sistema digestivo, nutrición, e intercambio hidroelectrolítico
1.4.3. Enfermedades gastroesofágicas
1.4.4. Enfermedades infecciosas gastrointestinales
1.4.5. Enfermedades del hígado y las vías biliares
1.4.6. Enfermedades del páncreas
1.4.7. Enfermedades del colon
1.5. Enfermedades renales y de las vías urinarias
1.5.1. Anatomía y función
1.5.2. Insuficiencia renal (prerrenal, renal, y postrenal). Cómo se desencadenan
1.5.3. Enfermedades obstructivas de las vías urinarias
1.5.4. Insuficiencia esfinteriana en las vías urinarias
1.5.5. Síndrome nefrótico y síndrome nefrítico
1.6. Enfermedades del sistema endocrino
1.6.1. Anatomía y función
1.6.2. El ciclo menstrual y sus afecciones
1.6.3. Enfermedad de la tiroides
1.6.4. Enfermedad de las glándulas suprarrenales
1.6.5. Enfermedades de las gónadas y de la diferenciación sexual
1.6.6. Eje hipotálamo-hipofisario, metabolismo del calcio, vitamina D y sus efectos en el crecimiento y el sistema óseo
1.7. Metabolismo y nutrición
1.7.1. Nutrientes esenciales y no esenciales (aclarando definiciones)
1.7.2. Metabolismo de los carbohidratos y sus alteraciones
1.7.3. Metabolismo de las proteínas y sus alteraciones
1.7.4. Metabolismo de los lípidos y sus alteraciones
1.7.5. Metabolismo del hierro y sus alteraciones
1.7.6. Alteraciones del equilibrio ácido-base
1.7.7. Metabolismo del sodio, potasio y sus alteraciones
1.7.8. Enfermedades nutricionales (hipercalóricas e hipocalóricas)
1.8. Enfermedades hematológicas
1.8.1. Anatomía y función
1.8.2. Enfermedades de la serie roja
1.8.3. Enfermedades de la serie blanca, los ganglios linfáticos y el bazo
1.8.4. Enfermedades de la hemostasia y la coagulación
1.9. Enfermedades del sistema musculoesquelético
1.9.1. Anatomía y función
1.9.2. Articulaciones, tipos y función
1.9.3. Regeneración ósea
1.9.4. Desarrollo normal y patológico del sistema óseo
1.9.5. Deformidades en los miembros superiores e inferiores
1.9.6. Patología articular, cartílago, y análisis del líquido sinovial
1.9.7. Enfermedades articulares de origen inmunológico
1.10. Enfermedades del sistema nervioso
1.10.1. Anatomía y función
1.10.2. Desarrollo del sistema nervioso central y periférico
1.10.3. Desarrollo de la columna vertebral y sus componentes
1.10.4. Enfermedades del cerebelo y propioceptivas
1.10.5. Enfermedades propias del cerebro (sistema nervioso central)
1.10.6. Enfermedades de la médula espinal y del líquido cefalorraquídeo
1.10.7. Enfermedades estenóticas del sistema nervioso periférico
1.10.8. Enfermedades infecciones del sistema nervioso central
1.10.9. Enfermedad cerebrovascular (estenótica y hemorrágicas)
Módulo 2. Sistema sanitario. Gestión y dirección de centros sanitarios
2.1. Los sistemas sanitarios
2.1.1. Sistemas sanitarios
2.1.2. Sistema sanitario según la OMS
2.1.3. Contexto sanitario
2.2. Modelos sanitarios I. Modelo Bismark vs. Beveridge
2.2.1. Modelo Bismark
2.2.2. Modelo Beveridge
2.2.3. Modelo Bismark vs. Modelo Beveridge
2.3. Modelos sanitarios II. Modelo Semashko, privado y mixto
2.3.1. Modelo Semashko
2.3.2. Modelo privado
2.3.3. Modelo mixto
2.4. El mercado de salud
2.4.1. El mercado de salud
2.4.2. Regulación y limitaciones del mercado de salud
2.4.3. Métodos de pago a doctores y hospitales
2.4.4. El ingeniero clínico
2.5. Hospitales. Tipología
2.5.1. Arquitectura del hospital
2.5.2. Tipos de hospitales
2.5.3. Organización del hospital
2.6. Métricas en salud
2.6.1. Mortalidad
2.6.2. Morbilidad
2.6.3. Años de vida saludables
2.7. Métodos de asignación de recursos en salud
2.7.1. Programación lineal
2.7.2. Modelos de maximización
2.7.3. Modelos de minimización
