Why study at TECH?

Acquire, thanks to this Advanced master’s degree the most advanced tools in fluid mechanics and hydraulics and apply them in your daily work in the field of Construction Engineering” 

##IMAGE##

The construction industry is facing a number of increasingly complex challenges, such as the need to reduce environmental impact, efficient use of resources and improved workplace safety. To address these challenges, the Advanced master’s degree in Construction Engineering offers students the opportunity to delve into the most advanced techniques and tools of Construction Engineering. 

Aspects covered in the program include construction project management, structural engineering and sustainable construction. In the field of project management, techniques such as strategic planning, risk management and supervision of complex projects are studied. As for structural engineering, the focus is on the design of steel and concrete structures, as well as the analysis and calculation of seismic loads. In relation to sustainable construction, techniques and procedures are explored to reduce the environmental impact of buildings, such as the selection of materials and energy saving techniques. 

In addition, the Advanced master’s degree is delivered in a 100% online format, allowing students to participate in the program from anywhere in the world and adapt their learning to their schedule and pace of life. In short, the Advanced master’s degree in Construction Engineering provides construction engineers with advanced and specialized training that will enable them to meet today's industry challenges successfully and efficiently. 

The 100% online methodology of this program will allow you to study at your own pace, without interrupting your daily work” 

This Advanced master’s degree in Construction Engineering contains the most complete and up-to-date program on the market. The most important features include:

  • The development of case studies presented by experts in construction engineering  
  • The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice 
  • Practical exercises where self-assessment can be used to improve learning  
  • His special emphasis on innovative methodologies in Construction Engineering 
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an Internet connection 

Case studies, interactive summaries, technical videos... You will have at your disposal the most advanced multimedia resources in the educational market” 

Its teaching staff includes professionals from the field of engineering, who contribute their work experience to this program, as well as renowned specialists from leading companies and prestigious universities.  

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide an immersive learning experience designed to prepare for real-life situations. 

This program is designed around Problem-Based Learning, whereby the student must try to solve the different professional practice situations that arise throughout the program. For this purpose, the professional will be assisted by an innovative interactive video system created by renowned and experienced experts.    

The Relearning methodology with which this program is developed will allow you to take advantage of every minute of study invested, since it has been designed to maximize efficiency in the learning process"

##IMAGE##

This program will mark a before and after in your professional career: don't wait any longer and enroll"

Syllabus

The Advanced master’s degree in Construction Engineering curriculum focuses on the most relevant and advanced aspects of today's construction industry. Students will learn about the current challenges facing the industry, including the management of complex projects and the implementation of innovative techniques in sustainable construction, as well as the design of concrete and steel structures. 

##IMAGE##

Enroll now and update your professional profile through the most complete and advanced syllabus in the area of Construction Engineering”   

Module 1. Projects

1.1. Stages in the Design and Engineering of a Project 

1.1.1. Problem Analysis 
1.1.2. Solution Design 
1.1.3. Analysis of the Regulatory Framework 
1.1.4. Solution Engineering and Drafting 

1.2. Knowledge of the Problem 

1.2.1. Coordination With the Client 
1.2.2. Study of the Physical Environment 
1.2.3. Social Environment Analysis 
1.2.4. Economic Environment Analysis 
1.2.5. Analysis of the Environmental Setting (EIS) 

1.3. Solution Design 

1.3.1. Conceptual Design 
1.3.2. Study of Alternatives 
1.3.3. Pre-Engineering 
1.3.4. Preliminary Economic Analysis 
1.3.5. Coordination of the Design with the Client (Cost-Sales) 

1.4. Client Coordination 

1.4.1. Land Ownership Study 
1.4.2. Economic Feasibility Study of the Project 
1.4.3. Environmental Feasibility Analysis of the Project 

1.5. Pre-Startup Engineering 

1.5.1. Site or Layout Study 
1.5.2. Study of Typologies to be Used 
1.5.3. Pre-Packaging Study of the Solution 
1.5.4. Realization of the Project Model 
1.5.5. Adjusted Economic Analysis of the Project 

1.6. Analysis of the Tools to Be Used 

1.6.1. Team Personnel in Charge of the Work 
1.6.2. Equipment Materials Necessary 
1.6.3. Software Required for the Drafting of the Project 
1.6.4. Subcontracting Necessary for the Drafting of the Project 

1.7. Field Work. Topography and Geotechnics 

1.7.1. Determination of the Necessary Topography Works 
1.7.2. Determination of the Necessary Geotechnical Works 
1.7.3. Subcontracting Topography and Geotechnical Works 
1.7.4. Monitoring Topography and Geotechnical Works 
1.7.5. Analysis of Results of Topography and Geotechnical Works 

1.8. Drafting the Project 

1.8.1. DIA Drafting 
1.8.2. Writing and Calculation of the Solution in Geometric Definition  
1.8.3. Drafting and Calculation of the Structural Calculation Solution  
1.8.4. Drafting and Calculation of the Solution in the Adjustment Phase  
1.8.5. Drafting Annexes 
1.8.6. Drawing Up Plans 
1.8.7. Drafting Specifications 
1.8.8. Budget Preparation 

1.9. BIM Model Implementation in Projects 

1.9.1. BIM Model Concept 
1.9.2. BIM Model Phases 
1.9.3. Importance of the BIM Model 
1.9.4. The Need for BIM for the Internationalization of Projects 

Module 2. Fluid Mechanics and Hydraulics 

2.1. Introduction to Fluid Physics 

2.1.1. No-Slip Condition 
2.1.2. Classification of Flows 
2.1.3. Control System and Volume 
2.1.4. Fluid Properties 

2.1.4.1. Density 
2.1.4.2. Specific Gravity 
2.1.4.3. Vapor Pressure 
2.1.4.4. Cavitation 
2.1.4.5. Specific Heat 
2.1.4.6. Compressibility 
2.1.4.7. Speed of Sound 
2.1.4.8. Viscosity 
2.1.4.9. Surface Tension 

2.2. Fluid Statics and Kinematics 

2.2.1. Pressure 
2.2.2. Pressure Measuring Devices 
2.2.3. Hydrostatic Forces on Submerged Surfaces 
2.2.4. Buoyancy, Stability and Motion of Rigid Solids 
2.2.5. Lagrangian and Eulerian Description 
2.2.6. Flow Patterns 
2.2.7. Kinematic Tensors 
2.2.8. Vorticity 
2.2.9. Rotationality 
2.2.10    Reynolds Transport Theorem 

