University certificate
The world's largest faculty of engineering”
Why study at TECH?
A 100% online Professional master’s degree that will allow you to delve into Material Physics and apply this science with current technology"Â
The scientific community that focuses its studies on Material Physics continues to make progress and provide society with greater knowledge about new properties of existing resources, the development of nanomaterials and the promotion of other technological, biological or health disciplines. A progress, where engineering professionals can make a great contribution thanks to direct technique application and physics concepts.
At the same time, the need to find new, more effective, efficient and sustainable materials has driven this area, both from the private and public sectors. An expanding field of study for engineering specialists who wish to thrive in the field of Material Physics. For this reason, TECH has created this Professional master’s degree, where over course of 12 months, the graduate will obtain the necessary knowledge about fluid mechanics, advanced thermodynamics and optics.
All this, in addition, with a university program that has educational tools in which the latest academic teaching technology has been used. Therefore, through video conferences, detailed videos or case study simulations, students will be able to delve, in a much more dynamic way, into symmetries and conservation laws, the handling of Navier-Stokes equations or the connection between the microscopic structure (atomic, nanometric or micrometric) and the macroscopic material properties.
This way, TECH offers engineering professionals the most advanced and exhaustive knowledge on Material Physics. All this through an exclusively online program that you can access whenever and wherever you want. Students only need an electronic device (computer, tablet or cell phone) with Internet connection to be able to view the information on the virtual platform. Also, with the Relearning system, you will be able to reduce the long hours of study normally spent in other methodologies.
Excel in the field of new materials discovery, thanks to the solid concepts you will acquire in this program"
This Professional master’s degree in Material Physics contains the most complete and up-to-date program on the market. The most important features include:
- Practical case studies are presented by experts in PhysicsÂ
- The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice
- Practical exercises where self-assessment can be used to improve learning
- Its special emphasis on innovative methodologies Â
- Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignmentsÂ
- Content that is accessible from any fixed or portable device with an Internet connection
TECH adapts to you and has therefore created a university program, where you can distribute the teaching load according to your personal needs"
The program’s teaching staff includes professionals from the sector who contribute their work experience to this educational program, as well as renowned specialists from leading societies and prestigious universities. Â
The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive education programmed to learn in real situations. Â
This program is designed around Problem-Based Learning, whereby the professional must try to solve the different professional practice situations that arise during the academic year For this purpose, the student will be assisted by an innovative interactive video system created by renowned and experienced experts.
Enroll now in a program that will allow you to open doors in the field of Material Physics"
Gain essential knowledge about magnetostatics in both material media and vacuum with this university program"