2.8. Medida de la productividad en salud
2.8.1. Medidas de la productividad en salud
2.8.2. Ratios de productividad
2.8.3. Ajuste por entradas
2.8.4. Ajuste por salidas
2.9. Mejora de procesos en salud
2.9.1. Proceso de Lean Management
2.9.2. Herramientas de simplificación de trabajo
2.9.3. Herramientas para la investigación de problemas
2.10. Gestión de proyectos en salud
2.10.1. Rol del Project Manager
2.10.2. Herramientas de manejo de equipos y proyectos
2.10.3. Manejo de calendarios y tiempos
Módulo 3. Investigación en ciencias de la salud
3.1. La investigación científica I. El método científico
3.1.1. La investigación científica
3.1.2. Investigación en ciencias de la salud
3.1.3. El método científico
3.2. La investigación científica II. Tipología
3.2.1. La investigación básica
3.2.2. La investigación clínica
3.2.3. La investigación traslacional
3.3. La medicina basada en la evidencia
3.3.1. La medicina basada en la evidencia
3.3.2. Principios de la medicina basada en la videncia
3.3.3. Metodología de la medicina basada en la evidencia
3.4. Ética y legislación de la investigación científica. La declaración de Helsinki
3.4.1. El comité de ética
3.4.2. La declaración de Helsinki
3.4.3. Ética en ciencias de la salud
3.5. Resultados de la investigación científica
3.5.1. Métodos
3.5.2. Rigor y poder estadístico
3.5.3. Validez de los resultados científicos
3.6. Comunicación pública
3.6.1. Las sociedades científicas
3.6.2. El congreso científico
3.6.3. Estructuras de comunicación
3.7. Financiación de la investigación científica
3.7.1. Estructura de un proyecto científico
3.7.2. La financiación pública
3.7.3. La financiación privada e industrial
3.8. Recursos científicos para la búsqueda bibliográfica. Bases de datos de ciencias de la salud I
3.8.1. PubMed-Medline
3.8.2. Embase
3.8.3. WOS y JCR
3.8.4. Scopus y Scimago
3.8.5. Micromedex
3.8.6. MEDES
3.8.7. IBECS
3.8.8. LILACS
3.8.9. Bases de datos del CSIC: ISOC, ICYT
3.8.10. BDENF
3.8.11. Cuidatge
3.8.12. CINAHL
3.8.13. Cuiden Plus
3.8.14. Enfispo
3.8.15. Bases de datos del NCBI (OMIM, TOXNET) y los NIH (National Cancer Institute)
3.9. Recursos científicos para la búsqueda bibliográfica. Bases de datos de ciencias de la salud II
3.9.1. NARIC- Rehabdata
3.9.2. PEDro
3.9.3. ASABE: Technical Library
3.9.4. CAB Abstracts
3.9.5. Índices-CSIC
3.9.6. Bases de datos del CDR (Centre for Reviews and Dissemination)
3.9.7. Biomed Central BMC
3.9.8. ClinicalTrials.gov
3.9.9. Clinical Trials Register
3.9.10. DOAJ- Directory of Open Acess Journals
3.9.11. PROSPERO (Registro Internacional Prospectivo de Revisiones Sistemáticas)
3.9.12. TRIP
3.9.13. LILACS
3.9.14. NIH. Medical Library
3.9.15. Medline Plus
3.9.16. Ops
3.10. Recursos científicos para la búsqueda bibliográfica III. Buscadores y plataformas
3.10.1. Buscadores y multibuscadores
3.10.1.1. Findr
3.10.1.2. Dimensions
3.10.1.3. Google Académico
3.10.1.4. Microsoft Academic
3.10.2. Plataforma de registros internacionales de ensayos Ccínicos de la OMS (ICTRP)
3.10.2.1. PubMed Central PMC
3.10.2.1. Recolector de ciencia abierta (RECOLECTA)
3.10.2.2. Zenodo
3.10.3. Buscadores de tesis doctorales
3.10.3.1. DART-Europe
3.10.3.2. Dialnet-Tesis doctorales
3.10.3.3. OATD (Open Access Theses and Dissertations)
3.10.3.4. TDR (Tesis doctorales en red)
3.10.3.5. TESEO
3.10.4. Gestores bibliográficos
3.10.4.1. Endnote online
3.10.4.2. Mendeley
3.10.4.3. Zotero
3.10.4.4. Citeulike
3.10.4.5. Refworks
3.10.5. Redes sociales digitales para investigadores
3.10.5.1. Scielo
3.10.5.2. Dialnet
3.10.5.3. Free Medical Journals
3.10.5.4. DOAJ
3.10.5.5. Open Science Directory