2.3. Bernoulli and Energy Equations 

2.3.1. Conservation of Mass 
2.3.2. Mechanical Energy and Efficiency 
2.3.3. Bernoulli's Equation 
2.3.4. General Energy Equation 
2.3.5. Stationary Flow Energy Analysis 

2.4. Fluid Analysis  

2.4.1. Conservation of Linear Momentum Equations 
2.4.2. Conservation of Angular Momentum Equations 
2.4.3. Dimensional Homogeneity 
2.4.4. Variable Repetition Method 
2.5.5. Buckingham's Pi Theorem 

2.5. Flow in Pipes 

2.5.1. Laminar and Turbulent Flow 
2.5.2. Inlet Region 
2.5.3. Minor Losses 
2.5.4. Networks 

2.6. Differential Analysis and Navier-Stokes Equations 

2.6.1. Conservation of Mass 
2.6.2. Current Function 
2.6.3. Cauchy Equation 
2.6.4. Navier-Stokes Equation 
2.6.5. Dimensionless Navier-Stokes Equations of Motion 
2.6.6. Stokes Flow 
2.6.7. Inviscid Flow 
2.6.8. Irrotational Flow 
2.6.9. Boundary Layer Theory. Blausius Equation 

2.7. External Flow 

2.7.1. Drag and Lift 
2.7.2. Friction and Pressure 
2.7.3. Coefficients 
2.7.4. Cylinders and Spheres  
2.7.5. Aerodynamic Profiles 

2.8. Compressible Flow 

2.8.1. Stagnation Properties 
2.8.2. One-Dimensional Isentropic Flow 
2.8.3. Nozzles 
2.8.4. Shock Waves 
2.8.5. Expansion Waves 
2.8.6. Rayleigh Flow 
2.8.7. Fanno Flow 

2.9. Open Channel Flow 

2.9.1. Classification 
2.9.2. Froude Number 
2.9.3. Wave Speed 
2.9.4. Uniform Flow 
2.9.5. Gradually Varying Flow 
2.9.6. Rapidly Varying Flow 
2.9.7. Hydraulic Jump 

2.10. Non-Newtonian Fluids 

2.10.1. Standard Flows 
2.10.2. Material Functions 
2.10.3. Experiments 
2.10.4. Generalized Newtonian Fluid Model 
2.10.5. Generalized Linear Viscoelastic Generalized Viscoelastic Fluid Model 
2.10.6. Advanced Constitutive Equations and Rheometry 

Module 3. Structural Analysis 

3.1. Introduction to Structures 

3.1.1. Definition and Classification of Structures 
3.1.2. Design Process and Practical and Ideal Structures 
3.1.3. Equivalent Force Systems. 
3.1.4. Center of Gravity. Distributed Loads. 
3.1.5. Moment of Inertia. Products of Inertia. Matrix od Inertia. Main Axes. 
3.1.6. Balance and Stability 
3.1.7. Analytical Statics 

3.2. Actions 

3.2.1. Introduction 
3.2.2. Permanent Actions 
3.2.3. Variable Shares 
3.2.4. Accidental Actions 

3.3. Tension, Compression and Shear 

3.3.1. Normal Stress and Linear Deformation 
3.3.2. Mechanical Properties of Materials 
3.3.3. Linear Elasticity, Hooke's Law and Poisson's Ratio 
3.3.4. Tangential Stress and Angular Deformation 

3.4. Equilibrium Equations and Stress Diagrams 

3.4.1. Calculation of Forces and Reactions 
3.4.2. Equilibrium Equations 
3.4.3. Compatibility Equations 
3.4.4. Stress Diagram 

3.5. Axially Loaded Elements 

3.5.1. Length Changes in Axially Loaded Elements 
3.5.2. Length Changes in Non-Uniform Bars 
3.5.3. Hyperstatic Elements 
3.5.4. Thermal Effects, Misalignments and Previous Deformations 

3.6. Torsion 

3.6.1. Torsional Deformations in Circular Bars 
3.6.2. Non-Uniform Torsion 
3.6.3. Pure Shear Stresses and Strains 
3.6.4. Relationship between the Modulus of Elasticity E and G 
3.6.5. Hyperstatic Torsion 
3.6.6. Thin Wall Tubing 

3.7. Bending Moment and Shear Stress 

3.7.1. Beam Types, Loads and Reactions 
3.7.2. Bending Moments and Shear Forces 
3.7.3. Relationships between Loads, Bending Moments and Shear Forces 
3.7.4. Bending Moment and Shear Diagrams 

3.8. Analysis of Structures in Flexibility (Force Method) 

3.8.1. Static Classification 
3.8.2. Principle of Superposition 
3.8.3. Definition of Flexibility 
3.8.4. Compatibility Equations 
3.8.5. General Solution Procedure 

3.9. Structural Safety. Limit State Method 

3.9.1. Basic Requirements 
3.9.2. Causes of Insecurity. Probability of Collapse 
3.9.3. Latest Limit States 
3.9.4. Serviceability Limit States of Deformation 
3.9.5. Vibration and Cracking Serviceability Limit States 

3.10. Structural Stiffness Analysis (Displacement Method) 

3.10.1. Fundamentals 
3.10.2. Stiffness Matrices 
3.10.3. Nodal Forces 
3.10.4. Displacement Calculation 

Module 4. Geotechnics and Foundations 

4.1. Footings and Foundation Slabs 

4.1.1. Most Common Types of Footings  
4.1.2. Rigid and Flexible Footings  
4.1.3. Large Shallow Foundations 

4.2. Design Criteria and Regulations 

4.2.1. Factors that Affect Footing Design 
4.2.2. Elements Included in International Foundation Regulations 
4.2.3. General Comparison Between Normative Criteria for Shallow Foundations 

