
Professional Master’s Degree
Video Game Programming

Professional Master’s Degree
Video Game Programming

 » Modality: online
 » Duration: 12 months
 » Certificate: TECH Technological University
 » Dedication: 16h/week
 » Schedule: at your own pace
 » Exams: online

Website: www.techtitute.com/in/videogames/professional-master-degree/master-video-game-programming

http://www.techtitute.com/in/videogames/professional-master-degree/master-video-game-programming

Index

Introduction Objectives

Skills

Certificate

Structure and Content Methodology

p. 4 p. 8

p. 14

p. 40

p. 18 p. 32

02 01

03

06

04 05

Among the most important and delicate tasks when carrying out a video game project
is programming. Programming is at the core of any video game, since it is the process
that creates its basic instructions and dictates its general functions. That is to say,
without the code created by developers, the visual section, the story and the gameplay
could not stand out in an audiovisual work of this type. This program offers its students
all the knowledge to become the best programmers in the industry, so that the best
companies would want to count on them to develop their projects.

Introduction
01

Introduction | 05

Learn how to program the best video
games in the world thanks to this
Professional Master's Degree”

06 | Introduction

The video game industry has experienced a great expansion in recent years. Given
the popularity of this form of entertainment, companies in the field have been forced
to design and publish games more frequently. The need for more creativity has also
grown, as gamers are increasingly demanding more varied titles in different genres that
offer new experiences.

For this reason, the field is demanding video game programming specialists to take on
the fundamental task of creating the code for their new works. This work is delicate and
requires a high level of specialization, so it is advisable to have undertaken a deep and
optimal learning process to become a true expert.

This Professional Master's Degree in Video Game Programming is what professionals
need to enter development departments in large companies in the industry. Throughout
the program, students will learn the basics of programming and software engineering,
data structure and algorithms, object-oriented programming and other more specific
issues such as game engines or real-time programming.

In this way, students are guaranteed to get the best knowledge so they can apply it
directly in their areas of work.

This Professional Master's Degree in Video Game Programming contains the most
complete and up-to-date program on the market. The most important features include:

 � Practical cases presented by experts in video game programming and development

 � The graphic, schematic, and practical contents with which they are created, provide
scientific and practical information on the disciplines that are essential for professional
practice

 � Practical exercises where self-assessment can be used to improve learning

 � Its special emphasis on innovative methodologies

 � Theoretical lessons, questions to the expert, debate forums on controversial topics, and
individual reflection assignments

 � Content that is accessible from any fixed or portable device with an Internet connection

The best companies in the
industry will want to count on you”

Introduction | 07

The program’s teaching staff includes professionals from sector who contribute their
work experience to this training program, as well as renowned specialists from leading
societies and prestigious universities.

The multimedia content, developed with the latest educational technology, will provide
the professional with situated and contextual learning, i.e., a simulated environment that
will provide immersive specialization programmed to learn in real situations.

This program is designed around Problem-Based Learning, whereby the professional
must try to solve the different professional practice situations that arise throughout the
program. For this purpose, the student will be assisted by an innovative interactive video
system created by renowned and experienced experts.

You want to develop the best video
games in the world and this program
teaches you how to do it”

Program the video games of
your dreams thanks to this
Professional Master's Degree.

Don't wait any longer:
Program video games as do

the best experts.

Objectives
02

The main objective of this Professional Master's Degree in Video Game
Programming is to offer its students the best knowledge so they become the best
experts in video game development in their environment. To do so, the program
offers them a series of tools used in the field that will improve their work as
developers and lead them to achieve all their professional goals, being able to
program the best video games in the world.

Achieve all your goals
thanks to this program”

Objectives | 09

10 | Objectives

General Objectives

 � Become familiar the different programming languages and methods used in video games

 � Delve into video game production processes and integrating programming into these
stages

 � Learn the fundamentals of video game design and the theoretical knowledge that a video
game designer should possess

 � Master basic programming languages used in video games

 � Apply knowledge of software engineering and specialized programming to video game
development

 � Understand the role of programming in video game development

 � Know the different existing consoles and platforms

 � Develop web and multiplayer video games

Objectives | 11

Module 1. Programming Fundamentals
 � Understand the basic structure of computers, software and the general purpose
programming languages

 � Analyze the essential elements of a computer program, such as the different data types,
operators, expressions, statements, I/O and control statements

 � Interpret algorithms as the necessary basis to develop computer programs

Module 2. Data Structure and Algorithms
 � Learn the main algorithm design strategies, as well as the different methods and
measures for algorithm computation

 � Understand algorithm function, strategies and examples of the most common problems
 � Understand the Backtracking technique and its main uses

Module 3. Object Oriented Programming
 � Know the different design patterns for object-oriented problems
 � Understand the importance of documentation and testing in software development
 � Manage the use of threading and synchronization, and solve common problems in
concurrent programming

Module 4. Consoles and Devices for Video Games
 � Know the basic functioning of the main input and output peripherals
 � Understand the main implications of design for different platforms
 � Study the structure, organization, functioning and interconnectivity of devices and
systems