3.10.5.6. Redalyc
3.10.5.7. Academia.edu
3.10.5.8. Mendeley
3.10.5.9. ResearchGate
3.10.6. Recursos 2.0 de la web social
3.10.6.1. Delicious
3.10.6.2. Slideshare
3.10.6.3. YouTube
3.10.6.4. Twitter
3.10.6.5. Blogs de ciencias de la salud
3.10.6.6. Facebook
3.10.6.7. Evernote
3.10.6.8. Dropbox
3.10.6.9. Google Drive
3.10.7. Portales de editores y agregadores de revistas científicas
3.10.7.1. Science Direct
3.10.7.2. Ovid
3.10.7.3. Springer
3.10.7.4. Wiley
3.10.7.5. Proquest
3.10.7.6. Ebsco
3.10.7.7. BioMed Central
Módulo 4. Técnicas, reconocimiento e intervención a través de imágenes biomédicas
4.1. Imágenes médicas
4.1.1. Modalidades de las imágenes médicas
4.1.2. Objetivos de los sistemas de imagen médica
4.1 3. Sistemas de almacenamiento de las Imágenes médicas
4.2. Radiología
4.2.1. Método de obtención de imágenes
4.2.2. Interpretación de la radiología
4.2.3. Aplicaciones clínicas
4.3. Tomografía computarizada (TC)
4.3.1. Principio de funcionamiento
4.3.2. Generación y obtención de la imagen
4.3.3. Tomografía computerizada. Tipología
4.3.4. Aplicaciones clínicas
4.4. Resonancia magnética (RM)
4.4.1. Principio de funcionamiento
4.4.2. Generación y obtención de la imagen
4.4.3. Aplicaciones clínicas
4.5. Ultrasonidos: ecografía y ecografía Doppler
4.5.1. Principio de funcionamiento
4.5.2. Generación y obtención de la imagen
4.5.3. Tipología
4.5.4. Aplicaciones clínicas
4.6. Medicina nuclear
4.6.1. Fundamento fisiológico de los estudios nucleares. (Radiofármacos y medicina nuclear)
4.6.2. Generación y obtención de la imagen
4.6.3. Tipos de pruebas
4.6.3.1. Gammagrafía
4.6.3.2. SPECT
4.6.3.3. PET
4.6.3.4. Aplicaciones clínicas
4.7. Intervencionismo guiado por imagen
4.7.1. La radiología intervencionista
4.7.2. Objetivos de la radiología intervencionista
4.7.3. Procedimientos
4.7.4. Ventajas y desventajas
4.8. La calidad de la imagen
4.8.1. Técnica
4.8.2. Contraste
4.8.3. Resolución
4.8.4. Ruido
4.8.5. Distorsión y artefactos
4.9. Pruebas de imágenes médicas. Biomedicina
4.9.1. Creación de imágenes 3D
4.9.2. Los biomodelos
4.9.2.1. Estándar DICOM
4.9.2.2. Aplicaciones clínicas
4.10. Protección radiológica
4.10.1. Legislación europea aplicable a los servicios de radiología
4.10.2. Seguridad y protocolos de actuación
4.10.3. Gestión de residuos radiológicos
4.10.4. Protección radiológica
4.10.5. Cuidados y características de las salas
Módulo 5. Computación en bioinformática
5.1. Dogma central en bioinformática y computación. Estado actual
5.1.1. La aplicación ideal en bioinformática
5.1.2. Desarrollos en paralelo en biología molecular y computación
5.1.3. Dogma en biología y teoría de la información
5.1.4. Flujos de información
5.2. Bases de datos para computación en bioinformática
5.2.1. Base de datos
5.2.2. Gestión del dato
5.2.3. Ciclo de vida del dato en bioinformática
5.2.3.1. Uso
5.2.3.2. Modificación
5.2.3.3. Archivado
5.2.3.4. Reuso
5.2.3.5. Desechado
5.2.4. Tecnología de bases de datos en bioinformática
5.2.4.1. Arquitectura
5.2.4.2. Gestión de bases de datos
5.2.5. Interfaces para bases de datos en bioinformática
5.3. Redes para la computación en bioinformática
5.3.1. Modelos de comunicación. Redes LAN, WAN, MAN y PAN
5.3.2. Protocolos y trasmisión de datos
5.3.3. Topología de redes
5.3.4. Hardware en Datacenters para computación
5.3.5. Seguridad, gestión e implementación
5.4. Motores de búsqueda en bioinformática
5.4.1. Motores de búsqueda en bioinformática
5.4.2. Procesos y tecnologías de los motores de búsqueda en bioinformática
5.4.3. Modelos computacionales: algoritmos de búsqueda y aproximación