4.3. Actions Carried Out on Foundations 

4.3.1. Most Common Types of Footings 
4.3.2. Rigid and Flexible Footings 
4.3.3. Large Shallow Foundations 

4.4. Foundation Stability 

4.4.1. Bearing Capacity of the Soil 
4.4.2. Sliding Stability of the Footing 
4.4.3. Tipping Stability 

4.5. Ground Friction and Adhesion Enhancement 

4.5.1. Soil Characteristics Influencing Soil-Structure Friction 
4.5.2. Soil-Structure Friction According to the Foundation Material 
4.5.3. Soil-Citation Friction Improvement Methodologies 

4.6. Foundation Repairs. Underlay 

4.6.1. Need of Foundation Repair 
4.6.2. Types of Repairs 
4.6.3. Underlay Foundations 

4.7.  Displacement in Foundation Elements 

4.7.1. Displacement Limitation in Shallow Foundations 
4.7.2. Consideration of Displacement in the Calculation of Shallow Foundations 
4.7.3. Estimated Calculations in the Short and Long Term 

4.8. Comparative Relative Costs 

4.8.1. Estimated Value of Foundation Costs 
4.8.2. Comparison According to Superficial Foundations 
4.8.3. Estimation of Repair Costs 

4.9. Alternative Methods. Foundation Pits 

4.9.1. Semi-Deep Superficial Foundations 
4.9.2. Calculation and Use of Pit Foundations 
4.9.3. Limitations and Uncertainties About the Methodology 

4.10. Types of Faults in Superficial Foundations 

4.10.1. Classic Breakages and Capacity Loss in Superficial Foundations 
4.10.2. Ultimate Resistance in Superficial Foundations 
4.10.3. Overall Capacities and Safety Coefficients 

Module 5. Construction Materials and Their Applications 

5.1. Cement 

5.1.1. Cement and Hydration Reactions: Cement Composition and Manufacturing Process. Majority Compounds, Minority Compounds 
5.1.2. Process of Hydration. Characteristics of Hydrated Products. Alternative Materials to Cement 
5.1.3. Innovation and New Products 

5.2. Mortar 

5.2.1. Properties 
5.2.2. Manufacturing, Types and Uses 
5.2.3. New Materials 

5.3. High Resistance Concrete 

5.3.1. Composition 
5.3.2. Properties and Characteristics 
5.3.3. New Designs 

5.4. Self-Compacting Concrete 

5.4.1. Nature and Characteristics of Its Components 
5.4.2. Dosage, Manufacturing, Transport and Commissioning 
5.4.3. Characteristics of the Concrete 

5.5. Light Concrete 

5.5.1. Composition 
5.5.2. Properties and Characteristics 
5.5.3. New Designs 

5.6. Fiber and Multifunctional Concretes 

5.6.1. Materials Used in the Manufacturing 
5.6.2. Properties 
5.6.3. Designs 

5.7. Self-Repairing and Self-Cleaning Concretes 

5.7.1. Composition 
5.7.2. Properties and Characteristics 
5.7.3. New Designs 

5.8. Other Cement-Based Materials (Fluid, Antibacterial, Biological...) 

5.8.1. Composition 
5.8.2. Properties and Characteristics 
5.8.3. New Designs 

5.9. Destructive and Non-Destructive Characteristics Trials 

5.9.1. Characterization of Materials 
5.9.2. Destructive Techniques. Fresh and Hardened State 
5.9.3. Non-Destructive Techniques and Procedures Applied to Materials and Constructive Structures 

5.10. Additive Blends 

5.10.1. Additive Blends 
5.10.2. Advantages and Disadvantages 
5.10.3. Sustainability 

Module 6. Mechanics of Deformable Solids 

6.1. Basic Concepts 

6.1.1. Structural Engineering 
6.1.2. Concept of Continuous Medium 
6.1.3. Surface and Volume Forces 
6.1.4. Lagrangian and Eulerian Formulations 
6.1.5. Euler's Laws of Motion 
6.1.6. Integral Theorems 

6.2. Deformations 

6.2.1. Deformation: Concept and Elementary Measurements 
6.2.2. Displacement Field 
6.2.3. The Hypothesis of Small Displacements 
6.2.4. Kinematic Equations. Deformation Tensor 

6.3. Kinematic Relationships 

6.3.1. Deformational State in the Environment of a Point 
6.3.2. Physical Interpretation of the Components of the Deformation Tensor 
6.3.3. Principal Deformations and Principal Deformation Directions 
6.3.4. Cubic Deformation 
6.3.5. Elongation of a Curve and Change of Volume of the Body 
6.3.6. Compatibility Equations 

6.4. Stresses and Static Relationships 

6.4.1. Concept of Stress 
6.4.2. Relationships between Stresses and External Forces 
6.4.3. Local Stress Analysis 
6.4.4. Mohr's Circle 

6.5. Constitutive Relationships 

6.5.1. Concept of Ideal Behavioral Model 
6.5.2. Uniaxial Responses and One-Dimensional Ideal Models 
6.5.3. Classification of Behavioral Models 
6.5.4. Generalized Hooke's Law 
6.5.5. Elastic Constants 
6.5.6. Deformation Energy and Complementary Energy 
6.5.7. Limits of the Elastic Model 

6.6. The Elastic Problem 

6.6.1. Linear Elasticity and the Elastic Problem 
6.6.2. Local Formulation of the Elastic Problem 
6.6.3. Global Formulation of the Elastic Problem 
6.6.4. General Results 

6.7. Theory of Beams: Fundamental Assumptions and Results I 

6.7.1. Derived Theories 
6.7.2. The Beam: Definitions and Classifications 
6.7.3. Additional Hypotheses 
6.7.4. Kinematic Analysis 

6.8. Theory of Beams: Fundamental Assumptions and Results II 

6.8.1. Static Analysis 
6.8.2. Constitutive Equations 
6.8.3. Deformation Energy 
6.8.4. Formulation of the Stiffness Problem 

6.9. Bending and Elongation 

6.9.1. Interpretation of the Results 
6.9.2. Estimation of Off-Directional Displacements 
6.9.3. Estimation of Normal Stresses 
6.9.4. Estimation of Shear Stresses due to Bending 

6.10. Theory of Beams: Torsion 

6.10.1. Introduction 
6.10.2. Coulomb's Torsion Balance 
6.10.3. Saint-Venant Torsion Theory 
6.10.4. Introduction to Non-Uniform Torsion 