Syllabus
This Professional master’s degree has been structured in 10 modules which will allow students to delve into optics, classical mechanics, electromagnetism, statistical physics or Material Physics itself. The Relearning method, based on content reiteration, as well as the multimedia teaching material, will enhance learning. Likewise, students will be able to access this program's content 24 hours a day from any computer with Internet connection.
The multimedia resource library will be available 24 hours a day. Access it easily from your computer with internet connection"
Module 1. OpticsÂ
1.1. Waves: IntroductionÂ
1.1.1. Wave Motion EquationÂ
1.1.2. Plane WavesÂ
1.1.3. Spherical WavesÂ
1.1.4. Harmonic Solution of the Wave EquationÂ
1.1.5. Fourier AnalysisÂ
1.2. Wavelet SuperpositionÂ
1.2.1. Superposition of Waves of the Same FrequencyÂ
1.2.2. Superposition of Waves of Different FrequencyÂ
1.2.3. Phase Velocity and Group VelocityÂ
1.2.4. Superposition of Waves with Perpendicular Electric VectorsÂ
1.3. Electromagnetic Theory of LightÂ
1.3.1. Maxwell's Macroscopic EquationsÂ
1.3.2. The Material ResponseÂ
1.3.3. Energy RelationsÂ
1.3.4. Electromagnetic WavesÂ
1.3.5. Homogeneous and Isotropic Linear MediumÂ
1.3.6. Transversality of Plane WavesÂ
1.3.7. Energy TransportÂ
1.4. Isotropic MediaÂ
1.4.1. Reflection and Refraction in DielectricsÂ
1.4.2. Fresnel FormulasÂ
1.4.3. Dielectric MediaÂ
1.4.4. Induced PolarizationÂ
1.4.5. Classical Lorentz Dipole ModelÂ
1.4.6. Propagation and Diffusion of a Light BeamÂ
1.5. Geometric OpticsÂ
1.5.1. Paraxial ApproximationÂ
1.5.2. Fermat's PrincipleÂ
1.5.3. Trajectory EquationÂ
1.5.4. Propagation in Non-Uniform MediaÂ
1.6. Image FormationÂ
1.6.1. Image Formation in Geometrical OpticsÂ
1.6.2. Paraxial OpticsÂ
1.6.3. Abbe's InvariantÂ
1.6.4. IncreasesÂ
1.6.5. Centered SystemsÂ
1.6.6. Focuses and Focal PlanesÂ
1.6.7. Planes and Main PointsÂ
1.6.8. Thin LensesÂ
1.6.9. System CouplingÂ
1.7. Optical InstrumentsÂ
1.7.1. The Human EyeÂ
1.7.2. Photographic and Projection InstrumentsÂ
1.7.3. TelescopesÂ
1.7.4. Near Vision Instruments: Compound Magnifier and MicroscopeÂ
1.8. Anisotropic MediaÂ
1.8.1. PolarizationÂ
1.8.2. Electrical Susceptibility Index EllipsoidÂ
1.8.3. Wave Equation in Anisotropic MediaÂ
1.8.4. Propagation ConditionsÂ
1.8.5. Refraction in Anisotropic MediaÂ
1.8.6. Fresnel ConstructionÂ
1.8.7. Construction with the Index EllipsoidÂ
1.8.8. RetardersÂ
1.8.9. Absorbent Anisotropic MediaÂ
1.9. InterferenceÂ
1.9.1. General Principles and Interference Conditions
1.9.2. Wavefront Split InterferenceÂ
1.9.3. Young's StripesÂ
1.9.4. Amplitude Division InterferencesÂ
1.9.5. Michelson's InterferometerÂ
1.9.6. Interference of Multiple Beams Obtained by Amplitude DivisionÂ
1.9.7. Fabry-Perot’s InterferometerÂ
1.10. DiffractionÂ
1.10.1. The Huygens-Fresnel PrincipleÂ
1.10.2. Fresnel and Fraunhofer DiffractionÂ
1.10.3. Fraunhofer's Diffraction through an ApertureÂ
1.10.4. Limitation of the Resolutive Power of the InstrumentsÂ
1.10.5. Fraunhofer Diffraction by Various AperturesÂ
1.10.6. Double SlitÂ
1.10.7. Diffraction GratingÂ
1.10.8. Introduction to Kirchhoff's Scalar TheoryÂ
Module 2. Classical Mechanics IÂ
2.1. Kinematics and Dynamics: ReviewÂ
2.1.1. Newton’s Law Â
2.1.2. Reference SystemsÂ
2.1.3. Motion Equation of ParticlesÂ
2.1.4. Conservation TheoremsÂ
2.1.5. Particle System DynamicsÂ
2.2. More Newtonian MechanicsÂ
2.2.1. Conservation Theorems for Particle SystemsÂ
2.2.2. Universal Gravity LawÂ
2.2.3. Force Lines and Equipotential SurfacesÂ
2.2.4. Limitations of Newtonian MechanicsÂ
2.3. Kinematics of RotationsÂ
2.3.1. Fundamentals of MathematicsÂ
2.3.2. Infinitesimal RotationsÂ
2.3.3. Angular Velocity and AccelerationÂ
2.3.4. Rotational Reference SystemsÂ