5.5. Visualización de datos en bioinformática
5.5.1. Visualización de secuencias biológicas
5.5.2. Visualización de estructuras biológicas
5.5.2.1. Herramientas de visualización
5.5.2.2. Herramientas de renderizado
5.5.3. Interfaz de usuario para aplicaciones en bioinformática
5.5.4. Arquitecturas de información para la visualización en bioinformática
5.6. Estadística para computación
5.6.1. Conceptos estadísticos para computación en bioinformática
5.6.2. Caso de uso: microarrays de MARN
5.6.3. Datos imperfectos. Errores en estadística: aleatoriedad, aproximación, ruido y asunciones
5.6.4. Cuantificación del error: precisión, sensibilidad y sensitividad
5.6.5. Clusterización y clasificación
5.7. Minado de datos
5.7.1. Métodos de minado y cómputo de datos
5.7.2. Infraestructura para el cómputo y minado de datos
5.7.3. Descubrimiento y reconocimiento de patrones
5.7.4. Aprendizaje automático y nuevas herramientas
5.8. Coincidencia de patrones genéticos
5.8.1. Coincidencia de patrones genéticos
5.8.2. Métodos de cómputo para alineaciones de secuencia
5.8.3. Herramientas para la coincidencia de patrones
5.9. Modelado y simulación
5.9.1. Uso en el campo farmacéutico: descubrimiento de fármacos
5.9.2. Estructura de proteínas y biología de sistemas
5.9.3. Herramientas disponibles y futuro
5.10. Colaboración y proyectos de computación en línea
5.10.1. Computación en red
5.10.2. Estándares y reglas. Uniformidad, consistencia e interoperabilidad
5.10.3. Proyectos de computación colaborativa
Módulo 6. Bases de datos biomédicas
6.1. Bases de datos biomédicas
6.1.1. Base de datos biomédica
6.1.2. Bases de datos primarias y secundarias
6.1.3. Principales bases de datos
6.2. Bases de datos de ADN
6.2.1. Bases de datos de genomas
6.2.2. Bases de datos de genes
6.2.3. Bases de datos de mutaciones y polimorfismos
6.3. Bases de datos de proteínas
6.3.1. Bases de datos de secuencias primarias
6.3.2. Bases de datos de secuencias secundarias y dominios
6.3.3. Bases de datos de estructuras macromoleculares
6.4. Bases de datos de proyectos ómicos
6.4.1. Bases de datos para estudios de genómica
6.4.2. Bases de datos para estudios de transcriptómica
6.4.3. Bases de datos para estudios de proteómica
6.5. Bases de datos de enfermedades genéticas. La medicina personalizada y de precisión
6.5.1. Bases de datos de enfermedades genéticas
6.5.2. Medicina de precisión. Necesidad de integración de datos genéticos
6.5.3. Extracción de datos de OMIM
6.6. Repositorios auto-reportados de pacientes
6.6.1. Uso secundario del dato
6.6.2. El paciente en la gestión de los datos depositados
6.6.3. Repositorios de cuestionarios auto-reportados. Ejemplos
6.7. Bases de datos en abierto Elixir
6.7.1. Bases de datos en abierto Elixir
6.7.2. Bases de datos recogidos en la plataforma Elixir
6.7.3. Criterio de elección entre una y otra base de datos
6.8. Bases de datos de reacciones adversas a medicamentos (RAMs)
6.8.1. Proceso de desarrollo farmacológico
6.8.2. Reporte de reacciones adversas a fármacos
6.8.3. Repositorios de reacciones adversas a nivel local, nacional, europeo e internacional
6.9. Plan de gestión de datos de investigación. Datos a depositar en bases de datos públicas
6.9.1. Plan de gestión de datos
6.9.2. Custodia de los datos resultantes de investigación
6.9.3. Depósito de datos en una base de datos pública
6.10. Bases de datos clínicas. Problemas con el uso secundario de datos en salud
6.10.1. Repositorios de historias clínicas
6.10.2. Cifrado de dato
6.10.3. Acceso al dato sanitario. Legislación
Módulo 7. Big Data en medicina: procesamiento masivo de datos médicos