Module 7. Construction Procedures I 

7.1. Objectives. Movements and Property Enhancement 

7.1.1. Internal and Global Property Enhancement 
7.1.2. Practical Objectives 
7.1.3. Improvement of Dynamic Behaviors 

7.2. Improvement by High Pressure Mixing Injection 

7.2.1. Typology of Soil Improvement by High-Pressure Grouting 
7.2.2. Jet-Grouting Characteristics 
7.2.3. Injection Pressures 

7.3. Gravel Columns 

7.3.1. Overall Use of Gravel Columns 
7.3.2. Quantification of Land Property Improvements 
7.3.3. Indications and Contraindications of Use 

7.4. Improvement by Impregnation and Chemical Injection 

7.4.1. Characteristics of Injections and Impregnation 
7.4.2. Characteristics of Chemical Injections 
7.4.3. Method Limitations 

7.5. Freezing 

7.5.1. Technical and Technological Aspects 
7.5.2. Different Materials and Properties 
7.5.3. Application and Limitation Fields 

7.6. Preloading, Consolidations and Compactions 

7.6.1. Preloading 
7.6.2. Drained Preloading 
7.6.3. Control During Execution 

7.7. Improvement by Drainage and Pumping 

7.7.1. Temporary Drainage and Pumping 
7.7.2. Utilities and Quantitative Improvement of Properties 
7.7.3. Behavior After Restitution 

7.8. Micropile Umbrellas 

7.8.1. Ejection and Limitations 
7.8.2. Resistant Capacity 
7.8.3. Micropile Screens and Grouting 

7.9. Comparison of Long-Term Results 

7.9.1. Comparative Analysis of Land Treatment Methodologies 
7.9.2. Treatments According to Their Practical Application 
7.9.3. Combination of Treatments 

7.10. Soil Decontamination 

7.10.1. Physicochemical Processes 
7.10.2. Biological Processes 
7.10.3. Thermal Processes 

Module 8. Structural Steel 

8.1. Introduction to Structural Steel Design 

8.1.1. Advantages of Steel as a Structural Material 
8.1.2. Disadvantages of Steel as a Structural Material 
8.1.3. Early Uses of Iron and Steel 
8.1.4. Steel Profiles 
8.1.5. Stress-Strain Relationships of Structural Steel 
8.1.6. Modern Structural Steels 
8.1.7. Use of High-Strength Steels 

8.2. General Principles of Design and Construction of Steel Structures 

8.2.1. General Principles of Design and Construction of Steel Structures 
8.2.2. Structural Design Work 
8.2.3. Responsibilities 
8.2.4. Specifications and Building Codes 
8.2.5. Economical Design 

8.3. Calculation Basis and Structural Analysis Models 

8.3.1. Calculation Basis 
8.3.2. Structural Analysis Models 
8.3.3. Determination of Areas 
8.3.4. Sections 

8.4. Ultimate Limit States I 

8.4.1. General Aspects. Strength Limit State of the Sections 
8.4.2. Equilibrium Limit State 
8.4.3. Strength Limit State of the Sections 
8.4.4. Axial Force 
8.4.5. Bending Moment 
8.4.6. Shear Stress 
8.4.7. Torsion 

8.5. Ultimate Limit States II 

8.5.1. Instability Limit States 
8.5.2. Elements Subjected to Compression 
8.5.3. Elements Subjected to Flexion 
8.5.4. Elements Subjected to Compression and Bending 

8.6. Ultimate Limit State III 

8.6.1. Ultimate Stiffness Limit State 
8.6.2. Longitudinally Stiffened Elements 
8.6.3. Web Shear Buckling 
8.6.4. Resistance of Web to Transverse Concentrated Loads 
8.6.5. Compressed Flange Induced Web Buckling 
8.6.6. Stiffeners 

8.7. Serviceability Limit States 

8.7.1. Overview 
8.7.2. Limit State of Deformations 
8.7.3. Limit States of Vibrations 
8.7.4. Limit State of Transverse Deformations in Flat Panels 
8.7.5. Limit State of Local Plasticizations 

8.8. Connecting Means: Bolts 

8.8.1. Means of Attachment: General Aspects and Classifications 
8.8.2. Bolted Joints - Part 1: General Aspects. Bolt Types and and Constructive Arrangements 
8.8.3. Bolted Joints - Part 2: Calculation 

8.9. Means of Attachment: Welding 

8.9.1. Welded Joints - Part 1: General Aspects. Classifications and Defects 
8.9.2. Welded Joints - Part 2: Constructive Arrangements and Residual Stresses 
8.9.3. Welded Joints - Part 3: Calculation 
8.9.4. Design of Beam and Column Connections 
8.9.5. Supporting Devices and Column Bases 

8.10. Fire Resistance of Steel Structures 

8.10.1. General Considerations 
8.10.2. Mechanical and Indirect Actions 
8.10.3. Properties of Materials Subjected to the Action of Fire 
8.10.4. Strength Testing of Prismatic Elements Subjected to Fire Action 
8.10.5. Testing the Resistance of Joints 
8.10.6. Calculation of Temperatures in Steel 

Module 9. Structural Concrete 

9.1. Introduction 

9.1.1. Introduction to the Subject 
9.1.2. Historical Features of Concrete 
9.1.3. Mechanical Behavior of Concrete 
9.1.4. Joint Behavior of Steel and Concrete that Has Led to Its Success as a Composite Material 

9.2. Project Basis 

9.2.1. Actions 
9.2.2. Characteristics of Concrete and Steel Materials 
9.2.3. Durability-Oriented Basis of Calculation 

9.3. Structural Analysis 

9.3.1. Structural Analysis Models 
9.3.2. Data Required for Linear, Plastic or Non-Linear Modeling 
9.3.3. Materials and Geometry 
9.3.4. Pre-Stressing Effects 
9.3.5. Calculation of Cross-Sections in Service 
9.3.6. Shrinkage and Creep 

9.4. Service Life and Maintenance of Reinforced Concrete 

9.4.1. Durability of Concrete 
9.4.2. Deterioration of the Concrete Mass 
9.4.3. Corrosion of Steel 
9.4.4. Identification of the Factors of Aggressiveness on Concrete 
9.4.5. Protective Measures 
9.4.6. Maintenance of Concrete Structures 