2.3.5. Coriolis ForceÂ
2.4. Rigid Solid StudyÂ
2.4.1. Rigid Solid KinematicsÂ
2.4.2. Inertia Tensor of Rigid SolidsÂ
2.4.3. Main Inertia Axes Â
2.4.4. Steiner and Perpendicular Axes TheoremsÂ
2.4.5. Kinetic Energy of RotationÂ
2.4.6. Angular MomentumÂ
2.5. Symmetries and Conservation LawsÂ
2.5.1. Conservation Theorem of Linear MomentumÂ
2.5.2. Conservation Theorem of Angular MomentumÂ
2.5.3. Energy Conservation TheoremÂ
2.5.4. Classical Mechanic Symmetries: Galileo GroupÂ
2.6. Coordinate Systems: Euler AnglesÂ
2.6.1. Coordinate Systems and ChangesÂ
2.6.2. Euler AnglesÂ
2.6.3. Euler EquationsÂ
2.6.4. Stability Around a Major AxisÂ
2.7. Rigid Solid Dynamics ApplicationsÂ
2.7.1. Spherical PendulumÂ
2.7.2. Free Symmetrical Top MovementÂ
2.7.3. Symmetrical Top Movement with a Fixed PointÂ
2.7.4. Gyroscopic EffectÂ
2.8. Movement Under Central ForcesÂ
2.8.1. Introduction to Central Force FieldsÂ
2.8.2. Reduced MassÂ
2.8.3. Trajectory EquationÂ
2.8.4. Central Field OrbitsÂ
2.8.5. Centrifugal Energy and Effective PotentialÂ
2.9. Kepler's ProblemÂ
2.9.1. Planetary Motion - Kepler's ProblemÂ
2.9.2. Approximate Solution to Kepler's EquationÂ
2.9.3. Kepler's LawsÂ
2.9.4. Bertrand's TheoremÂ
2.9.5. Stability and Perturbation TheoryÂ
2.9.6. 2-Body ProblemÂ
2.10. CollisionsÂ
2.10.1. Elastic and Inelastic Shocks: IntroductionÂ
2.10.2. Center of Mass Coordinate SystemÂ
2.10.3. Laboratory Coordinate SystemÂ
2.10.4. Elastic Shock KinematicsÂ
2.10.5. Particle Dispersion - Rutherford's Dispersion FormulaÂ
2.10.6. Effective SectionÂ
Module 3. ElectromagnetismÂ
3.1. Vector Calculus: ReviewÂ
3.1.1. Vector OperationsÂ
3.1.1.1. Scalar ProductsÂ
3.1.2.1. Vectorial ProductsÂ
3.1.3.1. Mixed ProductsÂ
3.1.4.1. Triple Product PropertiesÂ
3.1.2. Vector TransformationÂ
3.1.2.1. Differential CalculusÂ
3.1.2.1. GradientÂ
3.1.2.2. DivergenceÂ
3.1.2.3. RotationalÂ
3.1.2.4. Multiplication RulesÂ
3.1.3. Integral CalculusÂ
3.1.3.1. Line, Surface and Volume IntegralsÂ
3.1.3.2. Fundamental Calculus TheoremÂ
3.1.3.3. Fundamental Gradient TheoremÂ
3.1.3.4. Fundamental Divergence TheoremÂ
3.1.3.5. Fundamental Rotational TheoremÂ
3.1.4. Dirac Delta FunctionÂ
3.1.5. Helmholtz TheoremÂ
3.2. Coordinate Systems and TransformationsÂ
3.2.1. Line, Surface and Volume ElementÂ
3.2.2. Cartesian CoordinatesÂ
3.2.3. Polar CoordinatesÂ
3.2.4. Spherical CoordinatesÂ
3.2.5. Cylindrical CoordinatesÂ
3.2.6. Coordinate ChangeÂ
3.3. Electric FieldÂ
3.3.1. Point Charges
3.3.2. Coulomb's Law
3.3.3. Electric Field and Field LinesÂ
3.3.4. Discrete Charge DistributionsÂ
3.3.5. Continuous Load DistributionsÂ
3.3.6. Divergence and Rotational Electric FieldÂ
3.3.7. Electric Field Flow: Gauss’ Theorem
3.4. Electric PotentialÂ
3.4.1. Electric Potential DefinitionÂ
3.4.2. Poisson's EquationÂ
3.4.3. Laplace's EquationÂ
3.4.4. Potential Charge Distribution CalculationÂ
3.5. Electrostatic EnergyÂ
3.5.1. Electrostatic WorkÂ
3.5.2. Discrete Charge Distribution EnergyÂ
3.5.3. Continuous Charge Distribution EnergyÂ
3.5.4. Electrostatic Equilibrium ConductorsÂ
3.5.5. Induced ChargesÂ
3.6. Â Vacuum ElectrostaticsÂ
3.6.1. Laplace's Equation in One, Two and Three DimensionsÂ
3.6.2. Laplace’s Equation - Boundary Conditions and Uniqueness TheoremsÂ
3.6.3. Image Method Â
3.6.4. Variable SeparationÂ
3.7. Multi-Polar ExpansionÂ
3.7.1. Approximate Potentials Away from the SourceÂ
3.7.2. Multi-Polar DevelopmentÂ
3.7.3. Mono-Polar TermÂ
3.7.4. Di-Polar TermÂ
3.7.5. Coordinate Origins in Multipole ExpansionsÂ
3.7.6. Electric Field of an Electric DipoleÂ
3.8. Electrostatics in Material Media IÂ
3.8.1. Dielectric FieldÂ
3.8.2. Dielectric TypesÂ
3.8.3. Vector DisplacementÂ
3.8.4. Gauss's Law in Dielectric PresenceÂ
3.8.5. Boundary ConditionsÂ
3.8.6. Electric Field within DielectricsÂ