 � Understand the function of the operative system and the development kits for mobile
devices and video game platforms

Specific Objectives

12 | Objectives

Module 5. Software Engineering
 � Become familiar with the bases of software engineering, software processes and
different development models, including agile technologies

 � Recognize requirements engineering, its development, elaboration, negotiation and
validation in order to understand the main standards in terms of software quality and
project management

Module 6. Video Game Engines
 � Discover how a video game engine works and its architecture

 � Understand the basic features of existing game engines

 � Correctly and efficiently program applications used in video game engines

 � Choose the most appropriate paradigm and programming languages to program
applications used in video game engines

Module 7. Intelligent Systems
 � Establish agent theory concepts, agent architecture and the reasoning process behind it

 � Assimilate the theory and practice behind the concepts of information and knowledge, as
well as the different ways of representing knowledge

 � Understand the functioning of semantic reasoners, knowledge-based systems and expert
systems

Module 8. Real-Time Programming
 � Analyze the key features of real-time programming languages that differentiate them
from traditional ones

 � Understand the basic concepts behind computer systems

 � Acquire the ability to apply the main bases and techniques in real-time programming

Objectives | 13

Module 9. Web Game Design and Development
 � Design games and interactive web applications with the corresponding documentation

 � Evaluate the main features of games and interactive web applications for professional
and adequate communication

Module 10. Multiplayer Networks and Systems
 � Describe the Transmission Control Protocol/Internet Protocol (TCP/IP) architecture and
the basic operation of wireless networks

 � Analyze video games security

 � Develop multiplayer online games

You want to get a position
in the best companies in the
world and this program will
help you get there”

Skills
Students who enroll in this Professional Master's Degree will obtain a series of
skills that will turn them into true experts in video game development, so they
can join any type of project in the industry. Students will master issues related
to different specific programming languages used in this type of audiovisual
products, as well as transversal skills they should know, such as in the field of
consoles and platforms and game engines.

03

You will have all the knowledge
necessary to develop
outstanding video games”

Skills | 15

General Skills

 � Design all the phases in developing a video game, from start to the final launch

 � Specialize as a video game programmer

 � Delve into all the developmental stages, from the initial architecture and player-character
programming to every element involved in the game process

 � Obtain an overall vision of the project, being able to provide solutions to the different
problems and challenges that arise in the design of a video game

16 | Skills

Master all kinds of programming
languages used in video games with
this Professional Master's Degree”

Specific Skills

 � Know the necessary software to be a professional video game developer

 � Understand the player's experience and know how to analyze gameplay

 � Understand all the theoretical and practical procedures involved in video game
programming processes

 � Master the most useful programming languages used in the video game world

 � Integrate the programming learned to different types of consoles and platforms

 � Program web and multiplayer video games

 � Assimilate the concept of a video game engine for correct programming

 � Apply knowledge of software engineering to video game programming

Skills | 17

Structure and Content
04

This Professional Master's Degree in Video Game Programming offers its students
the best content in video game development, thanks to its careful design, structured
in 10 modules of 10 topics each. Through them, students will learn everything they
need to participate in any kind of video game project, so that their educational
process is complete, comprehensive and totally focused on practice.

Structure and Content | 19

The contents you need to
specialize in video game
programming”

Module 1. Programming Fundamentals
1.1. Introduction to Programming

1.1.1. Basic Computer Structure
1.1.2. Software
1.1.3. Programming Languages
1.1.4. Computer Application Life Cycle

1.2. Algorithm Design
1.2.1. Problem Solving
1.2.2. Descriptive Techniques
1.2.3. Algorithm Elements and Structure

1.3. Program Elements
1.3.1. C++ Origin and Features
1.3.2. Development Environment
1.3.3. Concept of Program
1.3.4. Types of Fundamental Data
1.3.5. Operators
1.3.6. Expressions
1.3.7. Statements
1.3.8. Data Input and Output

1.4. Control Statements
1.4.1. Statements
1.4.2. Branches
1.4.3. Loops

1.5. Abstraction and Modularity: Functions
1.5.1. Modular Design
1.5.2. Concept of Function and Utility
1.5.3. Definition of Function
1.5.4. Execution Flow When Function Is Called
1.5.5. Function Prototypes
1.5.6. Results Return
1.5.7. Calling Functions: Parameters
1.5.8. Parameter Passing According to Reference and Value
1.5.9. Scope Identifier

20 | Structure and Content

1.6. Statistical Data Structures
1.6.1. Arrays
1.6.2. Matrices Polyhedra
1.6.3. Searching and Sorting
1.6.4. Chaining: I/O Functions for Chains
1.6.5. Structures: Unions
1.6.6. New Types of Data

1.7. Dynamic Data Structures: Pointers
1.7.1. Concept: Definition of Pointer
1.7.2. Pointer Operators and Operations
1.7.3. Pointer Arrays
1.7.4. Pointers and Arrays
1.7.5. Chain Pointers
1.7.6. Structure Pointers
1.7.7. Multiple Indirection
1.7.8. Function Pointers
1.7.9. Function, Structure and Array as Function Parameters

