University certificate
The world's largest faculty of information technology”
Why study at TECH?
Computer Vision is the technology of the present and the future. Specialize with this program and achieve the professional progress you are looking for"Â
In recent years, artificial intelligence has brought about a great revolution in the technological world. It has allowed for the development of software and machines that are capable of learning, generating new knowledge and acting according to the best available solution in each case. As such, its applications range from computational sciences, through research in areas such as healthcare, to the development of tools such as vehicles, robots or video games.Â
It is a field in continuous expansion and is already fundamental in most computer and technology companies. However, precisely because of its great importance and momentum in recent years, specialties have been emerging that focus on one of its specific aspects. Computer Vision is one of the most important of these. This focuses on how machines process the visual information received and how that information can be used, either to improve the machine's own relationship with its own environment by making its operations more accurate, or to collect data efficiently.Â
For this reason, it is a fundamental field and is closely related to Machine Learning, so more and more companies are looking for computer scientists specialized in this field who can provide the best technological solutions in the development of computer vision projects. This Professional master’s degree offers an in-depth study of this field, bringing you closer to the most innovative knowledge and tools so that, upon completion of the program, you can make immediate professional progress thanks to your new competencies.Â
And all this will be achieved by following TECH Global University's 100% online methodology, specially designed so that working computer scientists and engineers can balance this program with their jobs, since it adapts to their personal circumstances. In addition, students will be accompanied throughout the learning process by an expert teaching staff and will enjoy the best multimedia teaching resources such as case studies, technical videos, master classes or interactive summaries, among many others.Â
The future is already here. Do not miss the opportunity and become a leading expert in Computer Vision thanks to this Professional master’s degree"
This Professional master’s degree in Computer Vision contains the most complete and up-to-date educational program on the market. Its most notable features are:
- The development of case studies presented by experts in computer science and computer vision
- The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice
- Practical exercises where self-assessment can be used to improve learning
- Its special emphasis on innovative methodologies
- Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignmentsÂ
- Content that is accessible from any fixed or portable device with an Internet connection
Do not wait any longer and specialize in a key area of future technology that will make you advance professionally immediately"Â
The program’s teaching staff includes professionals from the sector who contribute their work experience to this educational program, as well as renowned specialists from leading societies and prestigious universities.Â
The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive education programmed to learn in real situations.Â
This program is designed around Problem-Based Learning, whereby the professional must try to solve the different professional practice situations that arise during the academic year. This will be done with the help of an innovative system of interactive videos made by renowned experts.Â
Delve into artificial intelligence and Deep Learning and become a reference in the field of Computer Vision"
Enroll now and start developing promising computer vision projects with what you will learn in this program"
Syllabus
The contents of this Professional master’s degree in Computer Vision have been designed by leading international experts in the field, so that computer scientists will have access to highly specialized knowledge that will place him as a reference in the field. Therefore, in this program you will be able to delve into aspects such as computer vision for the study of space and for content analysis, in the search for patterns and codes, in 3D image processing libraries or in autoencoders.Â
The most comprehensive program on Computer Vision is waiting for you. Complete this program and access the future of the profession"
Module 1. Computer Vision
1.1. Human PerceptionÂ
1.1.1. Human Visual SystemÂ
1.1.2. ColorÂ
1.1.3. Visible and Non-Visible FrequenciesÂ
1.2. Summary of Computer VisionÂ
1.2.1. PrinciplesÂ
1.2.2. EvolutionÂ
1.2.3. The Importance of Computer VisionÂ
1.3. Digital Image CompositionÂ
1.3.1. The Digital ImageÂ
1.3.2. Types of ImagesÂ
1.3.3. Color SpacesÂ
1.3.4. RGBÂ
1.3.5. HSV and HSLÂ
1.3.6. CMY-CMYKÂ
1.3.7. YCbCrÂ
1.3.8. Indexed ImageÂ
1.4. Image Acquisition SystemsÂ
1.4.1. Operation of a Digital CameraÂ
1.4.2. The Correct Exposure for Each SituationÂ
1.4.3. Depth of FieldÂ
1.4.4. ResolutionÂ
1.4.5. Image FormatsÂ
1.4.6. HDR ModeÂ
1.4.7. High Resolution CamerasÂ
1.4.8. High-Speed CamerasÂ
1.5. Optical SystemsÂ
1.5.1. Optical PrinciplesÂ
1.5.2. Conventional LensesÂ
1.5.3. Telecentric LensesÂ
1.5.4. Types of Autofocus LensesÂ
1.5.5. Focal LengthÂ
1.5.6. Depth of FieldÂ
1.5.7. Optical DistortionÂ
1.5.8. Calibration of an ImageÂ
1.6. Illumination SystemsÂ
1.6.1. Importance of IlluminationÂ
1.6.2. Frequency ResponseÂ
1.6.3. LED IlluminationÂ
1.6.4. Outdoor LightingÂ
1.6.5. Types of Lighting for Industrial Applications. EffectsÂ
1.7. 3D Acquisition SystemsÂ
1.7.1. Stereo VisionÂ
1.7.2. TriangulationÂ