3.9. Electrostatics in Material Media II: Linear DielectricsÂ
3.9.1. Electrical SusceptibilityÂ
3.9.2. Electrical PermittivityÂ
3.9.3. Dielectric ConstantÂ
3.9.4. Dielectric Systems EnergyÂ
3.9.5. Dielectric ForcesÂ
3.10. MagnetostaticsÂ
3.10.1. Magnetic Induction FieldÂ
3.10.2. Electric CurrentsÂ
3.10.3. Magnetic Field Calculation: Biot and Savart's LawÂ
3.10.4. Lorentz ForceÂ
3.10.5. Divergence and Rotational Magnetic FieldÂ
3.10.6. Ampere's LawÂ
3.10.7. Magnetic Vector PotentialÂ
Module 4. Classical Mechanics IIÂ
4.1. OscillationsÂ
4.1.1. Simple Harmonic OscillatorÂ
4.1.2. Damped OscillatorÂ
4.1.3. Forced OscillatorÂ
4.1.4. Fourier SeriesÂ
4.1.5. Green's FunctionÂ
4.1.6. Non-Linear OscillatorsÂ
4.2. Coupled Oscillations IÂ
4.2.1. IntroductionÂ
4.2.2. Coupling of Two Harmonic OscillatorsÂ
4.2.3. Normal TrendsÂ
4.2.4. Weak CouplingÂ
4.2.5. Forced Vibrations of Coupled OscillatorsÂ
4.3. Coupled Oscillations IIÂ
4.3.1. General Theory of Coupled OscillationsÂ
4.3.2. Normal CoordinatesÂ
4.3.3. Multiple Oscillator Coupling: Continuous Boundary and Vibrating WireÂ
4.3.4. Wave EquationÂ
4.4. Special Relativity TheoryÂ
4.4.1. Inertial Reference Systems Â
4.4.2. Galileo’s InvarianceÂ
4.4.3. Lorentz TransformationsÂ
4.4.4. Relative VelocitiesÂ
4.4.5. Linear Relativistic MomentumÂ
4.4.6. Relativistic InvariantsÂ
4.5. Tensor Formalism of Special RelativityÂ
4.5.1. QuadrivectorsÂ
4.5.2. Quadrimomentum and QuadripositionÂ
4.5.3. Relativistic EnergyÂ
4.5.4. Relativistic ForcesÂ
4.5.5. Relativistic Particle CollisionsÂ
4.5.6. Particle DisintegrationsÂ
4.6. Introduction to Analytical MechanicsÂ
4.6.1. Links and Generalized CoordinatesÂ
4.6.2. Mathematical Tools: Variance CalculationÂ
4.6.3. Definition of ActionÂ
4.6.4. Hamilton Principle: Extreme ActionÂ
4.7. Lagrangian FormulationÂ
4.7.1. Lagrangian DefinitionÂ
4.7.2. Variance CalculationÂ
4.7.3. Euler-Lagrange EquationsÂ
4.7.4. Conserved QuantitiesÂ
4.7.5. Extension to Non-Holonomous SystemsÂ
4.8. Hamiltonian FormulationÂ
4.8.1. Phasic SpaceÂ
4.8.2. Legendre Transformations: HamiltonianÂ
4.8.3. Canonical EquationsÂ
4.8.4. Conserved QuantitiesÂ
4.9. Analytical Mechanics-ExtensionÂ
4.9.1. Poisson ParenthesesÂ
4.9.2. Lagrange Multipliers and Bond ForcesÂ
4.9.3. Liouville TheoremÂ
4.9.4. Virial TheoremÂ
4.10. Analytical Relativistic Mechanics and Classical Field TheoryÂ
4.10.1. Charge Movement in Electromagnetic FieldsÂ
4.10.2. Lagrangian of a Free relativistic particleÂ
4.10.3. Interaction LagrangianÂ
4.10.4. Classical Field Theory: IntroductionÂ
4.10.5. Classical ElectrodynamicsÂ
Module 5. Electromagnetism IIÂ
5.1. Â Magnetism in Material MediumsÂ
5.1.1. Multi-Polar DevelopmentÂ
5.1.2. Magnetic DipoleÂ
5.1.3. Field Created by a Magnetic MaterialÂ
5.1.4. Magnetic IntensityÂ
5.1.5. Types of Magnetic Materials: Diamagnetic, Paramagnetic and FerromagneticÂ
5.1.6. Border ConditionsÂ
5.2. Magnetism in Material Media IIÂ
5.2.1. Auxiliary Field HÂ
5.2.2. Ampere's Law in Magnetized MediaÂ
5.2.3. Magnetic SusceptibilityÂ
5.2.4. Magnetic PermeabilityÂ
5.2.5. Magnetic CircuitsÂ
5.3. ElectrodynamicsÂ
5.3.1. Ohm's LawÂ
5.3.2. Electromotive ForceÂ
5.3.3. Faraday's Law and its LimitationsÂ
5.3.4. Mutual Inductance and Self-InductanceÂ
5.3.5. Induced Electric FieldÂ
5.3.6. InductanceÂ
5.3.7. Magnetic Field EnergyÂ
5.4. Maxwell's EquationsÂ
5.4.1. Displacement CurrentÂ
5.4.2. Maxwell's Equations in Vacuum and in Material MediaÂ
5.4.3. Boundary ConditionsÂ
5.4.4. Solution UniquenessÂ
5.4.5. Electromagnetic EnergyÂ
5.4.6. Electromagnetic Field DriveÂ
5.4.7. Angular Momentum of Electromagnetic FieldsÂ
5.5. Conservation LawsÂ
5.5.1. Electromagnetic EnergyÂ
5.5.2. Continuity EquationÂ
5.5.3. Poynting's TheoremÂ
5.5.4. Newton's Third Law in ElectrodynamicsÂ
5.6. Waves electromagnetic: IntroductionÂ