9.5. Calculations Related to Serviceability Limit States 

9.5.1. Limit States 
9.5.2. Concept and Method 
9.5.3. Verification of Cracking Requirements 
9.5.4. Verification of Deformation Requirements 

9.6. Ultimate Limit State Calculations 

9.6.1. Strength Behavior of Linear Concrete Elements 
9.6.2. Bending and Axial Forces 
9.6.3. Calculation of Second Order Effects with Axial Loading 
9.6.4. Shear 
9.6.5. Gradient 
9.6.6. Torsion 
9.6.7. D-Regions 

9.7. Sizing Criteria 

9.7.1. Typical Application Cases 
9.7.2. The Node 
9.7.3. The Bracket 
9.7.4. The Large-Edged Beam 
9.7.5. Concentrated Load 
9.7.6. Dimensional Changes in Beams and Columns 

9.8. Typical Structural Elements 

9.8.1. The Beam 
9.8.2. The Column 
9.8.3. The Slab 
9.8.4. Foundation Elements 
9.8.5. Introduction to Pre-Stressed Concrete 

9.9. Constructive Arrangements 

9.9.1. General Aspects and Nomenclature 
9.9.2. Coatings 
9.9.3. Hooks 
9.9.4. Minimum Diameters 

9.10. Concreting Execution 

9.10.1. General Criteria 
9.10.2. Processes Prior to Concreting 
9.10.3. Elaboration, Reinforcement and Assembly of Reinforcements 
9.10.4. Preparation and Placement of Concrete 
9.10.5. Processes Subsequent to Concreting 
9.10.6. Pre-Fabricated Elements 
9.10.7. Environmental Aspects 

Module 10. Construction 

10.1. Introduction 

10.1.1. Introduction to Construction 
10.1.2. Concept and Importance 
10.1.3. Functions and Parts of the Building 
10.1.4. Technical Regulations 

10.2. Previous Operations 

10.2.1. Superficial Foundations 
10.2.2. Deep Foundations 
10.2.3. Retaining Walls 
10.2.4. Basement Walls 

10.3. Load-Bearing Wall Solutions 

10.3.1. Masonry 
10.3.2. Concrete 
10.3.3. Rationalized Solutions 
10.3.4. Prefabricated Solutions 

10.4. Structures 

10.4.1. Slab Structures 
10.4.2. Static Structural Systems 
10.4.3. One-Way Slabs 
10.4.4. Waffle Slabs 

10.5. Construction Installations I 

10.5.1. Plumbing 
10.5.2. Water Supply 
10.5.3. Sanitation 
10.5.4. Drainage 

10.6. Construction Installations II 

10.6.1. Electrical Installations 
10.6.2. Heating 

10.7. Enclosures and Finishes I 

10.7.1. Introduction 
10.7.2. Physical Protection of the Building 
10.7.3. Energy Efficiency 
10.7.4. Noise Protection 
10.7.5. Moisture Protection 

10.8. Enclosures and Finishes II 

10.8.1. Flat Roofs 
10.8.2. Sloping Roofs 
10.8.3. Vertical Enclosures 
10.8.4. Interior Partitions 
10.8.5. Partitions, Carpentry, Glazing and Fendering 
10.8.6. Coatings 

10.9. Facades 

10.9.1. Ceramics 
10.9.2. Concrete Blocks 
10.9.3. Panels 
10.9.4. Curtain Walls 
10.9.5. Modular Construction 

10.10. Building Maintenance 

10.10.1. Building Maintenance Criteria and Concepts 
10.10.2. Building Maintenance Classifications 
10.10.3. Building Maintenance Costs 
10.10.4. Equipment Maintenance and Usage Costs 
10.10.5. Advantages of Building Maintenance 

Module 11. Hydraulic Infrastructures 

11.1. Types of Hydraulic Works 

11.1.1. Pressure Piping Works  
11.1.2. Severity Pipeline Works  
11.1.3. Canal Works  
11.1.4. Dam Works  
11.1.5. Works of Actions in Watercourses  
11.1.6. WWTP and DWTP Works 

11.2. Earthwork 

11.2.1. Terrain Analysis  
11.2.2. Dimensioning of the Necessary Machinery  
11.2.3. Control and Monitoring Systems  
11.2.4. Quality Control  
11.2.5. Standards of Good Execution 

11.3. Severity Pipeline Works 

11.3.1. Survey Data Collection in the Field and Data Analysis in the Office  
11.3.2. Re-Study of the Project Solution  
11.3.3. Piping Assembly and Manhole Construction  
11.3.4. Final Testing of Pipelines 

11.4. Pressure Piping Works 

11.4.1. Analysis of Piezometric Lines  
11.4.2. Lifting Stations Execution  
11.4.3. Piping and Valve Assembly  
11.4.4. Final Testing of Pipelines 

11.5. Special Valve and Pumping Elements    

11.5.1. Types of Valves  
11.5.2. Types of Pumps  
11.5.3. Boilermaking Elements  
11.5.4. Special Valves 

11.6. Canal Works 

11.6.1. Types of Channels  
11.6.2. Execution of Channels of Excavated Sections in the Ground  
11.6.3. Type of Rectangular Cross-Section  
11.6.4. Desanders, Sluice Gates and Loading Chambers  
11.6.5. Auxiliary Elements (Gaskets, Sealants and Treatments) 

11.7. Dam Works   

11.7.1. Types of Dams  
11.7.2. Earth Dams  
11.7.3. Concrete Dams  
11.7.4. Special Valves for Dams 

11.8. Actions in the Channels   

11.8.1. Types of Works in Watercourses  
11.8.2. Channeling  
11.8.3. Works for Channel Defenses  
11.8.4. River Parks  
11.8.5. Environmental Measures in River Works 

11.9. WWTP and DWTP Works   

11.9.1. Elements of a WWTP  
11.9.2. Elements of a DWTP  
11.9.3. Water and Sludge Lines  
11.9.4. Sludge Treatment  
11.9.5. New Water Treatment Systems 

11.10. Irrigation Works   

11.10.1. Study of the Irrigation Network  
11.10.2. Lifting Stations Execution  
11.10.3. Piping and Valve Assembly  
11.10.4. Final Testing of Pipelines 