1.8. Files
1.8.1. Basic Concepts
1.8.2. File Operations
1.8.3. Types of Files
1.8.4. File Organization
1.8.5. Introduction to C++ Files
1.8.6. Managing Files

1.9. Recursion
1.9.1. Definition of Recursion
1.9.2. Types of Recursion
1.9.3. Advantages and Disadvantages
1.9.4. Considerations
1.9.5. Recursive-Iterative Conversion
1.9.6. Recursion Stack

1.10. Testing and Documentation
1.10.1. Program Testing
1.10.2. White Box Testing
1.10.3. Black Box Testing
1.10.4. Testing Tools
1.10.5. Program Documentation

Module 2. Data Structure and Algorithms
2.1. Introduction to Algorithm Design Strategies

2.1.1. Recursion
2.1.2. Divide and Conquer
2.1.3. Other Strategies

2.2. Algorithm Efficiency and Analysis
2.2.1. Efficiency Measures
2.2.2. Measuring Entry Size
2.2.3. Measuring Execution Time
2.2.4. Worst, Best and Average Case
2.2.5. Asymptotic Notation
2.2.6. Mathematical Analysis Criteria for Non-Recursive Algorithms
2.2.7. Mathematical Analysis for Recursive Algorithms
2.2.8. Empirical Analysis for Algorithms

2.3. Sorting Algorithms
2.3.1. Concept of Sorting
2.3.2. Bubble Sorting
2.3.3. Selection Sorting
2.3.4. Insertion Sorting
2.3.5. Mixed Sorting (Merge_Sort)
2.3.6. Quick Sorting (Quick_Sort)

Structure and Content | 21

22 | Structure and Content

2.4. Tree Algorithms
2.4.1. Concept of Tree
2.4.2. Binary Trees
2.4.3. Tree Traversal
2.4.4. Representing Expressions
2.4.5. Sorted Binary Trees
2.4.6. Balanced Binary Trees

2.5. Algorithms Using Heaps
2.5.1. Heaps
2.5.2. The Heapsort Algorithm
2.5.3. Priority Queues

2.6. Graph Algorithms
2.6.1. Representation
2.6.2. Width Traversal
2.6.3. Depth Traversal
2.6.4. Topological Sorting

2.7. Greedy Algorithms
2.7.1. Greedy Strategy
2.7.2. Greedy Strategy Elements
2.7.3. Currency Exchange
2.7.4. Traveling Salesman Problem
2.7.5. Knapsack Problem

2.8. Minimal Pathways Search
2.8.1. Shortest Path Problem
2.8.2. Cycles and Negative Arcs
2.8.3. Dijkstra's Algorithm

2.9. Greedy Algorithms on Graphs
2.9.1. Minimum Spanning Tree
2.9.2. Prim's Algorithm
2.9.3. Kruskal’s Algorithm
2.9.4. Complexity Analysis

2.10. Backtracking
2.10.1. Backtracking
2.10.2. Alternative Techniques

Module 3. Object Oriented Programming
3.1. Introduction to Object Oriented Programming

3.1.1. Introduction to Object Oriented Programming
3.1.2. Class Design
3.1.3. Introduction to Unified Modeling Language (UML) for Problem Modeling

3.2. Class Relations
3.2.1. Abstractions and Heritage
3.2.2. Advanced Concepts of Heritage
3.2.3. Polymorphism
3.2.4. Composition and Aggregation

3.3. Introduction to Design Patterns for Object Oriented Problems
3.3.1. What Are Design Patterns?
3.3.2. Factory Pattern
3.3.3. Singleton Pattern
3.3.4. Observer Pattern
3.3.5. Composite Pattern

3.4. Exceptions
3.4.1. What Are Exceptions?
3.4.2. Catching and Handling Exceptions
3.4.3. Launching Exceptions
3.4.4. Creating Exceptions

3.5. User Interface
3.5.1. Introduction to Qt
3.5.2. Positioning
3.5.3. What Are Events?
3.5.4. Events: Definition and Catching
3.5.5. User Interface Development

3.6. Introduction to Concurrent Programming
3.6.1. Introduction to Concurrent Programming
3.6.2. Concept of Process and Thread
3.6.3. Process and Thread Interaction
3.6.4. C++ Threads
3.6.5. Advantages and Disadvantages of Concurrent Programming

3.7. Thread Management and Synchronization
3.7.1. Thread Life Cycle
3.7.2. Thread Class
3.7.3. Thread Planning
3.7.4. Thread Groups
3.7.5. Daemon Threads
3.7.6. Synchronization
3.7.7. Locking Mechanisms
3.7.8. Communication Mechanisms
3.7.9. Monitors

3.8. Common Problems in Concurrent Programming
3.8.1. Producer-Consumer Problem
3.8.2. Readers-Writers Problem
3.8.3. Dining Philosophers Problem

3.9. Software Testing and Documentation
3.9.1. Why Is It Important to Document Software?
3.9.2. Design Documentation
3.9.3. Documentation Tool Use