5.6.1. Wave MotionÂ
5.6.2. Wave EquationÂ
5.6.3. Electromagnetic SpectrumÂ
5.6.4. Plane WavesÂ
5.6.5. Sine WavesÂ
5.6.6. Boundary Conditions:Â
5.6.7. PolarizationÂ
5.7. Electromagnetic Waves in VacuumsÂ
5.7.1. Wave Equation for Electric Fields and Magnetic InductionÂ
5.7.2. Monochromatic WavesÂ
5.7.3. Electromagnetic Wave EnergyÂ
5.7.4. Electromagnetic Wave MomentumÂ
5.8. Electromagnetic Waves in Material MediaÂ
5.8.1. Flat Dielectric WavesÂ
5.8.2. Flat Conductor WavesÂ
5.8.3. Wave Propagation in Linear MediaÂ
5.8.4. Medium DispersiveÂ
5.8.5. Reflection and RefractionÂ
5.9. Waves in Confined Mediums IÂ
5.9.1. Maxwell's Guide EquationsÂ
5.9.2. Dielectric GuidesÂ
5.9.3. Modes in a GuideÂ
5.9.4. Propagation speedÂ
5.9.5. Rectangular GuideÂ
5.10. Waves in Confined MediumsÂ
5.10.1. Resonant CavitiesÂ
5.10.2. Transmission LinesÂ
5.10.3. Transitional RegimeÂ
5.10.4. Permanent RegimeÂ
Module 6. Advanced ThermodynamicsÂ
6.1. Formalism of ThermodynamicsÂ
6.1.1. Laws of ThermodynamicsÂ
6.1.2. The Fundamental EquationÂ
6.1.3. Internal Energy: Euler's FormÂ
6.1.4. Gibbs-Duhem EquationÂ
6.1.5. Legendre TransformationsÂ
6.1.6. Thermodynamic PotentialsÂ
6.1.7. Maxwell's Relations for a FluidÂ
6.1.8. Stability ConditionsÂ
6.2. Microscopic Description of Macroscopic Systems IÂ
6.2.1. Microstates and Macrostates: IntroductionÂ
6.2.2. Phase SpaceÂ
6.2.3. CollectivitiesÂ
6.2.4. Microcanonical CollectivityÂ
6.2.5. Thermal EquilibriumÂ
6.3. Microscopic Description of Macroscopic Systems IIÂ
6.3.1. Discrete SystemsÂ
6.3.2. Statistical EntropyÂ
6.3.3. Maxwell-Boltzmann DistributionÂ
6.3.4. PressureÂ
6.3.5. EffusionÂ
6.4. Canonical CollectivityÂ
6.4.1. Partition FunctionÂ
6.4.2. Ideal SystemsÂ
6.4.3. Energy DegenerationÂ
6.4.4. Behavior of the Monoatomic Ideal Gas at a PotentialÂ
6.4.5. Energy Equipartition TheoremÂ
6.4.6. Discrete SystemsÂ
6.5. Magnetic SystemsÂ
6.5.1. Thermodynamics of Magnetic SystemsÂ
6.5.2. Classical ParamagnetismÂ
6.5.3. ½" Spin Paramagnetism
6.5.4. Adiabatic DemagnetizationÂ
6.6. Phase TransitionsÂ
6.6.1. Classification of Phase TransitionsÂ
6.6.2. Phase DiagramsÂ
6.6.3. Clapeyron EquationÂ
6.6.4. Vapor-Condensed Phase EquilibriumÂ
6.6.5. The Critical PointÂ
6.6.6. Ehrenfest's Classification of Phase TransitionsÂ
6.6.7. Landau's TheoryÂ
6.7. Ising's ModelÂ
6.7.1. IntroductionÂ
6.7.2. One-Dimensional ChainÂ
6.7.3. Open One-Dimensional ChainÂ
6.7.4. Mean Field ApproximationÂ
6.8. Real GasesÂ
6.8.1. Comprehensibility Factor: Virial DevelopmentÂ
6.8.2. Interaction Potential and Configurational Partition Function
6.8.3. Second Virial CoefficientÂ
6.8.4. Van der Waals EquationÂ
6.8.5. Lattice GasÂ
6.8.6. Corresponding States LawÂ
6.8.7. Joule and Joule-Kelvin ExpansionsÂ
6.9. Photon GasÂ
6.9.1. Boson Statistics Vs. Fermion StatisticsÂ
6.9.2. Energy Density and Degeneracy of StatesÂ
6.9.3. Planck DistributionÂ
6.9.4. Equations of State of a Photon GasÂ
6.10. Macrocanonical CollectivityÂ
6.10.1. Partition FunctionÂ
6.10.2. Discrete SystemsÂ
6.10.3. FluctuationsÂ
6.10.4. Ideal SystemsÂ
6.10.5. The Monoatomic GasÂ
6.10.6. Vapor-Solid EquilibriumÂ
Module 7. Material PhysicsÂ
7.1. Materials Science and Solid StateÂ
7.1.1. Field of Study of Materials ScienceÂ
7.1.2. Classification of Materials According to the Type of BondingÂ
7.1.3. Classification of Materials According to Their Technological ApplicationsÂ
7.1.4. Relationship between Structure, Properties and ProcessingÂ
7.2. Crystalline StructuresÂ
7.2.1. Order and Disorder: Basic ConceptsÂ
7.2.2. Crystallography: Fundamental ConceptsÂ
7.2.3. Review of Basic Crystal Structures: Simple Metallic and Ionic StructuresÂ
7.2.4. More Complex Crystal Structures (Ionic and Covalent)Â
7.2.5. Structure of PolymersÂ
7.3. Defects in Crystalline StructuresÂ