7.1. Big Data en investigación biomédica
7.1.1. Generación de datos en biomedicina
7.1.2. Alto rendimiento (Tecnología High-throughput)
7.1.3. Utilidad de los datos de alto rendimiento. Hipótesis en la era del Big Data
7.2. Preprocesado de datos en Big Data
7.2.1. Preprocesado de datos
7.2.2. Métodos y aproximaciones
7.2.3. Problemáticas del preprocesado de datos en Big Data
7.3. Genómica estructural
7.3.1. La secuenciación del genoma humano
7.3.2. Secuenciación vs. Chips
7.3.3. Descubrimiento de variantes
7.4. Genómica funcional
7.4.1. Anotación funcional
7.4.2. Predictores de riesgo en mutaciones
7.4.3. Estudios de asociación en genómica
7.5. Transcriptómica
7.5.1. Técnicas de obtención de datos masivos en transcriptómica: RNA-seq
7.5.2. Normalización de datos en transcriptómica
7.5.3. Estudios de expresión diferencial
7.6. Interactómica y epigenómica
7.6.1. El papel de la cromatina en la expresión genética
7.6.2. Estudios de alto rendimiento en interactómica
7.6.3. Estudios de alto rendimiento en epigenética
7.7. Proteómica
7.7.1. Análisis de datos de espectometría de masas
7.7.2. Estudio de modificaciones postraduccionales
7.7.3. Proteómica cuantitativa
7.8. Técnicas de enriquecimiento y Clustering
7.8.1. Contextualización de los resultados
7.8.2. Algoritmos de Clustering en técnicas ómicas
7.8.3. Repositorios para el enriquecimiento: Gene Ontology y KEGG
7.9. Aplicaciones del Big Data en salud pública
7.9.1. Descubrimiento de nuevos biomarcadores y dianas terapéuticas
7.9.2. Predictores de riesgo
7.9.3. Medicina personalizada
7.10. Big Data aplicado en medicina
7.10.1. El potencial de la ayuda al diagnóstico y la prevención
7.10.2. Uso de algoritmos de Machine Learning en salud pública
7.10.3. El problema de la privacidad
Módulo 8. Aplicaciones de la inteligencia artificial e internet de las cosas (IoT) a la telemedicina
8.1. Plataforma E-Health. Personalización del servicio sanitario
8.1.1. Plataforma E-Health
8.1.2. Recursos para una plataforma de E-Health
8.1.3. Programa “Europa Digital”. Digital Europe-4-Health y Horizonte Europa
8.2. La Inteligencia artificial en el ámbito sanitario I: nuevas soluciones en aplicaciones informáticas
8.2.1. Análisis remoto de los resultados
8.2.2. Chatbox
8.2.3. Prevención y monitorización en tiempo real
8.2.4. Medicina preventiva y personalizada en el ámbito de la oncología
8.3. La inteligencia artificial en el ámbito sanitario II: monitorización y retos éticos
8.3.1. Monitorización de pacientes con movilidad educida
8.3.2. Monitorización cardiaca, diabetes, asma
8.3.3. Apps de salud y bienestar
8.3.3.1. Pulsómetros
8.3.3.2. Pulseras de presión arterial
8.3.4. Ética para la IA en el ámbito médico. Protección de datos
8.4. Algoritmos de inteligencia artificial para el procesamiento de imágenes
8.4.1. Algoritmos de inteligencia artificial para el tratamiento de imágenes
8.4.2. Diagnóstico y monitorización por imagen en telemedicina
8.4.2.1. Diagnóstico del melanoma
8.4.3. Limitaciones y retos del procesamiento de imagen en telemedicina
8.5. Aplicaciones de la aceleración mediante unidad gráfica de procesamiento (GPU) en medicina
8.5.1. Paralelización de programas
8.5.2. Funcionamiento de la GPU
8.5.3. Aplicaciones de la aceleración por GPU en medicina
8.6. Procesamiento de lenguaje natural (NLP) en telemedicina
8.6.1. Procesamiento de textos del ámbito médico. Metodología
8.6.2. El procesamiento de lenguaje natural en la terapia e historias clínicas
8.6.3. Limitaciones y retos del procesamiento de lenguaje natural en telemedicina
8.7. El internet de las cosas (IoT) en la telemedicina. Aplicaciones