3.10. Software Tests
3.10.1. Introduction to Software Tests
3.10.2. Types of Tests
3.10.3. Unit Test
3.10.4. Integration Test
3.10.5. Validation Test
3.10.6. System Test

Module 4. Consoles and Devices for Videogames
4.1. History of Programming in Video Games

4.1.1. Atari (1977-1985)
4.1.2. Nintendo and Super Nintendo Entertainment Systems (NES and SNES) (1985-

1995)
4.1.3. PlaysStation/PlayStation 2 (1995-2005)
4.1.4. Xbox 360, PlayStation 3 and Nintendo Wii (2005-2013)
4.1.5. Xbox One, PlayStation 4 and Nintendo Wii U - Switch (2013-present)
4.1.6. The Future

4.2. History of Gameplay in Video Games
4.2.1. Introduction
4.2.2. The Social Context
4.2.3. Structural Diagram
4.2.4. Future

4.3. Adapting to Modern Times
4.3.1. Games Based on Movement
4.3.2. Virtual Reality
4.3.3. Augmented Reality
4.3.4. Mixed Reality

4.4. Unity: Scripting I and Examples
4.4.1. What Is a Script?
4.4.2. First Script
4.4.3. Adding a Script
4.4.4. Opening a Script
4.4.5. MonoBehavior
4.4.6. Debugging

4.5. Unity: Scripting II and Examples
4.5.1. Keyboard and Mouse Input
4.5.2. Raycast
4.5.3. Installation
4.5.4. Variables:
4.5.5. Public and Serialized Variables

Structure and Content | 23

24 | Structure and Content

4.6. Unity: Scripting III and Examples
4.6.1. Obtaining Components
4.6.2. Modifying Components
4.6.3. Testing
4.6.4. Multiple Objects
4.6.5. Colliders and Triggers
4.6.6. Quaternions

4.7. Peripherals
4.7.1. Evolution and Classification
4.7.2. Peripherals and Interfaces
4.7.3. Current Peripherals
4.7.4. Near Future

4.8. Video Games: Future Perspectives
4.8.1. Games Based in the Cloud
4.8.2. Absence of Controllers
4.8.3. Immersive Reality
4.8.4. Other Alternatives

4.9. Architecture
4.9.1. Special Needs in Video Games
4.9.2. Evolution of Architecture
4.9.3. Current Architecture
4.9.4. Differences Between Architecture

4.10. Development Kits and Their Evolution
4.10.1. Introduction
4.10.2. Third Generation of Development Kits
4.10.3. Fourth Generation of Development Kits
4.10.4. Fifth Generation of Development Kits
4.10.5. Sixth Generation of Development Kits

Module 5. Software Engineering
5.1. Introduction to Software Engineering and Modeling

5.1.1. The Nature of Software
5.1.2. The Unique Nature of Webapps
5.1.3. Software Engineering
5.1.4. The Software Process
5.1.5. Software Engineering Practice
5.1.6. Software Myths
5.1.7. How Does It All Begin?
5.1.8. Object-Oriented Concepts
5.1.9. Introduction to UML

5.2. The Software Process
5.2.1. A General Process Model
5.2.2. Prescriptive Process Models
5.2.3. Specialized Process Models
5.2.4. The Unified Process
5.2.5. Personal and Team Process Models
5.2.6. What is Agility?
5.2.7. What is an Agile Process?
5.2.8. Scrum
5.2.9. Agile Process Toolkit

5.3. Principles Guiding Software Engineering Practice
5.3.1. Principles Guiding the Process
5.3.2. Principles Guiding the Practice
5.3.3. Principles of Communication
5.3.4. Planning Principles
5.3.5. Modeling Principles
5.3.6. Construction Principles
5.3.7. Deployment Principles

5.4. Understanding the Requirements
5.4.1. Requirements Engineering
5.4.2. Establish the Basis
5.4.3. Inquiry of Requirements
5.4.4. Development of Cases Studies
5.4.5. Elaboration of the Requirements Model
5.4.6. Negotiation of Requirements
5.4.7. Validation of Requirements

5.5. Requirements Modeling: Scenarios, Information and Analysis Classes
5.5.1. Analysis of Requirements
5.5.2. Scenario-Based Modeling
5.5.3. UML Models that provide the Case Study
5.5.4. Data Modeling Concepts
5.5.5. Class-Based Modeling
5.5.6. Class Diagrams

5.6. Requirements Modeling: Flow, Behavior and Patterns
5.6.1. Requirements that Shape Strategies
5.6.2. Flow-Oriented Modeling
5.6.3. Status Diagrams
5.6.4. Creation of a Behavioral Model
5.6.5. Sequence Diagrams
5.6.6. Communication Diagrams
5.6.7. Patterns for Requirements Modeling

5.7. Design Concepts
5.7.1. Design in the Software Engineering Context
5.7.2. The Design Process
5.7.3. Design Concepts
5.7.4. Object-Oriented Design Concepts
5.7.5. Model of the Design