1.7.3. Structured LightÂ
1.7.4. Time of FlightÂ
1.7.5. LidarÂ
1.8. MultispectrumÂ
1.8.1. Multispectral CamerasÂ
1.8.2. Hyperspectral CamerasÂ
1.9. Non-Visible Near SpectrumÂ
1.9.1. IR CamerasÂ
1.9.2. UV CamerasÂ
1.9.3. Converting From Non-Visible to Visible by IlluminationÂ
1.10. Other Band SpectrumsÂ
1.10.1. X-RayÂ
1.10.2. terahertzÂ
Module 2. Applications and State-of-the-ArtÂ
2.1. Industrial ApplicationsÂ
2.1.1. Machine Vision LibrariesÂ
2.1.2. Compact CamerasÂ
2.1.3. PC-Based SystemsÂ
2.1.4. Industrial RoboticsÂ
2.1.5. Pick and Place 2DÂ
2.1.6. Bin PickingÂ
2.1.7. Quality ControlÂ
2.1.8. Presence Absence of ComponentsÂ
2.1.9. Dimensional ControlÂ
2.1.10. Labeling ControlÂ
2.1.11. TraceabilityÂ
2.2. Autonomous VehiclesÂ
2.2.1. Driver AssistanceÂ
2.2.2. Autonomous DrivingÂ
2.3. Computer Vision for Content AnalysisÂ
2.3.1. Filtering by ContentÂ
2.3.2. Visual Content ModerationÂ
2.3.3. Tracking SystemsÂ
2.3.4. Brand and Logo IdentificationÂ
2.3.5. Video Labeling and ClassificationÂ
2.3.6. Scene Change DetectionÂ
2.3.7. Text or Credits Extraction
2.4. Medical ApplicationÂ
2.4.1. Disease Detection and LocalizationÂ
2.4.2. Cancer and X-Ray AnalysisÂ
2.4.3. Advances in Computer Vision Due to Covid-19Â
2.4.4. Assistance in the Operating RoomÂ
2.5. Spatial ApplicationsÂ
2.5.1. Satellite Image AnalysisÂ
2.5.2. Computer Vision for the Study of SpaceÂ
2.5.3. Mission to MarsÂ
2.6. Commercial ApplicationsÂ
2.6.1. Stock ControlÂ
2.6.2. Video Surveillance, Home SecurityÂ
2.6.3. Parking CamerasÂ
2.6.4. Population Control CamerasÂ
2.6.5. Speed CamerasÂ
2.7. Vision Applied to RoboticsÂ
2.7.1. DronesÂ
2.7.2. AGVÂ
2.7.3. Vision in Collaborative RobotsÂ
2.7.4. The Eyes of the Robots
2.8. Augmented RealityÂ
2.8.1. OperationÂ
2.8.2. DevicesÂ
2.8.3. Applications in the IndustryÂ
2.8.4. Commercial ApplicationsÂ
2.9. Cloud ComputingÂ
2.9.1. Cloud Computing PlatformsÂ
2.9.2. From Cloud Computing to ProductionÂ
2.10. Research and State-of-the-ArtÂ
2.10.1. Commercial ApplicationsÂ
2.10.2. What's Cooking?Â
2.10.3. The Future of Computer VisionÂ
Module 3. Digital Image ProcessingÂ
3.1. Computer Vision Development EnvironmentÂ
3.1.1. Computer Vision LibrariesÂ
3.1.2. Programming EnvironmentÂ
3.1.3. Visualization ToolsÂ
3.2. Digital image ProcessingÂ
3.2.1. Pixel RelationshipsÂ
3.2.2. Image OperationsÂ
3.2.3. Geometric TransformationsÂ
3.3. Pixel OperationsÂ
3.3.1. HistogramÂ
3.3.2. Histogram TransformationsÂ
3.3.3. Operations on Color ImagesÂ
3.4. Logical and Arithmetic OperationsÂ
3.4.1. Addition and SubtractionÂ
3.4.2. Product and DivisionÂ
3.4.3. And/NandÂ
3.4.4. Or/NorÂ
3.4.5. Xor/XnorÂ
3.5. FiltersÂ
3.5.1. Masks and ConvolutionÂ
3.5.2. Linear FilteringÂ
3.5.3. Non-Linear FilteringÂ
3.5.4. Fourier AnalysisÂ
3.6. Morphological Operations
3.6.1. Erosion and DilationÂ
3.6.2. Closing and OpeningÂ
3.6.3. Top Hat and Black HatÂ
3.6.4. Contour DetectionÂ
3.6.5. SkeletonÂ
3.6.6. Hole FillingÂ
3.6.7. Convex HullÂ