7.3.1. Classification of ImperfectionsÂ
7.3.2. Structural DefectsÂ
7.3.3. Punctual DefectsÂ
7.3.4. Other ImperfectionsÂ
7.3.5. DislocationsÂ
7.3.6. Interfacial DefectsÂ
7.3.7. Extended DefectsÂ
7.3.8. Chemical ImperfectionsÂ
7.3.9. Substitutional Solid SolutionsÂ
7.3.10. Interstitial Solid SolutionsÂ
7.4. Phase Diagrams Â
7.4.1. Fundamental Concepts Â
7.4.1.1. Solubility Limit and Phase EquilibriumÂ
7.4.1.2. Interpretation and Use of Phase Diagrams: Gibbs Phase RuleÂ
7.4.2. 1 Component Phase DiagramÂ
7.4.3. 2 Component Phase Diagram Â
7.4.3.1. Total Solubility in the Solid StateÂ
7.4.3.2. Total Insolubility in the Solid StateÂ
7.4.3.3. Partial Solubility in the Solid StateÂ
7.4.4. 3 Component Phase DiagramÂ
7.5. Mechanical PropertiesÂ
7.5.1. Elastic DeformationÂ
7.5.2. Plastic DeformationÂ
7.5.3. Mechanical TestingÂ
7.5.4. FractureÂ
7.5.5. FatigueÂ
7.5.6. FluenceÂ
7.6. Electrical PropertiesÂ
7.6.1. IntroductionÂ
7.6.2. Conductivity. ConductorsÂ
7.6.3. SemiconductorsÂ
7.6.4. PolymersÂ
7.6.5. Electrical CharacterizationÂ
7.6.6. InsulatorsÂ
7.6.7. Conductor-Insulator TransitionÂ
7.6.8. DielectricsÂ
7.6.9. Dielectric PhenomenaÂ
7.6.10. Dielectric CharacterizationÂ
7.6.11. Materials of Technological InterestÂ
7.7. Magnetic PropertiesÂ
7.7.1. Origin of MagnetismÂ
7.7.2. Materials with Magnetic Dipole MomentÂ
7.7.3. Types of MagnetismÂ
7.7.4. Local FieldÂ
7.7.5. DiamagnetismÂ
7.7.6. ParamagnetismÂ
7.7.7. FerromagnetismÂ
7.7.8. AntiferromagnetismÂ
7.7.9. FerrimagnetismÂ
7.8. Magnetic Properties IIÂ
7.8.1. DomainsÂ
7.8.2. HysteresisÂ
7.8.3. MagnetostrictionÂ
7.8.4. Materials of Technological Interest: Magnetically Soft and HardÂ
7.8.5. Characterization of Magnetic MaterialsÂ
7.9. Thermal PropertiesÂ
7.9.1. IntroductionÂ
7.9.2. Heat CapacityÂ
7.9.3. Thermal ConductionÂ
7.9.4. Expansion and ContractionÂ
7.9.5. Thermoelectric PhenomenaÂ
7.9.6. Magnetocaloric EffectÂ
7.9.7. Characterization of Thermal Properties
7.10. Optical Properties: Light and MatterÂ
7.10.1. Absorption and Re-EmissionÂ
7.10.2. Light SourcesÂ
7.10.3. Energy ConversionÂ
7.10.4. Optical CharacterizationÂ
7.10.5. Microscopy TechniquesÂ
7.10.6. NanostructuresÂ
Module 8. Analog and Digital ElectronicsÂ
8.1. Circuit Analysis
8.1.1. Element ConstraintsÂ
8.1.2. Connection ConstraintsÂ
8.1.3. Combined ConstraintsÂ
8.1.4. Equivalent CircuitsÂ
8.1.5. Voltage and Current DivisionÂ
8.1.6. Circuit ReductionÂ
8.2. Analog SystemsÂ
8.2.1. Kirchoff's LawsÂ
8.2.2. Thévenin's TheoremÂ
8.2.3. Norton's TheoremÂ
8.2.4. Introduction to Semiconductor PhysicsÂ
8.3. Devices and Characteristic Equations Â
8.3.1. DiodeÂ
8.3.2. Bipolar Transistors (BJTs) and MOSFETsÂ
8.3.3. Pspice ModelÂ
8.3.4. Characteristic CurvesÂ
8.3.5. Regions of OperationÂ
8.4. Amplifiers Â
8.4.1. Amplifier OperationÂ
8.4.2. Equivalent Circuits of AmplifiersÂ
8.4.3. FeedbackÂ
8.4.4. Frequency Domain AnalysisÂ
8.5. Amplification StagesÂ
8.5.1. BJT and MOSFET Amplifier FunctionÂ
8.5.2. PolarizationÂ
8.5.3. Equivalent Small-Signal ModelÂ
8.5.4. Single-Stage AmplifiersÂ
8.5.5. Frequency ResponseÂ
8.5.6. Connection of Amplifier Stages in CascadeÂ
8.5.7. Differential TorqueÂ
8.5.8. Current Mirrors and Application as Active LoadsÂ
8.6. Operational Amplifier and Applications Â
8.6.1. Ideal Operational AmplifierÂ
8.6.2. Deviations from IdealityÂ
8.6.3. Sinusoidal OscillatorsÂ
8.6.4. Comparators and Relaxation OscillatorsÂ
8.7. Logic Functions and Combinational Circuits Â
8.7.1. Information Representation in Digital ElectronicsÂ
8.7.2. Boolean AlgebraÂ
8.7.3. Simplification of Logic FunctionsÂ
8.7.4. Two-Level Combinational StructuresÂ
8.7.5. Combinational Functional ModulesÂ
8.8. Sequential Systems Â
8.8.1. Concept of Sequential SystemÂ
8.8.2. Latches, Flip-Flops and RegistersÂ