5.8. Designing the Architecture:
5.8.1. Software Architecture
5.8.2. Architectural Genres
5.8.3. Architectural Styles
5.8.4. Architectural Design
5.8.5. Evolution of Alternative Designs for Architecture
5.8.6. Mapping the Architecture Using the Data Flow

5.9. Component-Level and Pattern-Based Design
5.9.1. What is a Component?
5.9.2. Class-Based Component Design
5.9.3. Realization of the Design at the Component Level
5.9.4. Design of Traditional Components
5.9.5. Component-Based Development
5.9.6. Design Patterns
5.9.7. Pattern-Based Software Design
5.9.8. Architectural Patterns
5.9.9. Design Patterns at the Component Level
5.9.10. User Interface Design Patterns

5.10. Software Quality and Project Management
5.10.1. Quality
5.10.2. Software Quality
5.10.3. The Software Quality Dilemma
5.10.4. Achieving Software Quality
5.10.5. Software Quality Assurance
5.10.6. The Administrative Spectrum
5.10.7. The Staff
5.10.8. The Product
5.10.9. The Process
5.10.10. The Project
5.10.11. Principles and Practices

Structure and Content | 25

26 | Structure and Content

Module 6. Video Game Engines
6.1. Video Games and Information Communication Technologies (ICTs)

6.1.1. Introduction
6.1.2. Opportunities
6.1.3. Challenges
6.1.4. Conclusions

6.2. History of Video Game Engines
6.2.1. Introduction
6.2.2. Atari
6.2.3. The 80s
6.2.4. First Engines: The 90s
6.2.5. Current Engines

6.3. Video Game Engines
6.3.1. Types of Engines
6.3.2. Video Game Engine Parts
6.3.3. Current Engines
6.3.4. Selecting an Engine

6.4. Motor Game Maker
6.4.1. Introduction
6.4.2. Scenario Design
6.4.3. Sprites and Animations
6.4.4. Collisions
6.4.5. Scripting in Game Maker Languages (GML)

6.5. Unreal Engine 4: Introduction
6.5.1. What Is Unreal Engine 4? What Is Its Philosophy?
6.5.2. Materials
6.5.3. UI
6.5.4. Animations
6.5.5. Particle Systems
6.5.6. Artificial Intelligence
6.5.7. Frames Per Second (FPS)

6.6. Unreal Engine 4: Visual Scripting
6.6.1. Blueprints and Visual Scripting Philosophy
6.6.2. Debugging
6.6.3. Types of Variables
6.6.4. Basic Flow Control

6.7. Unity 5 Engine
6.7.1. C# y Visual Studio Programming
6.7.2. Creating Prefabs
6.7.3. Using Gizmos to Control Video Games
6.7.4. Adaptive Engine: 2D and 3D

6.8. Godot Engine
6.8.1. Godot Design Philosophy
6.8.2. Object-Oriented Design and Composition
6.8.3. All in One Package
6.8.4. Open and Community-Driven Software

6.9. RPG Maker Engine
6.9.1. RPG Maker Philosophy
6.9.2. Taking as a Reference
6.9.3. Creating a Game with Personality
6.9.4. Commercially Successful Games

6.10. Source 2 Engine
6.10.1. Source 2 Philosophy
6.10.2. Source and Source 2: Evolution
6.10.3. Community Use: Audiovisual Content and Video Games
6.10.4. Future of Source 2 Engine
6.10.5. Successful Mods and Games

Module 7. Intelligent Systems
7.1. Agents Theory

7.1.1. Concept History
7.1.2. Agent Definition
7.1.3. Agents in Artificial Intelligence
7.1.4. Agents in Software Engineering

7.2. Agent Architectures
7.2.1. Agent Thought Process
7.2.2. Reactive Agents
7.2.3. Deductive Agents
7.2.4. Hybrid Agents
7.2.5. Comparison

7.3. Information and Knowledge
7.3.1. Difference between Data, Information and Knowledge
7.3.2. Data Quality Assessment
7.3.3. Data Collection Methods
7.3.4. Information Acquisition Methods
7.3.5. Knowledge Acquisition Methods

7.4. Knowledge Representation
7.4.1. The Importance of Knowledge Representation
7.4.2. Definition of Knowledge Representation According to Role
7.4.3. Knowledge Representation Features

7.5. Ontologies
7.5.1. Introduction to Metadata
7.5.2. Philosophical Concept of Ontology
7.5.3. Computing Concept of Ontology
7.5.4. Domain Ontologies and Higher-Level Ontologies
7.5.5. Building an Ontology?