3.7. Image Analysis ToolsÂ
3.7.1. Edge DetectionÂ
3.7.2. Detection of BlobsÂ
3.7.3. Dimensional ControlÂ
3.7.4. Color InspectionÂ
3.8. Object SegmentationÂ
3.8.1. Image SegmentationÂ
3.8.2. Classical Segmentation TechniquesÂ
3.8.3. Real ApplicationsÂ
3.9. Image CalibrationÂ
3.9.1. Image CalibrationÂ
3.9.2. Methods of CalibrationÂ
3.9.3. Calibration Process in a 2D Camera/Robot SystemÂ
3.10. Image Processing in a Real EnvironmentÂ
3.10.1. Problem AnalysisÂ
3.10.2. Image ProcessingÂ
3.10.3. Feature ExtractionÂ
3.10.4. Final ResultsÂ
Module 4. Advanced Digital Image ProcessingÂ
4.1. Optical Character Recognition (OCR)Â
4.1.1. Image Pre-ProcessingÂ
4.1.2. Text DetectionÂ
4.1.3. Text RecognitionÂ
4.2. Code ReadingÂ
4.2.1. 1D CodesÂ
4.2.2. 2D CodesÂ
4.2.3. ApplicationsÂ
4.3. Pattern SearchÂ
4.3.1. Pattern SearchÂ
4.3.2. Patterns Based on Gray LevelÂ
4.3.3. Patterns Based on ContoursÂ
4.3.4. Patterns Based on Geometric ShapesÂ
4.3.5. Other TechniquesÂ
4.4. Object Tracking with Conventional VisionÂ
4.4.1. Background ExtractionÂ
4.4.2. MeanshiftÂ
4.4.3. CamshiftÂ
4.4.4. Optical FlowÂ
4.5. Facial RecognitionÂ
4.5.1. Facial Landmark DetectionÂ
4.5.2. ApplicationsÂ
4.5.3. Facial RecognitionÂ
4.5.4. Emotion RecognitionÂ
4.6. Panoramic and AlignmentÂ
4.6.1. StitchingÂ
4.6.2. Image CompositionÂ
4.6.3. PhotomontageÂ
4.7. High Dynamic Range (HDR) and Photometric StereoÂ
4.7.1. Increasing the Dynamic RangeÂ
4.7.2. Image Compositing for Contour EnhancementÂ
4.7.3. Techniques for the Use of Dynamic ApplicationsÂ
4.8. Image CompressionÂ
4.8.1. Image CompressionÂ
4.8.2. Types of CompressorsÂ
4.8.3. Image Compression TechniquesÂ
4.9. Video ProcessingÂ
4.9.1. Image SequencesÂ
4.9.2. Video Formats and CodecsÂ
4.9.3. Reading a Video
4.9.4. Frame ProcessingÂ
4.10. Real Application of Image ProcessingÂ
4.10.1. Problem AnalysisÂ
4.10.2. Image ProcessingÂ
4.10.3. Feature ExtractionÂ
4.10.4. Final ResultsÂ
Module 5. 3D Image ProcessingÂ
5.1. 3D ImagingÂ
5.1.1. 3D ImagingÂ
5.1.2. 3D Image Processing Software and VisualizationsÂ
5.1.3. Metrology SoftwareÂ
5.2. Open 3DÂ
5.2.1. Library for 3D Data ProcessingÂ
5.2.2. FeaturesÂ
5.2.3. Installation and UseÂ
5.3. The DataÂ
5.3.1. Depth Maps in 2D ImageÂ
5.3.2. PointcloudsÂ
5.3.3. NormalÂ
5.3.4. SurfacesÂ
5.4. VisualizationÂ
5.4.1. Data VisualizationÂ
5.4.2. ControlsÂ
5.4.3. Web DisplayÂ
5.5. FiltersÂ
5.5.1. Distance Between Points, Eliminate OutliersÂ
5.5.2. High Pass FilterÂ
5.5.3. DownsamplingÂ
5.6. Geometry and Feature ExtractionÂ
5.6.1. Extraction of a ProfileÂ
5.6.2. Depth MeasurementÂ
5.6.3. VolumeÂ
5.6.4. 3D Geometric ShapesÂ
5.6.5. ShotsÂ
5.6.6. Projection of a PointÂ
5.6.7. Geometric DistancesÂ
5.6.8. Kd TreeÂ
5.6.9. 3D FeaturesÂ
5.7. Registration and MeshingÂ
5.7.1. ConcatenationÂ
5.7.2. ICPÂ
5.7.3. Ransac 3DÂ
5.8. 3D Object RecognitionÂ
5.8.1. Searching for an Object in the 3D SceneÂ
5.8.2. Segmentation.Â
5.8.3. Bin PickingÂ
5.9. Surface AnalysisÂ
5.9.1. SmoothingÂ