8.7.1. Monitorización de los signos vitales. Weareables
8.7.1.1. Presión arterial, temperatura, ritmo cardiaco
8.7.2. IoT y tecnología Cloud
8.7.2.1. Transmisión de datos a la nube
8.7.3. Terminales de autoservicio
8.8. IoT en el seguimiento y asistencia de pacientes
8.8.1. Aplicaciones IoT para detectar urgencias
8.8.2. El internet de las cosas en rehabilitación de pacientes
8.8.3. Apoyo de la inteligencia artificial en el reconocimiento de víctimas y salvamento
8.9. Nanorobots. Tipología
8.9.1. Nanotecnología
8.9.2. Tipos de Nanorobots
8.9.2.1. Ensambladores. Aplicaciones
8.9.2.2. Auto-replicantes. Aplicaciones
8.10. La inteligencia artificial en el control de la COVID-19
8.10.1. COVID-19 y telemedicina
8.10.2. Gestión y comunicación de los avances y brotes
8.10.3. Predicción de brotes con la inteligencia artificial
Módulo 9. Telemedicina y dispositivos médicos, quirúrgicos y biomecánicos
9.1. Telemedicina y telesalud
9.1.1. La telemedicina como servicio de la telesalud
9.1.2. La telemedicina
9.1.2.1. Objetivos de la telemedicina
9.1.2.2. Beneficios y limitaciones de la telemedicina
9.1.3. Salud digital. Tecnologías
9.2. Sistemas de telemedicina
9.2.1. Componentes de un sistema de telemedicina
9.2.1.1. Personal
9.2.1.2. Tecnología
9.2.2. Tecnologías de la Información y de la Comunicación (TIC) en el ámbito sanitario
9.2.2.1. THealth
9.2.2.2. mHealth
9.2.2.3. UHealth
9.2.2.4. pHealth
9.2.3. Evaluación de sistemas de telemedicina
9.3. Infraestructura tecnológica en telemedicina
9.3.1. Redes telefónicas públicas (PSTN)
9.3.2. Redes satelitales
9.3.3. Redes digitales de servicios integrados (ISDN)
9.3.4. Tecnologías inalámbricas
9.3.4.1. Wap. Protocolo de aplicación inalámbrica
9.3.4.2. Bluetooth
9.3.5. Conexiones vía microondas
9.3.6. Modo de transferencia asíncrono ATM
9.4. Tipos de telemedicina. Usos en atención anitaria
9.4.1. Monitorización remota de pacientes
9.4.2. Tecnologías de almacenamiento y envío
9.4.3. Telemedicina interactiva
9.5. Aplicaciones generales de telemedicina
9.5.1. Teleasistencia
9.5.2. Televigilancia
9.5.3. Telediagnóstico
9.5.4. Teleeducación
9.5.5. Telegestión
9.6. Aplicaciones clínicas de telemedicina
9.6.1. Telerradiología
9.6.2. Teledermatología
9.6.3. Teleoncología
9.6.4. Telepsiquiatría
9.6.5. Cuidado a domicilio (Telehome-care)
9.7. Tecnologías Smart y de asistencia
9.7.1. Integración de Smart Home
9.7.2. Salud digital en la mejora del tratamiento
9.7.3. Tecnología de la opa en telesalud. La “ropa inteligente”
9.8. Aspectos éticos y legales de la telemedicina
9.8.1. Fundamentos éticos
9.8.2. Marcos regulatorios comunes
9.8.4. Normas ISO
9.9. Telemedicina y dispositivos diagnósticos, quirúrgicos y biomecánicos
9.9.1. Dispositivos diagnósticos
9.9.2. Dispositivos quirúrgicos
9.9.2. Dispositivos biomecánicos
9.10. Telemedicina y dispositivos médicos
9.10.1. Dispositivos médicos
9.10.1.1. Dispositivos médicos móviles
9.10.1.2. Carros de telemedicina
9.10.1.3. Quioscos de telemedicina
9.10.1.4. Cámara digital
9.10.1.5. Kit de telemedicina
9.10.1.6. Software de telemedicina
Módulo 10. Innovación empresarial y emprendimiento en E-Health
10.1. Emprendimiento e innovación
10.1.1. Innovación
10.1.2. Emprendimiento
10.1.3. Una Startup
10.2. Emprendimiento en E-Health
10.2.1. Mercado Innovador E-Health
10.2.2. Verticales en E-Health: mHealth
10.2.3. TeleHealth
10.3. Modelos de negocio I: primeros estados del emprendimiento
10.3.1. Tipos de modelo de negocio
10.3.1.1. Marketplace
10.3.1.2. Plataformas digitales
10.3.1.3. Saas
10.3.2. Elementos críticos en la fase inicial. De la idea al negocio
