

Executive Master's Degree Artificial Intelligence in

Human Resources

» Modality: online

» Duration: 12 months

» Certificate: TECH Global University

» Accreditation: 60 ECTS

» Schedule: at your own pace

» Exams: online

» Target Group: University graduates who have previously completed any degree in the fields of Social and Legal Sciences, Administrative and Business Sciences, or Design and Artificial Intelligence

Website: www.techtitute.com/us/school-of-business/executive-master-degree/master-artificial-intelligence-human-resources

Index

Why Study at TECH? Why Our Program? Objectives Welcome p. 4 p. 6 p. 10 p. 14 06 05 Methodology Skills Structure and Content p. 26 p. 48 p. 20 80 **Course Management** Our Students' Profiles Impact on Your Career p. 56 p. 60 p. 64 Benefits for Your Company Certificate

p. 68

p. 72

01 **Welcome**

Artificial Intelligence (AI) is profoundly transforming the Human Resources (HR) Department, optimizing processes and improving operational efficiency. Al-based tools, such as talent management systems and predictive analytics platforms, allow companies to automate recruitment and selection tasks by evaluating resumes and predicting the suitability of candidates for certain roles. In this scenario, TECH presents a cutting-edge university program aimed at providing graduates with the essential tools to successfully lead the digital transformation. It should also be noted that the course is conducted entirely online, allowing students to manage their schedules independently.

tech 08 | Why Study at TECH?

At TECH Global University

Innovation

The university offers an online learning model that balances the latest educational technology with the most rigorous teaching methods. A unique method with the highest international recognition that will provide students with the keys to develop in a rapidly-evolving world, where innovation must be every entrepreneur's focus.

"Microsoft Europe Success Story", for integrating the innovative, interactive multi-video system.

The Highest Standards

Admissions criteria at TECH are not economic. Students don't need to make a large investment to study at this university. However, in order to obtain a qualification from TECH, the student's intelligence and ability will be tested to their limits. The institution's academic standards are exceptionally high...

95%

of TECH students successfully complete their studies

Networking

Professionals from countries all over the world attend TECH, allowing students to establish a large network of contacts that may prove useful to them in the future.

+100000

+200

executives prepared each year

different nationalities

Empowerment

Students will grow hand in hand with the best companies and highly regarded and influential professionals. TECH has developed strategic partnerships and a valuable network of contacts with major economic players in 7 continents.

+500

collaborative agreements with leading companies

Talent

This program is a unique initiative to allow students to showcase their talent in the business world. An opportunity that will allow them to voice their concerns and share their business vision.

After completing this program, TECH helps students show the world their talent.

Multicultural Context

While studying at TECH, students will enjoy a unique experience. Study in a multicultural context. In a program with a global vision, through which students can learn about the operating methods in different parts of the world, and gather the latest information that best adapts to their business idea.

TECH students represent more than 200 different nationalities.

Learn with the best

In the classroom, TECH's teaching staff discuss how they have achieved success in their companies, working in a real, lively, and dynamic context. Teachers who are fully committed to offering a quality specialization that will allow students to advance in their career and stand out in the business world.

Teachers representing 20 different nationalities.

At TECH, you will have access to the most rigorous and up-to-date case analyses in academia"

Why Study at TECH? | 09 tech

TECH strives for excellence and, to this end, boasts a series of characteristics that make this university unique:

Analysis

TECH explores the student's critical side, their ability to question things, their problem-solving skills, as well as their interpersonal skills.

Academic Excellence

TECH offers students the best online learning methodology. The university combines the Relearning method (postgraduate learning methodology with the best international valuation) with the Case Study. Tradition and vanguard in a difficult balance, and in the context of the most demanding educational itinerary.

Economy of Scale

TECH is the world's largest online university. It currently boasts a portfolio of more than 10,000 university postgraduate programs. And in today's new economy, **volume + technology = a ground-breaking price**. This way, TECH ensures that studying is not as expensive for students as it would be at another university.

tech 12 | Why Our Program?

This program will provide you with a multitude of professional and personal advantages, among which we highlight the following:

A Strong Boost to Your Career

By studying at TECH, students will be able to take control of their future and develop their full potential. By completing this program, students will acquire the skills required to make a positive change in their career in a short period of time.

70% of students achieve positive career development in less than 2 years.

Develop a strategic and global vision of the company

TECH offers an in-depth overview of general management to understand how each decision affects each of the company's different functional fields.

Our global vision of companies will improve your strategic vision.

Consolidate the student's senior management skills

Studying at TECH means opening the doors to a wide range of professional opportunities for students to position themselves as senior executives, with a broad vision of the international environment.

You will work on more than 100 real senior management cases.

You will take on new responsibilities

The program will cover the latest trends, advances and strategies, so that students can carry out their professional work in a changing environment.

45% of graduates are promoted internally.