8.8.3. State Tables and State Diagrams: Moore and Mealy ModelsÂ
8.8.4. Synchronous Sequential Systems ImplementationÂ
8.8.5. General Structure of a ComputerÂ
8.9. MOS Digital CircuitsÂ
8.9.1. InvertersÂ
8.9.2. Static and Dynamic ParametersÂ
8.9.3. Combinational MOS CircuitsÂ
8.9.3.1. Step Transistor LogicÂ
8.9.3.2. Implementing Latches and Flip-FlopsÂ
8.10. Bipolar and Advanced Technology Digital CircuitsÂ
8.10.1. BJT Switch. BTJ Digital CircuitsÂ
8.10.2. TTL Transistor-Transistor Logic CircuitsÂ
8.10.3. Characteristic Curves of a Standard TTLÂ
8.10.4. Emitter-Coupled Logic Circuits ECLÂ
8.10.5. Digital Circuits with BiCMOSÂ
Module 9. Statistical PhysicsÂ
9.1. Stochastic ProcessesÂ
9.1.1. IntroductionÂ
9.1.2. Brownian MotionÂ
9.1.3. Random WalkÂ
9.1.4. Langevin EquationÂ
9.1.5. Fokker-Planck EquationÂ
9.1.6. Brownian EnginesÂ
9.2. Review of Statistical MechanicsÂ
9.2.1. Collectivities and PostulatesÂ
9.2.2. Microcanonical CollectivityÂ
9.2.3. Canonical CollectivityÂ
9.2.4. Discrete and Continuous Energy SpectraÂ
9.2.5. Classical and Quantum Limits. Thermal WavelengthÂ
9.2.6. Maxwell-Boltzmann StatisticsÂ
9.2.7. Energy Equipartition TheoremÂ
9.3. Ideal Gas of Diatomic MoleculesÂ
9.3.1. The Problem of Specific Heats in GasesÂ
9.3.2. Internal Degrees of FreedomÂ
9.3.3. Contribution of Each Degree of Freedom to the Heat CapacityÂ
9.3.4. Polyatomic MoleculesÂ
9.4. Magnetic SystemsÂ
9.4.1. ½ Spin Systems Â
9.4.2. Quantum ParamagnetismÂ
9.4.3. Classical ParamagnetismÂ
9.4.4. SuperparamagnetismÂ
9.5. Biological SystemsÂ
9.5.1. BiophysicsÂ
9.5.2. DNA DenaturationÂ
9.5.3. Biological MembranesÂ
9.5.4. Myoglobin Saturation Curve. Langmuir IsothermÂ
9.6. Systems with InteractionÂ
9.6.1. Solids, Liquids, GasesÂ
9.6.2. Magnetic Systems. Ferro-Paramagnetic TransitionÂ
9.6.3. Weiss ModelÂ
9.6.4. Landau ModelÂ
9.6.5. Ising's ModelÂ
9.6.6. Critical Points and UniversalityÂ
9.6.7. Monte Carlo Method. Metropolis AlgorithmÂ
9.7. Quantum Ideal GasÂ
9.7.1. Distinguishable and Indistinguishable ParticlesÂ
9.7.2. Microstates in Quantum Statistical MechanicsÂ
9.7.3. Calculation of the Macrocanonical Partition Function in an Ideal GasÂ
9.7.4. Quantum Statistics: Bose-Einstein and Fermi-Dirac StatisticsÂ
9.7.5. Ideal Gases of Bosons and FermionsÂ
9.8. Ideal Boson GasÂ
9.8.1. Photons. Black Body RadiationÂ
9.8.2. Phonons. Heat Capacity of the Crystal LatticeÂ
9.8.3. Bose-Einstein CondensationÂ
9.8.4. Thermodynamic Properties of Bose-Einstein GasÂ
9.8.5. Critical Temperature and DensityÂ
9.9. Ideal Gas for FermionsÂ
9.9.1. Fermi-Dirac StatisticsÂ
9.9.2. Electron Heat CapacityÂ
9.9.3. Fermion Degeneracy PressureÂ
9.9.4. Fermi Function and TemperatureÂ
9.10. Elementary Kinetic Theory of GasesÂ
9.10.1. Dilute Gas in Equilibrium Â
9.10.2. Transport CoefficientsÂ
9.10.3. Thermal Conductivity of the Crystalline Lattice and ElectronsÂ
9.10.4. Gaseous Systems Composed of Moving MoleculesÂ
Module 10. Fluid MechanicsÂ
10.1. Introduction to Fluid PhysicsÂ
10.1.1. No-Slip ConditionÂ
10.1.2. Classification of FlowsÂ
10.1.3. Control System and VolumeÂ
10.1.4. Fluid PropertiesÂ
10.1.4.1. DensityÂ
10.1.4.2. Specific GravityÂ
10.1.4.3. Vapor PressureÂ
10.1.4.4. CavitationÂ
10.1.4.5. Specific HeatÂ
10.1.4.6. CompressibilityÂ
10.1.4.7. Speed of SoundÂ
10.1.4.8. ViscosityÂ
10.1.4.9. Surface TensionÂ
10.2. Fluid Statics and KinematicsÂ
10.2.1. PressureÂ
10.2.2. Pressure Measuring DevicesÂ
10.2.3. Hydrostatic Forces on Submerged SurfacesÂ
10.2.4. Buoyancy, Stability and Motion of Rigid SolidsÂ
10.2.5. Lagrangian and Eulerian DescriptionÂ
10.2.6. Flow PatternsÂ
10.2.7. Kinematic TensorsÂ
10.2.8. VorticityÂ
10.2.9. RotationalityÂ
10.2.10. Reynolds Transport TheoremÂ
10.3. Bernoulli and Energy EquationsÂ
10.3.1. Conservation of MassÂ
10.3.2. Mechanical Energy and EfficiencyÂ