Module 12. Durability, Protection and Service Life of Materials 

12.1. Durability of Reinforced Concrete 

12.1.1. Types of Damage 
12.1.2. Factors 
12.1.3. Most Common Damage 

12.2. Durability of Cement-Based Materials 1. Concrete Degradation Processes 

12.2.1. Cold Weather 
12.2.2. Sea Water  
12.2.3. Sulphate Attack 

12.3. Durability of Cement-Based Materials 2. Concrete Degradation Processes 

12.3.1. Alkali–Silica Reaction 
12.3.2. Acid Attacks and Aggressive Ions 
12.3.3. Hard Waters 

12.4. Corrosion of Reinforcement I 

12.4.1. Process of Corrosion in Metals 
12.4.2. Forms of Corrosion 
12.4.3. Passivity 
12.4.4. Importance of the Problem 
12.4.5. Behavior of Steel in Concrete 
12.4.6. Corrosion Effects of Steel Embedded in Concrete 

12.5. Corrosion of Reinforcement II 

12.5.1. Carbonation Corrosion of Concrete 
12.5.2. Corrosion by Penetration of Chlorides 
12.5.3. Stress Corrosion 
12.5.4. Factors Affecting the Speed of Corrosion 

12.6. Models of Service Life 

12.6.1. Service Life 
12.6.2. Carbonation 
12.6.3. Chlorides 

12.7. Durability in the Regulations 

12.7.1. EHE-08 
12.7.2. Europe 
12.7.3. Structural Code 

12.8. Estimation of Service Life in New Projects and Existing Structures 

12.8.1. New Project 
12.8.2. Residual Service Life   
12.8.3. Applications 

12.9. Design and Execution of Durable Structures 

12.9.1. Material Selection 
12.9.2. Dosage Criteria 
12.9.3. Protection of Reinforcement Against Corrosion 

12.10. Tests, Quality Controls on Site and Reparation 

12.10.1. Control Tests on Site 
12.10.2. Execution Control 
12.10.3. Tests on Structures with Corrosion 
12.10.4. Fundamentals for Reparation 

Module 13. New Materials and Innovations in Engineering and Construction 

13.1. Innovation  

13.1.1. Innovation. Incentives. New Products and Diffusion  
13.1.2. Innovation Protection   
13.1.3. Innovation Financing  

13.2. Roads II 

13.2.1. Circular Economy with New Materials  
13.2.2. Self-Repairing Road  
13.2.3. Decontaminating Roads  

13.3. Roads I 

13.3.1. Energy Production on Roads  
13.3.2. Wildlife Passes. Ecosystemic Fragmentation  
13.3.3. IoT and Digitalization in Roads  

13.4. Roads III 

13.4.1. Safe Roads  
13.4.2. Anti-Noise Roads and "Noisy" Roads  
13.4.3. Anti-Heat Island Roads in Cities  

13.5. Railroads  

13.5.1. New Alternative Materials to Ballast  
13.5.2. Ballast Flight  
13.5.3. Elimination of Catenaries on Tramways  

13.6. Underground and Tunnel Works  

13.6.1. Excavation and Gunning  
13.6.2. RMR (Rock Mass Rating)  
13.6.3. Tunnel Boring Machines  

13.7. Renewable Energy I 

13.7.1. Solar Photovoltaic  
13.7.2. Solar Thermal  
13.7.3. Wind  

13.8. Renewable Energy II  

13.8.1. Maritime  
13.8.2. Hydroelectric  
13.8.3. Geothermal Energy  

13.9. Maritime Works  

13.9.1. New Materials and Shapes in Seawalls  
13.9.2. Natural Alternative to Artificial Works  
13.9.3. Prediction of Ocean Weather  

13.10. Incorporation of Innovation from Other Construction Sectors  

13.10.1. LIDAR (Laser Imaging Detection and Ranging)  
13.10.2. Drones  
13.10.3. Internet of Things (IoT)  

Module 14. Metallic Materials  

14.1. Metallic Materials: Types and Alloys 

14.1.1. Metals  
14.1.2. Ferrous Alloys  
14.1.3. Non-Ferrous Alloys  

14.2. Ferrous Metal Alloys    

14.2.1. Fabrication  
14.2.2. Treatment   
14.2.3. Conformation and Types  

14.3. Ferrous Metal Alloys. Steel and Castings  

14.3.1. Corten Steel  
14.3.2. Stainless Steel  
14.3.3. Carbon Steel  
14.3.4. Castings  

14.4. Ferrous Metal Alloys. Products of Steel  

14.4.1. Hot Rolled Products  
14.4.2. Foreign Profiles  
14.4.3. Cold-Formed Profiles  
14.4.4. Other Products Used in Metallic Construction  

14.5. Ferrous Metallic Alloys Mechanical Characteristics of Steel  

14.5.1. Stress-Strain Diagram  
14.5.2. Simplified E-Diagrams  
14.5.3. Loading and Unloading Process  

14.6. Welded Joints  

14.6.1. Cutting Methods  
14.6.2. Types of Welded Joints  
14.6.3. Electric Arc Welding  
14.6.4. Fillet Welded Seams  

14.7. Non-Ferrous Metal Alloys. Aluminium and its Alloys  

14.7.1. Properties of Aluminium and its Alloys 
14.7.2. Thermal Treatments and Hardening Mechanisms  
14.7.3. Designation and Standardization of Aluminum Alloys 
14.7.4. Aluminium Alloys for Forging and Casting  

14.8. Non-Ferrous Metal Alloys. Copper and its Alloys   

14.8.1. Pure Copper  
14.8.2. Classification, Properties and Applications   
14.8.3. Brasses, Bronzes, Cupro-Aluminums, Cupro-Silicides and Cupro-Nickels   
14.8.4. Alpaca Silver  

14.9. Non-Ferrous Metal Alloys. Titanium and its Alloys 

14.9.1. Characteristics and Properties of Commercially Pure Titanium 
14.9.2. Most Commonly Used Titanium Alloys 
14.9.3. Thermal Treatments of Titanium and its Alloys  

14.10. Non-Ferrous Metal Alloys, Light Alloys and Superalloys  

14.10.1. Magnesium and its Alloys Superalloys  
14.10.2. Properties and Applications 
14.10.3. Nickel-, Cobalt- and Iron-Based Superalloys   

Module 15. Valuation of Construction and Demolition Waste (CDW)  