Access to a powerful network of contacts

TECH connects its students to maximize opportunities. Students with the same concerns and desire to grow. Therefore, partnerships, customers or suppliers can be shared.

You will find a network of contacts that will be instrumental for professional development.

Thoroughly develop business projects.

Students will acquire a deep strategic vision that will help them develop their own project, taking into account the different fields in companies.

20% of our students develop their own business idea.

Improve soft skills and management skills

TECH helps students apply and develop the knowledge they have acquired, while improving their interpersonal skills in order to become leaders who make a difference.

Improve your communication and leadership skills and enhance your career.

You will be part of an exclusive community

Students will be part of a community of elite executives, large companies, renowned institutions, and qualified teachers from the most prestigious universities in the world: the TECH Technological University community.

We give you the opportunity to study with a team of world-renowned teachers.

tech 16 | Objectives

TECH makes the goals of their students their own goals too Working together to achieve them

The Executive Master's Degree in Artificial Intelligence in Human Resources will enable students to:

Analyze the historical evolution of Artificial Intelligence (AI) and its key developments

Study fundamental concepts of statistics and their application in data analysis

Understand the operation and applications of neural networks and genetic algorithms

Explore principles and applications of thesauri, vocabularies and taxonomies in Al

Identify data types and analyze the data lifecycle

Explore the concept and design of Datawarehouses

Apply data mining techniques, including preprocessing, cleansing, and integration

09

Analyze and apply algorithms for solving complex problems in Al

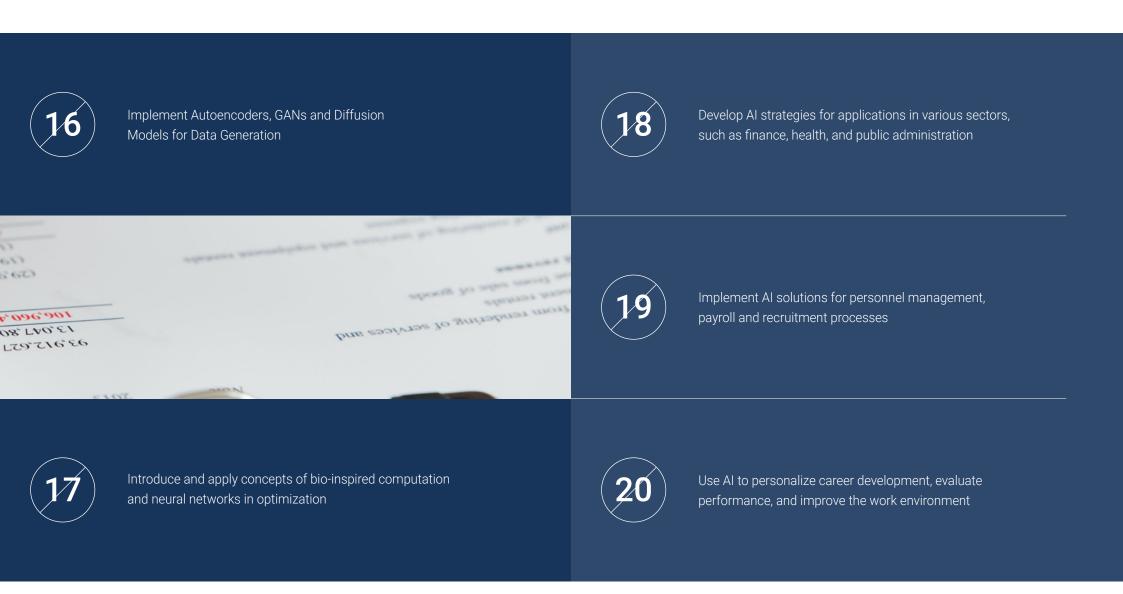
Master data science, transformation, and visualization techniques and tools

Explore agent theory and knowledge representation in intelligent systems

Introduce and apply machine learning methods, including neural networks and Bayesian modeling

Apply Convolutional Neural Networks (CNN) to computer vision

Study and apply advanced deep learning techniques, including deep neural networks and transfer learning



13

Use TensorFlow to customize and train Deep Learning models

Develop Natural Language Processing (NLP) skills with Recurrent Neural Networks (RNN) and Transformers

Apply AI techniques and strategies to improve efficiency in the retail sector

Effectively create training data sets for natural language processing (NLP) tasks

Delve into understanding and application of genetic algorithms

03

Implement noise removal techniques using automatic encoders

Run grouping layers and their use in Deep Computer Vision models with Keras

Use TensorFlow features and graphics to optimize the performance of custom models

Master reuse of pre-workout layers to optimize and accelerate the training process

09

Build the first neural network, applying the concepts learned in practice

Optimize the development and application of chatbots and virtual assistants, understanding their operation and potential applications

Activate Multilayer Perceptron (MLP) using the Keras library

Apply data scanning and preprocessing techniques, identifying and preparing data for effective use in machine learning models