Structure and Content | 27

28 | Structure and Content

7.6. Ontology Languages and Ontology Creation Software
7.6.1. Triple RDF, Turtle and N3
7.6.2. RDF Schema
7.6.3. OWL
7.6.4. SPARQL
7.6.5. Introduction to Ontology Creation Tools
7.6.6. Installing and Using Protégé

7.7. Semantic Web
7.7.1. Current and Future Status of Semantic Web
7.7.2. Semantic Web Applications

7.8. Other Knowledge Representation Models
7.8.1. Vocabulary
7.8.2. Global Vision
7.8.3. Taxonomy
7.8.4. Thesauri
7.8.5. Folksonomy
7.8.6. Comparison
7.8.7. Mind Maps

7.9. Knowledge Representation Assessment and Integration
7.9.1. Zeroth-Order Logic
7.9.2. First-Order Logic
7.9.3. Description Logic
7.9.4. Relation between Different Types of Logic
7.9.5. Prolog: Programming Based on First-Order Logic

7.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems
7.10.1. Concept of Reasoner
7.10.2. Reasoner Applications
7.10.3. Knowledge-Based Systems
7.10.4. MYCIN: History of Expert Systems
7.10.5. Expert Systems Elements and Architecture
7.10.6. Creating Expert Systems

Module 8. Real-Time Programming
8.1. Basic Concepts in Concurrent Programming

8.1.1. Fundamental Concepts
8.1.2. Concurrency
8.1.3. Benefits of Concurrency
8.1.4. Concurrency and Hardware

8.2. Basic Concurrency Support Structures in Java
8.2.1. Concurrency in Java
8.2.2. Creating Threads
8.2.3. Methods
8.2.4. Synchronization

8.3. Threads, Life Cycles, Priorities, Interruptions, Status and Executers
8.3.1. Threads
8.3.2. Life Cycle
8.3.3. Priorities
8.3.4. Interruptions
8.3.5. Status
8.3.6. Executers

8.4. Mutual Exclusion
8.4.1. What Is Mutual Exclusion?
8.4.2. Dekker’s Algorithm
8.4.3. Peterson’s Algorithm
8.4.4. Mutual Exclusion in Java

8.5. Status Dependency
8.5.1. Dependency Injections
8.5.2. Pattern Implementation in Java
8.5.3. Ways to Inject Dependencies
8.5.4. Example

8.6. Design Patterns
8.6.1. Introduction
8.6.2. Creation Patterns
8.6.3. Structure Patterns
8.6.4. Behavioral Patterns

Structure and Content | 29

8.7. Using Java Libraries
8.7.1. What Are Java Libraries?
8.7.2. Mockito-All, Mockito-Core
8.7.3. Guava
8.7.4. Commons-io
8.7.5. Commons-lang, Commons-lang3

8.8. Shader Programming
8.8.1. Pipeline 3D and Rasterized
8.8.2. Vertex Shading
8.8.3. Pixel Shading: Lighting I
8.8.4. Pixel Shading: Lighting II
8.8.5. Post-Effects

8.9. Real-Time Programming
8.9.1. Introduction
8.9.2. Processing Interruptions
8.9.3. Synchronization and Communication between Processes
8.9.4. Real-Time Planning Systems

8.10. Real-Time Planning
8.10.1. Concepts
8.10.2. Real-Time Systems Reference Model
8.10.3. Planning Policies
8.10.4. Cyclical Planners
8.10.5. Statistical Property Planners
8.10.6. Dynamic Property Planners

Module 9. Web Game Design and Development
9.1. Web Origins and Standards

9.1.1. The Origin of the Internet
9.1.2. The Creation of the World Wide Web
9.1.3. First Web Standards
9.1.4. The Rise of Web Standards

9.2. HTTP and Client-Server Structure
9.2.1. Client-Server Role
9.2.2. Client-Server Communication
9.2.3. Recent History
9.2.4. Centralized Computing

9.3. Web Programming: Introduction
9.3.1. Basic Concepts
9.3.2. Preparing Web Servers
9.3.3. Basic Concepts of HTML5
9.3.4. HTML Forms

9.4. Introduction to HTML and Exapmles
9.4.1. HTML5 History
9.4.2. HTML5 Elements
9.4.3. Application Programming Interface (API)
9.4.4. CCS3

9.5. Document Object Model
9.5.1. What Is a Document Object Model?
9.5.2. Using DOCTYPE
9.5.3. The Importance of Validating the HTML
9.5.4. Accessing Elements
9.5.5. Creating Elements and Texts
9.5.6. Using innerHTML
9.5.7. Deleting an Element or Text Node
9.5.8. Reading and Writing Element Attributes
9.5.9. Manipulating Element Styles
9.5.10. Attaching Multiple Files at Once

30 | Structure and Content

9.6. Introduction to CSS and Examples
9.6.1. CSS3 Syntax
9.6.2. Style Sheets
9.6.3. Labels
9.6.4. Selectors
9.6.5. CSS Web Design

9.7. Introduction to JavaScript and Examples
9.7.1. What Is JavaScript?
9.7.2. A Brief History of the Language
9.7.3. Versions of JavaScript
9.7.4. Displaying Dialog Boxes
9.7.5. JavaScript Syntax
9.7.6. Understanding Scripts
9.7.7. Spaces
9.7.8. Comments
9.7.9. Functions
9.7.10. On-Page and External JavaScript