15.1. Decarbonization 

15.1.1. Sustainability of Construction Materials   
15.1.2. Circular Economy 
15.1.3. Carbon Footprint   
15.1.4. Life Cycle Analysis Methodology and Analysis   

15.2. Construction and Demolition Waste (CDW)  

15.2.1. CDW  
15.2.2. Current Situation   
15.2.3. Problems of CDW   

15.3. Characterization of CDW  

15.3.1. Dangerous Waste  
15.3.2. Non-Dangerous Waste  
15.3.3. Urban Waste  
15.3.4. European List of Construction and Demolition Wastes  

15.4. Management of CDW I 

15.4.1. General Rules BORRAR  
15.4.2. Dangerous Waste  
15.4.3. Non-Dangerous Waste  
15.4.4. Inert Waste, Soils and Stones  

15.5. Management of CDW II 

15.5.1. Reuse  
15.5.2. Recycled  
15.5.3. Energy Recovery. Disposal  

15.6. Properties of CDW  

15.6.1. Classification   
15.6.3. Properties  
15.6.4. Applications and Innovation with CDW  

15.7. Innovation. Optimization of the Use of Resources. From Other Industrial, Agricultural and Urban Wastes  

15.7.1. Supplementary Material. Ternary and Binary Mixtures  
15.7.3. Geopolymers  
15.7.4. Concrete and Asphalt Mixtures  
15.7.5. Other Uses  

15.8. Environmental Impact  

15.8.1. Analysis   
15.8.2. Impacts of CDW  
15.8.3. Measures Adopted, Identification and Valorization   

15.9. Degraded Spaces  

15.9.1. Landfill  
15.9.2. Use of Land  
15.9.3. Control Plan, Maintenance and Restoration of the Zone  

Module 16. Road Surfaces, Pavements and Asphalt Mixes 

16.1. Drainage and Sewage Systems  

16.1.1. Elements of Underground Drainage  
16.1.2. Drainage of Road Surface  
16.1.3. Drainage of Earthworks  

16.2. Esplanades  

16.2.1. Classification of Soils  
16.2.2. Soil Compaction and Bearing Capacity  
16.2.3. Formation of Esplanades  

16.3. Base Layers  

16.3.1. Granular Layers, Natural Aggregates, Artificial Aggregates and Drainage Aggregates  
16.3.2. Behavior Models  
16.3.3. Preparation and Commissioning Processes  

16.4. Treated Layers for Bases and Sub-Bases  

16.4.1. Layers Treated with Cement: Soil-Cement and Gravel-Cement  
16.4.2. Layers Treated with Other Binders  
16.4.3. Layers Treated with Bituminous Binding Agents. Gravel-Emulsion  

16.5. Binders and Binding Agents  

16.5.1. Asphalt Bitumens  
16.5.2. Fluidized and Fluxed Bitumens. Modified Binders  
16.5.3. Bituminous Emulsions  

16.6. Aggregates for Pavement Layers  

16.6.1. Aggregate Origins. Recycled Aggregates  
16.6.2. Nature  
16.6.3. Properties  

16.7. Surface Treatments  

16.7.1. Priming, Bonding and Curing Sprays  
16.7.2. Gravel Irrigation  
16.7.3. Bituminous Slurries and Cold Micro-Agglomerates  

16.8. Bituminous Mixtures  

16.8.1. Hot Mix Asphalt  
16.8.2. Tempered Blends  
16.8.3. Cold Asphalt Mixtures  

16.9. Concrete Sidewalks  

16.9.1. Types of Rigid Sidewalks  
16.9.2. Concrete Slabs  
16.9.3. Joints  

16.10. Manufacturing and Laying of Asphalt Mixtures   

16.10.1. Manufacturing, Commissioning and Quality Control  
16.10.2. Conservation, Rehabilitation and Maintenance  
16.10.3. Surface Characteristics of Pavements 

Module 17. Other Construction Materials 

17.1. Nanomaterials  

17.1.1. Nanoscience  
17.1.2. Applications in Construction Materials  
17.1.3. Innovation and Applications  

17.2. Foams   

17.2.1. Types and Design  
17.2.2. Properties  
17.2.3. Uses and Innovation  

17.3. Biomimetic Materials  

17.3.1. Features  
17.3.2. Properties  
17.3.3. Applications  

17.4. Metamaterials 

17.4.1. Features  
17.4.2. Properties  
17.4.3. Applications  

17.5. Biohydrometallurgy  

17.5.1. Features  
17.5.2. Technology of Recovery   
17.5.3. Environmental Advantages  

17.6. Self-Healing and Photoluminescent Materials  

17.6.1. Types  
17.6.2. Properties  
17.6.3. Applications  

17.7. Insulating and Thermoelectric Materials  

17.7.1. Energy Efficiency and Sustainability  
17.7.2. Typology  
17.7.3. Innovation and New Design  

17.8. Ceramics  

17.8.1. Properties   
17.8.2. Classification  
17.8.3. Innovations in this Sector  

17.9. Composite Materials and Aerogels  

17.9.1. Description  
17.9.2. Training  
17.9.3. Applications  

17.10. Other Materials  

17.10.1. Stone Materials  
17.10.2. Plaster  
17.10.3. Others  

Module 18. Industrialization and Earthquake-Resistant Construction   

18.1. Industrialization: Pre-Fabricated Construction  

18.1.1. The Beginnings of Industrialization in Construction  
18.1.2. Pre-Fabricated Structural Systems  
18.1.3. Pre-Fabricated Constructive Systems   

18.2. Pre-Stressed Concrete   

18.2.1. Voltage Losses  
18.2.3. Serviceability Limit States  
18.2.4. Ultimate Limit States  
18.2.5. Pre-Cast Systems: Pre-Stressed Slabs and Beams with Pre-Stressed Reinforcement  

18.3. Quality in Horizontal Building Structures  

18.3.1. Unidirectional Joist Floor Slabs   
18.3.2. Unidirectional Hollow-Core Slab Floors  
18.3.3. Unidirectional Ribbed Sheet Metal Floor Slabs  
18.3.4. Waffle Slabs  
18.3.5. Solid Slabs  