Develop data cleaning techniques to ensure the quality and accuracy of the information used in subsequent analyses

Implement effective strategies for handling missing values in datasets, applying imputation or elimination methods according to context

Investigate languages and software for the creation of ontologies, using specific tools for the development of semantic models

Monitor and improve work climate through sentiment analysis with Al

Use AI to eliminate biases in selection and evaluation, promoting inclusiveness

Develop predictive analytics to anticipate staffing and resource needs

Apply ethical principles in the use of Al in Human Resources

Facilitate organizational adaptation with Al support

Ensure transparency in the implementation of AI in HR processes

tech 28 | Structure and Content

Syllabus

The curriculum has been designed to equip professionals with the necessary skills to revolutionize personnel administration by integrating advanced technologies. They will be able to optimize payroll administration and personnel management using Artificial Intelligence. In this sense, they will be able to automate critical processes, ensure regulatory compliance and improve resource allocation. In addition, the application of AI in recruitment and selection processes will be addressed, using tools and techniques to automate the evaluation of resumes. conduct Al-assisted virtual interviews and eliminate biases in candidate selection.

It will also focus on talent management and professional development through the use of AI, so that employers are able to identify and retain key talent, customize development plans and use predictive analytics to manage competencies and skills gaps. It will also analyze how AI can support mentoring and virtual coaching, as well as facilitate the assessment of leadership potential and organizational change management.

In this way, TECH has created a comprehensive university program, in a fully online format, allowing graduates to access educational materials from any device with an Internet connection. This eliminates the need to travel to a physical location and adapt to predetermined schedules. In addition, it uses the revolutionary Relearning methodology, which focuses on the repetition of key concepts to ensure a complete understanding of the content.

This Executive Master's Degree takes place over 12 months and is divided into 20 modules:

Module 1	Fundamentals of Artificial Intelligence
Module 2	Data Types and Data Life Cycle
Module 3	Data in Artificial Intelligence
Module 4	Data Mining: Selection, Pre-Processing and Transformation
Module 5	Algorithm and Complexity in Artificial Intelligence
Module 6	Intelligent Systems
Module 7	Machine Learning and Data Mining
Module 8	Neural Networks, the Basis of Deep Learning
Module 9	Deep Neural Networks Training
Module 10	Model Customization and Training with TensorFlow

Module 11	Deep Computer Vision with Convolutional Neural Networks
Module 12	Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention
Module 13	Autoencoders, GANs, and Diffusion Models
Module 14	Bio-Inspired Computing
Module 15	Artificial Intelligence: Strategies and Applications
Module 16	Personnel and Payroll Management with AI
Module 17	Selection Processes and Artificial Intelligence
Module 18	Al and Its Application in Talent Management and Professional Development
Module 19	Performance Evaluations
Module 20	Monitoring and Improving Work Climate with Al

Where, When and How is it Taught?

TECH offers the possibility to develop this Executive Master's Degree in Artificial Intelligence in Human Resources completely online. Throughout the 12 months of the educational program, the students will be able to access all the contents of this program at any time, allowing them to self-manage their study time.

A unique, key, and decisive educational experience to boost your professional development and make the definitive leap.

tech 30 | Structure and Content

Мос	Module 1. Fundamentals of Artificial Intelligence								
1.1. 1.1.1. 1.1.2. 1.1.3. 1.1.4.	Importance of Artificial Intelligence	1.2. 1.2.1. 1.2.2. 1.2.3.	Minimax and Alpha-Beta Pruning	1.3.4.	Neural Networks Biological Fundamentals Computational Model Supervised and Unsupervised Neural Networks Simple Perceptron Multilayer Perceptron	1.4.2. 1.4.3. 1.4.4. 1.4.5.	Genetic Algorithms History Biological Basis Problem Coding Generation of the Initial Population Main Algorithm and Genetic Operators Evaluation of Individuals: Fitness		
1.5. 1.5.1. 1.5.2. 1.5.3. 1.5.4. 1.5.5.	Taxonomy Thesauri	1.6. 1.6.1. 1.6.2. 1.6.3.	Semantic Web Specifications RDF, RDFS and OWL Inference/ Reasoning Linked Data	1.7. 1.7.1. 1.7.2.	Expert Systems and DSS Expert Systems Decision Support Systems	1.8.2. 1.8.3.	Chatbots and Virtual Assistants Types of Assistants: Voice and Text Assistants Fundamental Parts for the Development of at Assistant: Intents, Entities and Dialog Flow Integrations: Web, Slack, Whatsapp, Facebook Assistant Development Tools: Dialog Flow, Watson Assistant		
1.9.	Al Implementation Strategy	1.10.1 1.10.2 1.10.3	Future of Artificial Intelligence Understand How to Detect Emotions Using Algorithms Creating a Personality: Language, Expressions and Content Trends of Artificial Intelligence Reflections						