9.8. JavaScript Functions
9.8.1. Function Declaration
9.8.2. Function Expression
9.8.3. Calling Functions
9.8.4. Recursion
9.8.5. Nested Functions and Closures
9.8.6. Variable Preservation
9.8.7. Multiple Nested Functions
9.8.8. Name Conflicts
9.8.9. Closings or Closures
9.8.10. Function Parameters

9.9. PlayCanvas for Web Game Development
9.9.1. What Is PlayCanvas?
9.9.2. Project Configuration
9.9.3. Creating an Object
9.9.4. Adding Physics
9.9.5. Adding Models
9.9.6. Changing the Gravity and Scene Settings
9.9.7. Executing Scripts
9.9.8. Camera Control

9.10. Phaser for Web Game Development
9.10.1. What Is Phaser?
9.10.2. Loading Resources
9.10.3. Building the World
9.10.4. Platforms
9.10.5. Players
9.10.6. Adding Physics
9.10.7. Using the Keyboard
9.10.8. Pickups
9.10.9. Points and Scoring
9.10.10. Bouncing Bombs

Structure and Content | 31

Module 10. Multiplayer Networks and Systems
10.1. History and Evolution of Multiplayer Video Games

10.1.1. The 1970s: First Multiplayer Games
10.1.2. The 90s: Duke Nukem, Doom and Quake
10.1.3. The Rise of Multiplayer Video Games
10.1.4. Local or Online Multiplayer
10.1.5. Party Games

10.2. Multiplayer Business Models
10.2.1. Origin and Function of Emerging Business Models
10.2.2. Online Sales Services
10.2.3. Free to Play
10.2.4. Micropayments
10.2.5. Advertising
10.2.6. Monthly Payment Subscription
10.2.7. Pay to Play
10.2.8. Try before You Buy

10.3. Local and Network Games
10.3.1. Local Games: Beginnings
10.3.2. Party Games: Nintendo and Family Union
10.3.3. Networks Games: Beginnings
10.3.4. Network Games Evolution

10.4. OSI Model: Layers I
10.4.1. OSI Model: Introduction
10.4.2. Physical Layer
10.4.3. Data Link Layer
10.4.4. Network Layer

10.5. OSI Model: Layers II
10.5.1. Transport Layer
10.5.2. Session Layer
10.5.3. Presentation Layer
10.5.4. Application Layer

10.6. Computer Networks on the Internet
10.6.1. What Are Computer Networks?
10.6.2. Software
10.6.3. Hardware
10.6.4. Servers
10.6.5. Network Storage
10.6.6. Network Protocols

10.7. Mobile and Wireless Networks
10.7.1. Mobile Networks
10.7.2. Wireless Networks
10.7.3. How Mobile Networks Work
10.7.4. Digital Technology

10.8. Security
10.8.1. Personal Security
10.8.2. Video Game Hacks and Cheats
10.8.3. Anti-Cheating Security
10.8.4. Anti-Cheating Security Systems Analysis

10.9. Multiplayer Systems: Servers
10.9.1. Server Hosting
10.9.2. Massively Multiplayer Online (MMO) Video Games
10.9.3. Dedicated Video Game Servers
10.9.4. Local Area Network (LAN) Parties

10.10. Multiplayer Video Game Design and Programming
10.10.1. Multiplayer Video Game Design Basics in Unreal
10.10.2. Multiplayer Video Game Design Basics in Unity
10.10.3. How to Make a Multiplayer Game Fun
10.10.4. Beyond the Controller: Multiplayer Controller Innovation

Methodology
05

This academic program offers students a different way of learning. Our methodology
uses a cyclical learning approach: Relearning.
This teaching system is used, for example, in the most prestigious medical schools in
the world, and major publications such as the New England Journal of Medicine have
considered it to be one of the most effective.

Methodology | 33

Discover Relearning, a system that abandons
conventional linear learning, to take you through
cyclical teaching systems: a way of learning that has
proven to be extremely effective, especially in subjects
that require memorization"

34 | Methodology

Our program offers a revolutionary approach to developing skills and
knowledge. Our goal is to strengthen skills in a changing, competitive, and
highly demanding environment.

Case Study to contextualize all content

 You will have access to a
learning system based on repetition,

with natural and progressive teaching
throughout the entire syllabus.

At TECH, you will experience a learning
methodology that is shaking the foundations
of traditional universities around the world"

Methodology | 35

The student will learn to solve
complex situations in real business
environments through collaborative
activities and real cases.

This TECH program is an intensive educational program, created from scratch,
which presents the most demanding challenges and decisions in this field,

both nationally and internationally. This methodology promotes personal and
professional growth, representing a significant step towards success. The case

method, a technique that lays the foundation for this content, ensures that the
most current economic, social and professional reality is taken into account.

The case method has been the most widely used learning system among the
world's leading business schools for as long as they have existed. The case

method was developed in 1912 so that law students would not only learn the law
based on theoretical content. It consisted of presenting students with real-life,

complex situations for them to make informed decisions and value judgments on
how to resolve them. In 1924, Harvard adopted it as a standard teaching method.