5.9.2. Orientable SurfacesÂ
5.9.3. OctreeÂ
5.10. TriangulationÂ
5.10.1. From Mesh to Point CloudÂ
5.10.2. Depth Map TriangulationÂ
5.10.3. Triangulation of Unordered Point CloudsÂ
Module 6. Deep Learning Â
6.1. Artificial IntelligenceÂ
6.1.1. Machine LearningÂ
6.1.2. Deep LearningÂ
6.1.3. The Explosion of Deep Learning Why Now?Â
6.2. Neural NetworksÂ
6.2.1. The Neural NetworkÂ
6.2.2. Uses of Neural NetworksÂ
6.2.3. Linear Regression and PerceptronÂ
6.2.4. Forward PropagationÂ
6.2.5. BackpropagationÂ
6.2.6. Feature VectorsÂ
6.3. Loss FunctionsÂ
6.3.1. Loss FunctionsÂ
6.3.2. Types of Loss FunctionsÂ
6.3.3. Choice of Loss FunctionsÂ
6.4. Activation FunctionsÂ
6.4.1. Activation FunctionÂ
6.4.2. Linear FunctionsÂ
6.4.3. Non-Linear FunctionsÂ
6.4.4. Output vs. Hidden Layer Activation FunctionsÂ
6.5. Regularization and NormalizationÂ
6.5.1. Regularization and NormalizationÂ
6.5.2. Overfitting and Data AugmentationÂ
6.5.3. Regularization Methods: L1, L2 and DropoutÂ
6.5.4. Normalization Methods: Batch, Weight, Layer
6.6. OptimizationÂ
6.6.1. Gradient DescentÂ
6.6.2. Stochastic Gradient DescentÂ
6.6.3. Mini Batch Gradient DescentÂ
6.6.4. MomentumÂ
6.6.5. AdamÂ
6.7. Hyperparameter Tuning and WeightsÂ
6.7.1. HyperparametersÂ
6.7.2. Batch Size vs. Learning Rate vs. Step DecayÂ
6.7.3. WeightsÂ
6.8. Evaluation Metrics of a Neural NetworkÂ
6.8.1. AccuracyÂ
6.8.2. Dice CoefficientÂ
6.8.3. Sensitivity vs. Specificity/Recall vs. PrecisionÂ
6.8.4. ROC Curve (AUC)Â
6.8.5. F1-ScoreÂ
6.8.6. Matrix ConfusionÂ
6.8.7. Cross-ValidationÂ
6.9. Frameworks and HardwareÂ
6.9.1. Tensor FlowÂ
6.9.2. PytorchÂ
6.9.3. CaffeÂ
6.9.4. KerasÂ
6.9.5. Hardware for the Learning Phase Â
6.10. Creation of a Neural Network-Training and Validation
6.10.1. DatasetÂ
6.10.2. Network ConstructionÂ
6.10.3. TrainingÂ
6.10.4. Visualization of ResultsÂ
Module 7. Convolutional Neural Networks and Image ClassificationÂ
7.1. Convolutional Neural NetworksÂ
7.1.1. IntroductionÂ
7.1.2. Convolution
7.1.3. CNN Building BlocksÂ
7.2. Types of CNN LayersÂ
7.2.1. ConvolutionalÂ
7.2.2. ActivationÂ
7.2.3. Batch NormalizationÂ
7.2.4. PollingÂ
7.2.5. Fully ConnectedÂ
7.3. MetricsÂ
7.3.1. Matrix ConfusionÂ
7.3.2. AccuracyÂ
7.3.3. PrecisionÂ
7.3.4. RecallÂ
7.3.5. F1 ScoreÂ
7.3.6. ROC CurveÂ
7.3.7. AUCÂ
7.4. Main ArchitecturesÂ
7.4.1. AlexNetÂ
7.4.2. VGGÂ
7.4.3. ResnetÂ
7.4.4. GoogleLeNetÂ
7.5. Image ClassificationÂ
7.5.1. IntroductionÂ
7.5.2. Analysis of DataÂ
7.5.3. Data PreparationÂ
7.5.4. Model TrainingÂ
7.5.5. Model ValidationÂ
7.6. Practical Considerations for CNN TrainingÂ
7.6.1. Optimizer SelectionÂ
7.6.2. Learning Rate SchedulerÂ
7.6.3. Check Training PipelineÂ
7.6.4. Training with RegularizationÂ
7.7. Best Practices in Deep LearningÂ
7.7.1. Transfer LearningÂ
7.7.2. Fine TuningÂ
7.7.3. Data AugmentationÂ
7.8. Statistical Data EvaluationÂ
7.8.1. Number of DatasetsÂ
7.8.2. Number of LabelsÂ
7.8.3. Number of ImagesÂ
7.8.4. Data BalancingÂ
7.9. DeploymentÂ