2.1. 2.1.1. 2.1.2. 2.1.3.		2.2. 2.2.1.	Types of Data Statistics According to Type 2.2.1.1. Quantitative: Continuous Data and Discrete Data 2.2.1.2. Qualitative: Binomial Data, Nominal Data and Ordinal Data	2.2.2.	2.2.2.1. Numeric 2.2.2.2. Text: 2.2.2.3. Logical	2.3. 2.3.1. 2.3.2. 2.3.3.	Milestones of the Cycle
2.4.1. 2.4.2. 2.4.3. 2.4.4.	Gantt Chart	2.5. 2.5.1. 2.5.2. 2.5.3.	Data Collection Methodology of Data Collection Data Collection Tools Data Collection Channels	2.6. 2.6.1. 2.6.2. 2.6.3.	· ·	2.7. 2.7.1. 2.7.2. 2.7.3.	Evaluation of Results Statistical Measures Relationship Indexes
2.8.1. 2.8.2. 2.8.3.	Datawarehouse Elements that Comprise It Design Aspects to Consider	2.9. 2.9.1. 2.9.2. 2.9.3.	Data Availability Access Uses Security	2.10.1 2.10.2	. Regulatory Framework . Data Protection Law 2. Good Practices 3. Other Regulatory Aspects		

Module 3. Data in Artificial Intelligence 3.2. Data, Information and Knowledge 3.4. Extraction of Information Through 3.1. Data Science 3.3. From Data to Information Visualization 3.1.1. Data Science 3.2.1. Data, Information and Knowledge 3.3.1. Data Analysis 3.2.2. Types of Data 3.3.2. Types of Analysis 3.1.2. Advanced Tools for Data Scientists 3.4.1. Visualization as an Analysis Tool 3.2.3. Data Sources 3.3.3. Extraction of Information from a Dataset 3.4.2. Visualization Methods 3.4.3. Visualization of a Data Set 3.5. Data Quality 3.7. Unbalance 3.8. Unsupervised Models 3.6. Dataset 3.5.1. Quality Data 3.6.1. Dataset Enrichment 3.7.1. Classes of Unbalance 3.8.1. Unsupervised Model 3.6.2. The Curse of Dimensionality 3.7.2. Unbalance Mitigation Techniques 3.5.2. Data Cleaning 3.8.2. Methods 3.5.3. Basic Data Pre-Processing 3.6.3. Modification of Our Data Set 3.7.3. Balancing a Dataset 3.8.3. Classification with Unsupervised Models 3.9. Supervised Models 3.10. Tools and Good Practices 3.9.1. Supervised Model 3.10.1. Good Practices for Data Scientists

3.10.2. The Best Model

3.10.3. Useful Tools

3.9.2. Methods

3.9.3. Classification with Supervised Models

tech 32 | Structure and Content

11	Statistical Inference	12	Evaloratory Analysis	12	Data Proparation	1 1	Missing Values
4.1. 4.1.1. 4.1.2. 4.1.3.	Descriptive Statistics vs. Statistical Inference Parametric Procedures	4.2. 4.2.1. 4.2.2. 4.2.3.	Descriptive Analysis Visualization		Data Preparation Integration and Data Cleaning Normalization of Data Transforming Attributes		Missing Values Treatment of Missing Values Maximum Likelihood Imputation Method Missing Value Imputation Using Machine Learning
4.5. 4.5.1. 4.5.2. 4.5.3.		4.6. 4.6.1. 4.6.2. 4.6.3.		4.7. 4.7.1. 4.7.2.	From Continuous to Discrete Attributes Continuous Data Vs. Discreet Data Discretization Process	4.8.2.	The Data Data Selection Prospects and Selection Criteria Selection Methods
4.9. 4.9.1. 4.9.2. 4.9.3.		4.10	Data Pre-processing in Big Data Environments				
Mod	Jule 5. Algorithm and Complexity in Arti	ficial In	telligence				
5.1. 5.1.1. 5.1.2. 5.1.3.	Divide and Conquer	5.2. 5.2.1. 5.2.2. 5.2.3. 5.2.4.	Algorithms	5.2.7.	Mathematical Analysis Criteria for Non- Recursive Algorithms Mathematical Analysis of Recursive Algorithms Empirical Analysis of Algorithms		Sorting by Selection