18.4. Structural Systems in Tall Buildings  

18.4.1. Review of Skyscrapers  
18.4.2. Wind in High-Rise Buildings  
18.4.3. Materials  
18.4.4. Structural Diagrams  

18.5. Dynamic Behavior of Building Structures Exposed to Earthquakes  

18.5.1. One Degree of Freedom Systems  
18.5.2. Systems with Several Degrees of Freedom  
18.5.3. Seismic Action  
18.5.4. Heuristic Design of Earthquake-Resistant Structures 

18.6. Complex Geometrics in Architecture   

18.6.1. Hyperbolic Paraboloids  
18.6.2. Tensile Structures  
18.6.3. Pneumatic or Inflatable Structures  

18.7. Reinforcement of Concrete Structures  

18.7.1. Appraisals  
18.7.2. Reinforcement of Pillars  
18.7.3. Beam Reinforcement  

18.8. Wooden Structures  

18.8.1. Wood Grading  
18.8.2. Dimension of Beams  
18.8.3. Dimension of Pillars  

18.9. Automatization in Structures. BIM as a Control Tool  

18.9.1. BIM  
18.9.2. Federated BIM File Exchange Models  
18.9.3. New Structure Generation and Control Systems    

18.10. Additive Manufacturing Through 3D Printing  

18.10.1. Principles of 3D Printing  
18.10.2. Structural Systems Printed in 3D  
18.10.3. Other Systems   

Module 19. Microstructural Characterization of Materials 

19.1. Optical Microscope   

19.1.2. Advanced Optic Microscope Techniques 
19.1.3. Principles of the Technique  
19.1.4. Topography and Application  

19.2. Transmission Electron Microscopy (TEM)  

19.2.1. TEM Structure  
19.2.2. Electron Diffraction  
19.2.3. TEM Images  

19.3. Scanning Electron Microscope (SEM)  

19.3.1. SEM Characteristics  
19.3.2. Microanalysis of X Rays  
19.3.3. Advantages and Disadvantages  

19.4. Scanning Transmission Electron Microscopy (STEM)  

19.4.1. STEM   
19.4.2. Images and Tomography   
19.4.3. EELS   

19.5. Atomic Force Microscopy (AFM)  

19.5.1. AFM  
19.5.2. Topographic Modes  
19.5.3. Electric and Magnetic Characterization of Samples  

19.6. Mercury Intrusion Porosimetry Hg  

19.6.1. Porosity and Porous System   
19.6.2. Equipment and Properties  
19.6.3. Analysis  

19.7. Nitrogen Porosimetry  

19.7.1. Description of the Equipment  
19.7.2. Properties  
19.7.3. Analysis  

19.8. X-Ray Diffraction  

19.8.1. Generation and Characteristics of XRD  
19.8.2. Sample Preparation  
19.8.3. Analysis  

19.9. Electrical Impedance Spectroscopy (EIS)  

19.9.1. Method  
19.9.2. Procedure  
19.9.3. Advantages and Disadvantages  

19.10. Other Interesting Techniques  

19.10.1. Thermogravimetry  
19.10.2. Fluorescence  
19.10.3. Absorption Isothermal Desorption of H2O Vapor  

Module 20. Quality Management: Focus and Tools 

20.1. Quality in Construction    

20.1.1. Quality. Principles of Quality Management Systems (QMS)  
20.1.2. Documentation of Quality Management Systems  
20.1.3. Benefits of Quality Management Systems  
20.1.4. Environmental Management Systems (EMS)  
20.1.5. Integrated Management Systems (IMS)  

20.2. Errors  

20.2.1. Concept of Error, Failure, Defect or Non-Conformity  
20.2.2. Errors in the Technical Processes  
20.2.3. Errors in the Organization  
20.2.4. Errors in Human Behavior  
20.2.5. Consequence of the Errors  

20.3. Causes  

20.3.1. Organization  
20.3.2. Techniques  
20.3.3. Human  

20.4. Quality Tools 

20.4.1. Global  
20.4.2. Partial  
20.4.3. ISO 9000:2008  

20.5. Quality and its Control in Construction   

20.5.1. Quality Control Plan  
20.5.2. Quality Plan of a Company  
20.5.3. Quality Manual of a Company   

20.6. Laboratory Testing, Calibration, Certification and Accreditation  

20.6.1. Normalization, Accreditation, Certification  
20.6.2. CE Marking  
20.6.3. Advantages of Accreditation of Testing and Accreditation Laboratories  

20.7. Quality Management Systems ISO 9001:2015 Standard  

20.7.1. ISO 17025   
20.7.2. Objective and Scope of the 17025 Regulation  
20.7.3. Relationship Between ISO 17025 and LA 9001  

20.8. Management Requirements and Laboratory Techniques of ISO 17025 I 

20.8.1. Quality Management Systems  
20.8.2. Document Control  
20.8.3. Complaint Handling, Corrective and Preventive Actions  

20.9. Management Requirements and Laboratory Techniques of ISO 17025 II  

20.9.1. Internal Audits  
20.9.2. Personal, Installation and Environmental Conditions  
20.9.3. Testing Methods and Calibration and Validation of Methods  

20.10. Phases to Follow to Achieve the ISO 17025 Accreditation  

20.10.1. Accreditation in a Laboratory Test and Calibration I  
20.10.2. Accreditation in a Laboratory Test and Calibration II 
20.10.3. Process of Accreditation  

##IMAGE##

Thanks to this Advanced master’s degree, you will obtain innovative tools and techniques in Construction Engineering in a 100% online format” 

Advanced Master's Degree in Construction Engineering

The construction industry is one of the most dynamic and challenging areas in the world, with constant technological advances and changes in regulations and standards. At TECH Global University, a global leader in distance education, we have developed a Advanced Master's Degree in Construction Engineering, aimed at professionals seeking to update and specialize in this field virtually. This virtual program provides comprehensive training in the latest advances in design techniques, management and execution of construction projects, using cutting-edge tools and technologies, which you can access in an autonomous and flexible way.

In this postgraduate program, participants will acquire up-to-date knowledge on the use of sustainable construction materials, efficient project management techniques, advanced structural analysis and design, and virtual and automated construction methodologies. In addition, they will gain in-depth knowledge of quality, safety and health management in construction, as well as economic and financial project management. Participants will have the opportunity to apply the knowledge acquired through case studies and practical projects, with the support of university experts in the construction industry and the use of state-of-the-art tools and software.