7.9.1. Saving and Loading ModelsÂ
7.9.2. OnnxÂ
7.9.3. InferenceÂ
7.10. Case Study: Image ClassificationÂ
7.10.1. Data Analysis and PreparationÂ
7.10.2. Testing the Training PipelineÂ
7.10.3. Model TrainingÂ
7.10.4. Model ValidationÂ
Module 8. Object Detection
8.1. Object Detection and TrackingÂ
8.1.1. Object DetectionÂ
8.1.2. Case UsesÂ
8.1.3. Object TrackingÂ
8.1.4. Case UsesÂ
8.1.5. Occlusions, Rigid and Non-Rigid PosesÂ
8.2. Evaluation MetricsÂ
8.2.1. IOU - Intersection Over UnionÂ
8.2.2. Confidence ScoreÂ
8.2.3. RecallÂ
8.2.4. PrecisionÂ
8.2.5. Recall–Precision CurveÂ
8.2.6. Mean Average Precision (mAP)Â
8.3. Traditional MethodsÂ
8.3.1. Sliding WindowÂ
8.3.2. Viola DetectorÂ
8.3.3. HOGÂ
8.3.4. Non-Maximal Suppresion (NMS)Â
8.4. DatasetsÂ
8.4.1. Pascal VCÂ
8.4.2. MS CocoÂ
8.4.3. ImageNet (2014)Â
8.4.4. MOTA ChallengeÂ
8.5. Two Shot Object DetectorÂ
8.5.1. R-CNNÂ
8.5.2. Fast R-CNNÂ
8.5.3. Faster R-CNNÂ
8.5.4. Mask R-CNNÂ
8.6. Single Shot Object Detector Â
8.6.1. SSDÂ
8.6.2. YOLOÂ
8.6.3. RetinaNetÂ
8.6.4. CenterNetÂ
8.6.5. EfficientDetÂ
8.7. BackbonesÂ
8.7.1. VGGÂ
8.7.2. ResNetÂ
8.7.3. MobilenetÂ
8.7.4. ShufflenetÂ
8.7.5. DarknetÂ
8.8. Object TrackingÂ
8.8.1. Classical ApproachesÂ
8.8.2. Particulate FiltersÂ
8.8.3. KalmanÂ
8.8.4. SorttrackerÂ
8.8.5. Deep SortÂ
8.9. DeploymentÂ
8.9.1. Computing PlatformÂ
8.9.2. Choice of BackboneÂ
8.9.3. Choice of FrameworkÂ
8.9.4. Model OptimizationÂ
8.9.5. Model VersioningÂ
8.10. Study: Detection and Tracking of Individuals Â
8.10.1. Detection of PeopleÂ
8.10.2. Monitoring of PeopleÂ
8.10.3. Re-IdentificationÂ
8.10.4. Counting People in CrowdsÂ
Module 9. Image Segmentation with Deep LearningÂ
9.1. Object Detection and SegmentationÂ
9.1.1. Semantic SegmentationÂ
9.1.1.1. Semantic Segmentation Use CasesÂ
9.1.2. Instantiated SegmentationÂ
9.1.2.1. Instantiated Segmentation Use CasesÂ
9.2. Evaluation MetricsÂ
9.2.1. Similarities with Other MethodsÂ
9.2.2. Pixel AccuracyÂ
9.2.3. Dice Coefficient (F1 Score)Â
9.3. Cost FunctionsÂ
9.3.1. Dice LossÂ
9.3.2. Focal LossÂ
9.3.3. Tversky LossÂ
9.3.4. Other FunctionsÂ
9.4. Traditional Segmentation MethodsÂ
9.4.1. Threshold Application with Otsu and RiddlenÂ
9.4.2. Self-Organized MapsÂ
9.4.3. GMM-EM AlgorithmÂ
9.5. Semantic Segmentation Applying Deep Learning: FCNÂ
9.5.1. FCNÂ
9.5.2. ArchitectureÂ
9.5.3. FCN ApplicationsÂ
9.6. Semantic Segmentation Applying Deep Learning: U-NETÂ
9.6.1. U-NETÂ
9.6.2. ArchitectureÂ
9.6.3. U-NET ApplicationÂ
9.7. Semantic Segmentation Applying Deep Learning: Deep LabÂ
9.7.1. Deep LabÂ
9.7.2. ArchitectureÂ
9.7.3. Deep Lab ApplicationÂ
9.8. Instantiated Segmentation Applying Deep Learning: Mask RCNNÂ
9.8.1. Mask RCNNÂ
9.8.2. ArchitectureÂ
9.8.3. Application of a Mask RCNNÂ
9.9. Video SegmentationÂ
9.9.1. STFCNÂ
9.9.2. Semantic Video CNNsÂ
9.9.3. Clockwork ConvnetsÂ
9.9.4. Low-LatencyÂ
9.10. Point Cloud SegmentationÂ
9.10.1. The Point CloudÂ
9.10.2. PointNetÂ
9.10.3. A-CNNÂ