5.3.6. Quick Sort 5.2.5. Asymptotic Notation 5.4. Algorithms with Trees 5.5. Algorithms Using Heaps 5.6. Graph Algorithms 5.7. Greedy Algorithms 5.5.1. Heaps 5.7.1. Greedy Strategy5.7.2. Elements of the Greedy Strategy 5.4.1. Tree Concept 5.6.1. Representation 5.5.2. The Heapsort Algorithm 5.4.2. Binary Trees 5.6.2. Traversal in Width 5.4.3. Tree Paths 5.5.3. Priority Queues 5.6.3. Depth Travel 5.7.3. Currency Exchange 5.4.4. Representing Expressions 5.6.4. Topological Sorting 5.7.4. Traveler's Problem 5.4.5. Ordered Binary Trees 5.7.5. Backpack Problem 5.4.6. Balanced Binary Trees 5.8. Minimal Path Finding 5.9. Greedy Algorithms on Graphs 5.10. Backtracking 5.10.1. Backtracking 5.8.1. The Minimum Path Problem 5.9.1. The Minimum Covering Tree 5.8.2. Negative Arcs and Cycles 5.9.2. Prim's Algorithm 5.10.2. Alternative Techniques 5.8.3. Dijkstra's Algorithm 5.9.3. Kruskal's Algorithm 5.9.4. Complexity Analysis

Mod	lule 6. Intelligent Systems						
	Agent Theory Concept History Agent Definition Agents in Artificial Intelligence Agents in Software Engineering	6.2. 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5.	Agent Architectures The Reasoning Process of an Agent Reactive Agents Deductive Agents Hybrid Agents Comparison	6.3.3.	Information and Knowledge Difference between Data, Information and Knowledge Data Quality Assessment Data Collection Methods Information Acquisition Methods Knowledge Acquisition Methods		Knowledge Representation The Importance of Knowledge Representation Definition of Knowledge Representation According to Roles Knowledge Representation Features
	Ontologies Introduction to Metadata Philosophical Concept of Ontology Computing Concept of Ontology Domain Ontologies and Higher-Level Ontologies How to Build an Ontology	6.6.2. 6.6.3.	Ontology Languages and Ontology Creation Software Triple RDF, Turtle and N RDF Schema OWL SPARQL Introduction to Ontology Creation Tools Installing and Using Protégé	6.7. 6.7.1. 6.7.2.	Semantic Web Current and Future Status of the Semantic Web Semantic Web Applications	6.8.2. 6.8.3. 6.8.4. 6.8.5. 6.8.6.	Other Knowledge Representation Models Vocabulary Global Vision Taxonomy Thesauri Folksonomy Comparison Mind Maps
	Knowledge Representation Assessment and Integration Zero-Order Logic First-Order Logic Descriptive Logic Relationship between Different Types of Logic Prolog: Programming Based on First- Order Logic	6.10.1 6.10.2 6.10.3 6.10.4 6.10.5	Semantic Reasoners, Knowledge-Based Systems and Expert Systems Concept of Reasoner Reasoner Applications Knowledge-Based Systems MYCIN: History of Expert Systems Expert Systems Elements and Architecture Creating Expert Systems				

tech 34 | Structure and Content

Mod	Module 7. Machine Learning and Data Mining							
	Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning Key Concepts of Knowledge Discovery Processes Historical Perspective of Knowledge Discovery Processes	7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.1.8.	Stages of the Knowledge Discovery Processes Techniques Used in Knowledge Discovery Processes Characteristics of Good Machine Learning Models Types of Machine Learning Information Basic Learning Concepts Basic Concepts of Unsupervised Learning	7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5.	Data Exploration and Pre-processing Data Processing Data Processing in the Data Analysis Flow Types of Data Data Transformations Visualization and Exploration of Continuous Variables	7.2.6. 7.2.7. 7.2.8. 7.2.9.	Categorical Variables Correlation Measures Most Common Graphic Representations	
7.3. 7.3.1. 7.3.2. 7.3.3. 7.3.4.	Decision Trees ID Algorithm Algorithm C Overtraining and Pruning Result Analysis	7.4. 7.4.1. 7.4.2. 7.4.3. 7.4.4.	Evaluation of Classifiers Confusion Matrixes Numerical Evaluation Matrixes Kappa Statistic ROC Curves	7.5. 7.5.1. 7.5.2. 7.5.3.	Classification Rules Rule Evaluation Measures Introduction to Graphic Representation Sequential Overlay Algorithm	7.6. 7.6.1. 7.6.2. 7.6.3. 7.6.4.	Neural Networks Basic Concepts Simple Neural Networks Backpropagation Algorithm Introduction to Recurrent Neural Networks	
7.7. 7.7.1. 7.7.2. 7.7.3. 7.7.4.	Bayesian Methods Basic Probability Concepts Bayes' Theorem Naive Bayes Introduction to Bayesian Networks	7.8.1. 7.8.2. 7.8.3. 7.8.4. 7.8.5.	Regression and Continuous Response Models Simple Linear Regression Multiple Linear Regression Logistic Regression Regression Trees Introduction to Support Vector Machines (SVM) Goodness-of-Fit Measures	7.9. 7.9.1. 7.9.2. 7.9.3. 7.9.4. 7.9.5. 7.9.6.	Clustering Basic Concepts Hierarchical Clustering Probabilistic Methods EM Algorithm B-Cubed Method Implicit Methods	7.10.1 7.10.2 7.10.3	Text Mining and Natural Language Processing (NLP) Basic Concepts Corpus Creation Descriptive Analysis Introduction to Feelings Analysis	