10.3.3. Errores comunes en los primeros pasos del emprendimiento
10.4. Modelos de negocio II: modelo canvas
10.4.1. Business Model Canvas
10.4.2. Propuesta de valor
10.4.3. Actividades y recursos clave
10.4.4. Segmento de clientes
10.4.5. Relación con los clientes
10.4.6. Canales de distribución
10.4.7. Alianzas
10.4.7.1. Estructura de costes y flujos de ingreso
10.5. Modelos de negocio III: metodología Lean Startup
10.5.1. Crea
10.5.2. Valida
10.5.3. Mide
10.5.4. Decide
10.6. Modelos de negocio IV: análisis externo, estratégico y normativo
10.6.1. Océano rojo y océano azul
10.6.2. Curva de valor
10.6.3. Normativa aplicable en E-Health
10.7. Modelos exitosos en E-Health I: conocer antes de innovar
10.7.1. Análisis empresas de E-Health exitosas
10.7.2. Análisis empresa X
10.7.3. Análisis empresa Y
10.7.4. Análisis empresa Z
10.8. Modelos exitosos en E-Health II: escuchar antes de innovar
10.8.1. Entrevista práctica CEO de Startup E-Health
10.8.2. Entrevista práctica CEO de Startup “sector x”
10.8.3. Entrevista práctica dirección técnica de Startup “x”
10.9. Entorno emprendedor y financiación
10.9.1. Ecosistema emprendedor en el sector salud
10.9.2. Financiación
10.9.3. Entrevista de caso
10.10. Herramientas prácticas para el emprendimiento y la innovación
10.10.1. Herramientas OSINT (Open Source Intelligence)
10.10.2. Análisis
10.10.3. Herramientas No-code para emprender
Apuesta por una titulación con la que implementarás a tu praxis fisioterapéutica las estrategias más innovadoras del sector en tan solo 12 meses de experiencia académica”
Máster en E-Health y Big Data
El Máster en E-Health y Big Data, ofrecido por TECH Universidad, es una excelente opción para aquellos profesionales de la fisioterapia interesados en las últimas tendencias en tecnología aplicadas a la salud. Este posgrado se centra en el estudio de la telemedicina y el análisis de grandes conjuntos de datos en el campo de la salud, proporcionando a los estudiantes una amplia capacitación en el uso de herramientas tecnológicas para mejorar la atención sanitaria y los tratamientos de los pacientes. El estudio virtual es uno de los principales beneficios de este máster, permitiendo a los estudiantes acceder a los materiales del curso y participar en las clases desde cualquier lugar con conexión a internet. Además, el enfoque en la tecnología digital hace que el máster sea altamente flexible y adaptable a las necesidades de los estudiantes, lo que les permite avanzar a su propio ritmo y combinar sus estudios con otras responsabilidades laborales o personales.
Estudia un posgrado en E-Health y Big DataEntre las materias que se estudian en el Máster en E-Health y Big Data se encuentran la informática médica, la gestión de datos clínicos, la seguridad de la información, la minería de datos y la visualización de datos en salud. También se abordan temas como el análisis predictivo en medicina, la inteligencia artificial en el sector sanitario y la gestión de proyectos de e-salud. El objetivo del máster es preparar a los estudiantes para que puedan aplicar los conocimientos y habilidades adquiridos en su trabajo diario como profesionales de la fisioterapia. Con este Máster, los graduados estarán preparados para liderar proyectos de e-salud y manejar grandes cantidades de datos clínicos con habilidad y precisión, una excelente opción para aquellos fisioterapeutas interesados en desarrollar habilidades en el uso de tecnología aplicada a la salud. Con el estudio virtual, la flexibilidad y la calidad académica de la universidad, este máster puede ser la clave para una carrera exitosa y en constante evolución.