What should a professional do in a given situation? This is the question that you
are presented with in the case method, an action-oriented learning method. Over
the course of 4 years, you will be presented with multiple practical case studies.

You will have to combine all your knowledge, and research, argue, and defend your
ideas and decisions.

Our program prepares you to face new
challenges in uncertain environments
and achieve success in your career”

A learning method that is different and innovative

36 | Methodology

TECH effectively combines the Case Study methodology with a
100% online learning system based on repetition, which combines 8
different teaching elements in each lesson.

We enhance the Case Study with the best 100% online teaching
method: Relearning.

At TECH you will learn using a cutting-edge methodology designed
to train the executives of the future. This method, at the forefront of
international teaching, is called Relearning.

Our university is the only one in the world authorized to employ this
successful method. In 2019, we managed to improve our students'
overall satisfaction levels (teaching quality, quality of materials, course
structure, objectives...) based on the best online university indicators.

In 2019, we obtained the best learning results
of all online universities in the world.

Relearning Methodology

Methodology | 37

In our program, learning is not a linear process, but rather a spiral (learn, unlearn,
forget, and re-learn). Therefore, we combine each of these elements concentrically.

This methodology has trained more than 650,000 university graduates with
unprecedented success in fields as diverse as biochemistry, genetics, surgery,

international law, management skills, sports science, philosophy, law, engineering,
journalism, history, and financial markets and instruments. All this in a highly

demanding environment, where the students have a strong socio-economic profile
and an average age of 43.5 years.

From the latest scientific evidence in the field of neuroscience, not only do we know
how to organize information, ideas, images and memories, but we know that the

place and context where we have learned something is fundamental for us to be able
to remember it and store it in the hippocampus, to retain it in our long-term memory.

In this way, and in what is called neurocognitive context-dependent e-learning, the
different elements in our program are connected to the context where the individual

carries out their professional activity.

Relearning will allow you to learn with less effort and
better performance, involving you more in your training,

developing a critical mindset, defending arguments, and
contrasting opinions: a direct equation for success.

38 | Methodology

30%

10%

8%
3%

Study Material

All teaching material is produced by the specialists who teach the course, specifically
for the course, so that the teaching content is highly specific and precise.

These contents are then applied to the audiovisual format, to create the TECH online
working method. All this, with the latest techniques that offer high quality pieces in each
and every one of the materials that are made available to the student.

Additional Reading

Recent articles, consensus documents and international guidelines, among others.
In TECH's virtual library, students will have access to everything they need to
complete their course.

Practising Skills and Abilities

They will carry out activities to develop specific skills and abilities in each subject area.
Exercises and activities to acquire and develop the skills and abilities that a specialist
needs to develop in the context of the globalization we live in.

Classes

There is scientific evidence suggesting that observing third-party experts can
be useful.

Learning from an Expert strengthens knowledge and memory, and generates
confidence in future difficult decisions.

This program offers the best educational material, prepared with professionals in mind:

Methodology | 39

4%

25%

3%

20%

Testing & Retesting

We periodically evaluate and re-evaluate students’ knowledge throughout the
program, through assessment and self-assessment activities and exercises, so that

they can see how they are achieving their goals.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia
lessons that include audio, videos, images, diagrams, and concept maps in order to

reinforce knowledge.

This exclusive educational system for presenting multimedia content was awarded
by Microsoft as a "European Success Story".

Case Studies

Students will complete a selection of the best case studies chosen specifically
for this program. Cases that are presented, analyzed, and supervised by the best

specialists in the world.

Certificate
06

The Professional Master's Degree in Video Game Programming guarantees
students, in addition to the most rigorous and up-to-date education, access to a
Professional Master’s Degree issued by TECH Technological University.

Certificate | 41

Successfully complete this program and receive
your university qualification without having to
travel or fill out laborious paperwork"

42 | Certificate

*Apostille Convention. In the event that the student wishes to have their paper certificate issued with an apostille, TECH EDUCATION will make the necessary arrangements to obtain it, at an additional cost.

This Professional Master's Degree in Video Game Programming contains the most
complete and up-to-date program on the market.

After the student has passed the assessments, they will receive their corresponding
Professional Master’s Degree certificate issued by TECH Technological University via
tracked delivery*.

The certificate issued by TECH Technological University will reflect the qualification
obtained in the Professional Master's Degree, and meets the requirements commonly
demanded by job exchanges, competitive examinations, and professional career
evaluation committees.

Title: Professional Master’s Degree in Video Game Programming

Official Number of Hours: 1,500 h.

Tere Guevara Navarro
DeanTere Guevara Navarro

Dean

This qualification must always be accompanied by the university degree issued by the competent authority to practice professionally in each country. Unique TECH Code: AFWORD23S techtitute.com/certificates

Professional Master’s Degree
Video Game Programming

 » Modality: online
 » Duration: 12 months
 » Certificate: TECH Technological University
 » Dedication: 16h/week
 » Schedule: at your own pace
 » Exams: online

Professional Master’s Degree
Video Game Programming