8.1.	Deep Learning	8.2.	Surgery	8.3.	Layers	8.4.	Union of Layers and Operations
8.1.1.	Types of Deep Learning	8.2.1.	Sum		Input Layer	8.4.1.	Architecture Design
8.1.2.		8.2.2.			Hidden Layer		Connection between Layers
8.1.3.	Advantages and Disadvantages of Deep Learning	8.2.3.	Transfer	8.3.3.	Output Layer	8.4.3.	Forward Propagation
8.5.	Construction of the First	8.6.	Trainer and Optimizer	8.7.	Application of the Principles of	8.8.	From Biological to
	Neural Network	8.6.1.	Optimizer Selection		Neural Networks		Artificial Neurons
8.5.1.	Network Design	8.6.2. 8.6.3.	Establishment of a Loss Function Establishing a Metric	8.7.1.		8.8.1.	Functioning of a Biological Neuron
8.5.2. 8.5.3.	Establish the Weights Network Training	0.0.3.	Establishing a Metric	8.7.2. 8.7.3.	Backward Propagation Parameter Adjustment	8.8.2. 8.8.3.	Transfer of Knowledge to Artificial Neurons Establish Relations Between the Two
0.0.0.	Network framing			0.7.0.	r drameter Adjustment	0.0.0.	Establish relations between the 1wo
8.9.	Implementation of MLP (Multilayer Perceptron) with Keras	8.10	Fine Tuning Hyperparameters of Neural Networks				
8.9.1.	Definition of the Network Structure		. Selection of the Activation Function				
8.9.2.	Model Compilation		. Set the Learning Rate				
8.9.3.	Model Training	8.10.3	. Adjustment of Weights				

Mod	Module 9. Deep Neural Networks Training								
9.1.2	Gradient Problems Gradient Optimization Techniques Stochastic Gradients Weight Initialization Techniques	9.2.1. Tr 9.2.2. Fe	Reuse of Pre-Trained Layers ransfer Learning Training eature Extraction eep Learning	9.3.2.	Optimizers Stochastic Gradient Descent Optimizers Optimizers Adam and RMSprop Moment Optimizers	9.4.2.	Learning Rate Programming Automatic Learning Rate Control Learning Cycles Smoothing Terms		
9.5.1 9.5.2	Overfitting Cross Validation Regularization Evaluation Metrics	9.6.1. M 9.6.2. Se Pa	Practical Guidelines Model Design election of Metrics and Evaluation arameters Hypothesis Testing	9.7.2.	Transfer Learning Transfer Learning Training Feature Extraction Deep Learning	9.8.2.	Data Augmentation Image Transformations Synthetic Data Generation Text Transformation		
	Practical Application of Transfer Learning Transfer Learning Training Feature Extraction Deep Learning	9.10.1. L	Regularization by Maximum Entropy						

tech 36 | Structure and Content

Module 10. Model Customization and Traini	Module 10. Model Customization and Training with TensorFlow								
10.1. TensorFlow 10.1.1. Use of the TensorFlow Library 10.1.2. Model Training with TensorFlow 10.1.3. Operations with Graphs in TensorFlow	 10.2. TensorFlow and NumPy 10.2.1. NumPy Computing Environment for TensorFlow 10.2.2. Using NumPy Arrays with TensorFlow 10.2.3. NumPy Operations for TensorFlow Graphs 	 10.3. Model Customization and Training Algorithms 10.3.1. Building Custom Models with TensorFlow 10.3.2. Management of Training Parameters 10.3.3. Use of Optimization Techniques for Training 	10.4. TensorFlow Features and Graphs 10.4.1. Functions with TensorFlow 10.4.2. Use of Graphs for Model Training 10.4.3. Grap Optimization with TensorFlow Operations						
 10.5. Data Loading and Pre-Processing with TensorFlow 10.5.1. Loading Data Sets with TensorFlow 10.5.2. Pre-Processing Data with TensorFlow 10.5.3. Using TensorFlow Tools for Data Manipulation 	10.6. The tfdata API 10.6.1. Using the tf.data API for Data Processing 10.6.2. Construction of Data Streams with tf.data 10.6.3. Using the tf.data API for Model Training	10.7. The TFRecord Format 10.7.1. Using the TFRecord API for Data Serialization 10.7.2. TFRecord File Upload with TensorFlow 10.7.3. Using TFRecord Files for Model Training	 10.8. Keras Pre-Processing Layers 10.8.1. Using the Keras Pre-Processing API 10.8.2. Pre-Processing Pipelined Construction with Keras 10.8.3. Using the Keras Pre-Processing API for Model Training 						
10.9. The TensorFlow Datasets Project 10.9.1. Using TensorFlow Datasets for Data Loading 10.9.2. Data Pre-Processing with TensorFlow Datasets 10.9.3. Using TensorFlow Datasets for Model Training	10.10. Building a Deep Learning App with TensorFlow 10.10.1. Practical Application 10.10.2. Building a Deep Learning App with TensorFlow 10.10.3. Model Training with TensorFlow 10.10.4. Use of the Application for the Prediction of Results								