Module 10. Advanced Image Segmentation and Advanced Computer Vision TechniquesÂ
10.1. Database for General Segmentation Problems Â
10.1.1. Pascal ContextÂ
10.1.2. CelebAMask-HQÂ
10.1.3. Cityscapes DatasetÂ
10.1.4. CCP DatasetÂ
10.2. Semantic segmentation in medicineÂ
10.2.1. Semantic segmentation in medicineÂ
10.2.2. Datasets for Medical ProblemsÂ
10.2.3. Practical ApplicationsÂ
10.3. Annotation ToolsÂ
10.3.1. Computer Vision Annotation ToolÂ
10.3.2. LabelMeÂ
10.3.3. Other ToolsÂ
10.4. Segmentation Tools Using Different FrameworksÂ
10.4.1. KerasÂ
10.4.2. Tensorflow v2Â
10.4.3. PytorchÂ
10.4.4. OthersÂ
10.5. Semantic Segmentation Project. The Data, Phase 1Â
10.5.1. Problem AnalysisÂ
10.5.2. Input Source for DataÂ
10.5.3. Data AnalysisÂ
10.5.4. Data PreparationÂ
10.6. Semantic Segmentation Project. Training, Phase 2Â
10.6.1. Algorithm SelectionÂ
10.6.2. TrainingÂ
10.6.3. AssessmentÂ
10.7. Semantic Segmentation Project. Results, Phase 3Â
10.7.1. Fine TuningÂ
10.7.2. Presentation of The SolutionÂ
10.7.3. ConclusionsÂ
10.8. AutoencodersÂ
10.8.1. AutoencodersÂ
10.8.2. Architecture of an AutoencoderÂ
10.8.3. Noise Removal AutoencodersÂ
10.8.4. Automatic Coloring AutoencoderÂ
10.9. Generative Adversarial Networks (GANs)Â
10.9.1. Generative Adversarial Networks (GANs)Â
10.9.2. DCGAN ArchitectureÂ
10.9.3. Conditional GAN ArchitectureÂ
10.10. Enhanced Generative Adversarial NetworksÂ
10.10.1. Overview of the ProblemÂ
10.10.2. WGANÂ
10.10.3. LSGANÂ
10.10.4. ACGAN
This Professional master’s degree has the most in-depth and up-to-date content in Computer Vision. Do not miss the opportunity and enroll now"
Professional Master's Degree in Computer Vision
Computer Vision has become a fundamental tool for the development of various industries, such as manufacturing, automotive and security. In this context, it is essential that professionals are trained to develop and implement systems that can process, analyze and make decisions based on visual information. TECH's Professional Master’s Degree in Computer Vision is an excellent opportunity to acquire knowledge and skills in this field. This study program, developed by a team of experts in the field, offers a complete and up-to-date education in the use of Computer Vision technologies, delving into topics such as object detection, facial recognition, pattern identification and automation of industrial processes.
You will be at the forefront of the latest advances in Computer Vision
The Professional Master’s Degree in Computer Vision has a 100% online methodology, which will allow you to advance studying without interrupting your work and personal life. In addition, the program offers numerous multimedia resources for learning, such as practical exercises, technical videos and master classes. Upon completion of the program, you will be prepared to apply your knowledge in the industry and perform in areas related to the development of advanced technological solutions and process automation.