10.3.3. Bernoulli's EquationÂ
10.3.4. General Energy EquationÂ
10.3.5. Stationary Flow Energy AnalysisÂ
10.4. Fluid Analysis Â
10.4.1. Conservation of Linear Momentum EquationsÂ
10.4.2. Conservation of Angular Momentum EquationsÂ
10.4.3. Dimensional HomogeneityÂ
10.4.4. Variable Repetition MethodÂ
10.4.5. Buckingham's Pi TheoremÂ
10.5. Flow in PipesÂ
10.5.1. Laminar and Turbulent FlowÂ
10.5.2. Inlet RegionÂ
10.5.3. Minor LossesÂ
10.5.4. NetworksÂ
10.6. Differential Analysis and Navier-Stokes EquationsÂ
10.6.1. Conservation of MassÂ
10.6.2. Current FunctionÂ
10.6.3. Cauchy EquationÂ
10.6.4. Navier-Stokes EquationÂ
10.6.5. Dimensionless Navier-Stokes Equations of MotionÂ
10.6.6. Stokes FlowÂ
10.6.7. Inviscid FlowÂ
10.6.8. Irrotational FlowÂ
10.6.9. Boundary Layer Theory. Clausius EquationÂ
10.7. External FlowÂ
10.7.1. Drag and LiftÂ
10.7.2. Friction and PressureÂ
10.7.3. CoefficientsÂ
10.7.4. Cylinders and Spheres Â
10.7.5. Aerodynamic ProfilesÂ
10.8. Compressible FlowÂ
10.8.1. Stagnation PropertiesÂ
10.8.2. One-Dimensional Isentropic FlowÂ
10.8.3. NozzlesÂ
10.8.4. Shock WavesÂ
10.8.5. Expansion WavesÂ
10.8.6. Rayleigh FlowÂ
10.8.7. Fanno FlowÂ
10.9. Open Channel FlowÂ
10.9.1. ClassificationÂ
10.9.2. Froude NumberÂ
10.9.3. Wave SpeedÂ
10.9.4. Uniform FlowÂ
10.9.5. Gradually Varying FlowÂ
10.9.6. Rapidly Varying FlowÂ
10.9.7. Hydraulic JumpÂ
10.10. Non-Newtonian FluidsÂ
10.10.1. Standard FlowsÂ
10.10.2. Material FunctionsÂ
10.10.3. ExperimentsÂ
10.10.4. Generalized Newtonian Fluid ModelÂ
10.10.5. Generalized Linear Viscoelastic Fluid ModelÂ
10.10.6. Advanced Constitutive Equations and RheometryÂ
Boost your career in Material Physics thanks to the comprehensive knowledge you will acquire over the course of this 12 months university program"
Professional Master's Degree in Material Physics
If you are interested in expanding your knowledge in Materials Physics, TECH's Professional Master's Degree in Materials Physics is an excellent option. This Professional Master's Degree focuses on the study of materials and their physical properties at the microscopic and macroscopic levels, and will provide you with the necessary tools to analyze and design materials with specific properties. One of the greatest benefits of studying with TECH is that you can do it from anywhere in the world, as it is taught virtually. This means that you can adapt your studies to your personal and professional schedules and responsibilities. In addition, the teaching methodology is designed so that you can interact with your professors and classmates virtually, which will allow you to have a complete and enriching learning experience.
Specialize in physics of Material Physics
This Professional Master's Degree has a highly qualified teaching team specialized in the research and teaching of the physics of materials, and is complemented by state-of-the-art tools and technologies for the analysis and design of materials. Throughout the program, you will have the opportunity to work on practical and research projects, and you will develop skills in advanced materials analysis and design. Among the areas of study in the Professional Master's Degree are the structure of materials, the mechanical, thermal, electrical and optical properties of materials, and the relationship between the structure and properties of materials. In addition, this master's degree will allow you to explore the applications of materials in different fields, from electronics to medicine. Our online program gives you the opportunity to acquire advanced knowledge and skills in the field of materials physics, with the flexibility and convenience offered by virtual learning. Don't hesitate to explore this option and take the next step in your professional career.