Module 11. Deep Computer Vision with C	Convolutional Neural Networks		
11.1. The Visual Cortex Architecture 11.1.1. Functions of the Visual Cortex 11.1.2. Theories of Computational Vision 11.1.3. Models of Image Processing	11.2. Convolutional Layers 11.2.1. Reuse of Weights in Convolution 11.2.2. Convolution D 11.2.3. Activation Functions	 11.3. Grouping Layers and Implementation of Grouping Layers with Keras 11.3.1. Pooling and Striding 11.3.2. Flattening 11.3.3. Types of Pooling 	11.4. CNN Architecture 11.4.1. VGG Architecture 11.4.2. AlexNet Architecture 11.4.3. ResNet Architecture
11.5. Implementing a CNN ResNetusing Keras11.5.1. Weight Initialization11.5.2. Input Layer Definition11.5.3. Output Definition	11.6. Use of Pre-trained Keras Models 11.6.1. Characteristics of Pre-Trained Models 11.6.2. Uses of Pre-Trained Models 11.6.3. Advantages of Pre-Trained Models	11.7. Pre-Trained Models for Transfer Learning11.7.1. Transfer Learning11.7.2. Transfer Learning Process11.7.3. Advantages of Transfer Learning	11.8. Deep Computer Vision Classification and Localization 11.8.1. Image Classification 11.8.2. Localization of Objects in Images 11.8.3. Object Detection
11.9. Object Detection and Object Tracking11.9.1. Object Detection Methods11.9.2. Object Tracking Algorithms11.9.3. Tracking and Localization Techniques	11.10. Semantic Segmentation 11.10.1. Deep Learning for Semantic Segmentation 11.10.1. Edge Detection 11.10.1. Rule-Based Segmentation Methods		

tech 38 | Structure and Content

Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) ar	nd Attention	
12.1. Text Generation using RNN12.1.1. Training an RNN for Text Generation12.1.2. Natural Language Generation with RNN12.1.3. Text Generation Applications with RNN	 12.2. Training Data Set Creation 12.2.1. Preparation of the Data for Training an RNN 12.2.2. Storage of the Training Dataset 12.2.3. Data Cleaning and Transformation 12.2.4. Sentiment Analysis 	12.3. Classification of Opinions with RNN12.3.1. Detection of Themes in Comments12.3.2. Sentiment Analysis with Deep Learning Algorithms	 12.4. Encoder-Decoder Network for Neural Machine Translation 12.4.1. Training an RNN for Machine Translation 12.4.2. Use of an Encoder-Decoder Network for Machine Translation 12.4.3. Improving the Accuracy of Machine Translation with RNNs
 12.5. Attention Mechanisms 12.5.1. Application of Care Mechanisms in RNN 12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models 12.5.3. Advantages of Attention Mechanisms in Neural Networks 	 12.6. Transformer Models 12.6.1. Using Transformers Models for Natural Language Processing 12.6.2. Application of Transformers Models for Vision 12.6.3. Advantages of Transformers Models 	12.7. Transformers for Vision 12.7.1. Use of Transformers Models for Vision 12.7.2. Image Data Preprocessing 12.7.3. Training a Transformers Model for Vision	 12.8. Hugging Face's Transformers Library 12.8.1. Using Hugging Face's Transformers Library 12.8.2. Hugging Face's Transformers Library Application 12.8.3. Advantages of Hugging Face's Transformers Library
 12.9. Other Transformers Libraries. Comparison 12.9.1. Comparison Between Different Transformers Libraries 12.9.2. Use of the Other Transformers Libraries 12.9.3. Advantages of the Other Transformers Libraries 	12.10. Development of an NLP Application with RNN and Attention. Practical Application 12.10.1. Development of a Natural Language Processing Application with RNN and Attention 12.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application 12.10.3. Evaluation of the Practical Application		

13.1. Representation of Efficient Data13.1.1. Dimensionality Reduction13.1.2. Deep Learning13.1.3. Compact Representations	 13.2. PCA Realization with an Incomplete Linear Automatic Encoder 13.2.1. Training Process 13.2.2. Implementation in Python 13.2.3. Use of Test Data 	13.3. Stacked Automatic Encoders13.3.1. Deep Neural Networks13.3.2. Construction of Coding Architectures13.3.3. Use of Regularization	13.4. Convolutional Autoencoders13.4.1. Design of Convolutional Models13.4.2. Convolutional Model Training13.4.3. Results Evaluation
 13.5. Noise Suppression of Automatic Encoders 13.5.1. Filter Application 13.5.2. Design of Coding Models 13.5.3. Use of Regularization Techniques 	13.6. Sparse Automatic Encoders13.6.1. Increasing Coding Efficiency13.6.2. Minimizing the Number of Parameters13.6.3. Using Regularization Techniques	13.7. Variational Automatic Encoders 13.7.1. Use of Variational Optimization 13.7.2. Unsupervised Deep Learning 13.7.3. Deep Latent Representations	 13.8. Generation of Fashion MNIST Images 13.8.1. Pattern Recognition 13.8.2. Image Generation 13.8.3. Deep Neural Networks Training
 13.9. Generative Adversarial Networks and Diffusion Models 13.9.1. Content Generation from Images 13.9.2. Modeling of Data Distributions 13.9.3. Use of Adversarial Networks 	13.10. Implementation of the Models 13.10.1. Practical Application 13.10.2. Implementation of the Models 13.10.3. Use of Real Data 13.10.4. Results Evaluation		

tech 40 | Structure and Content

Module 14. Bio-Inspired Computing			
14.1. Introduction to Bio- Inspired Computing14.1.1. Introduction to Bio-Inspired Computing	 14.2. Social Adaptation Algorithms 14.2.1. Bio-Inspired Computation Based on Ant Colonies 14.2.2. Variants of Ant Colony Algorithms 14.2.3. Particle Cloud Computing 	14.3. Genetic Algorithms14.3.1. General Structure14.3.2. Implementations of the Major Operators	14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms14.4.1. CHC Algorithm14.4.2. Multimodal Problems
14.5. Evolutionary Computing Models (I)14.5.1. Evolutionary Strategies14.5.2. Evolutionary Programming14.5.3. Algorithms Based on Differential Evolution	 14.6. Evolutionary Computation Models (II) 14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA) 14.6.2. Genetic Programming 	 14.7. Evolutionary Programming Applied to Learning Problems 14.7.1. Rules-Based Learning 14.7.2. Evolutionary Methods in Instance Selection Problems 	14.8. Multi-Objective Problems14.8.1. Concept of Dominance14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems
14.9. Neural Networks (I) 14.9.1. Introduction to Neural Networks 14.9.2. Practical Example with Neural Networks	14.10. Neural Networks (II) 14.10.1. Use Cases of Neural Networks in Medical Research 14.10.2. Use Cases of Neural Networks in Economics 14.10.3. Use Cases of Neural Networks in Artificial Vision		

Module 15. Artificial Intelligence: Strategies and Applications

15.1. Financial Services

- 15.1.1. The Implications of Artificial Intelligence (AI) in Financial Services Opportunities and Challenges
- 15.1.2. Case Uses
- 15.1.3. Potential Risks Related to the Use of Al
- 15.1.4. Potential Future Developments/Uses of Al

15.2. Implications of Artificial Intelligence in Healthcare Service

- 15.2.1. Implications of AI in the Healthcare Sector Opportunities and Challenges
- 15.2.2. Case Uses

15.3. Risks Related to the Use of AI in Healthcare Service

- 15.3.1. Potential Risks Related to the Use of Al
- 15.3.2. Potential Future Developments/Uses of Al

15.4. Retail

- 15.4.1. Implications of AI in Retail. Opportunities and Challenges
- 15.4.2. Case Uses
- 15.4.3. Potential Risks Related to the Use of Al
- 15.4.4. Potential Future Developments/Uses of Al

15.5. Industry

- 15.5.1. Implications of AI in Industry Opportunities and Challenges
- 15.5.2. Case Uses

15.6. Potential Risks Related to the Use of AI in Industry

- 15.6.1. Case Uses
- 15.6.2. Potential Risks Related to the Use of Al
- 15.6.3. Potential Future Developments/Uses of Al

15.7. Public Administration

- 15.7.1. Al Implications for Public Administration Opportunities and Challenges
- 15.7.2. Case Uses
- 15.7.3. Potential Risks Related to the Use of Al
- 15.7.4. Potential Future Developments/Uses of Al

15.8. Educational

- 15.8.1. Al Implications for Education Opportunities and Challenges
- 15.8.2. Case Uses
- 15.8.3. Potential Risks Related to the Use of Al
- 15.8.4. Potential Future Developments/Uses of Al

15.9. Forestry and Agriculture

- 15.9.1. Implications of AI in Forestry and Agriculture.
 Opportunities and Challenges
- 15.9.2. Case Uses
- 15.9.3. Potential Risks Related to the Use of Al
- 15.9.4. Potential Future Developments/Uses of Al

15.10. Human Resources

- 15.10.1. Implications of AI for Human Resources
 Opportunities and Challenges
- 15.10.2. Case Uses
- 15.10.3. Potential Risks Related to the Use of Al
- 15.10.4. Potential Future Developments/Uses of Al

tech 42 | Structure and Content

Module 16. Personnel and Payre	oll Management with Al		
 16.1. Artificial Intelligence for D and Inclusion in the Workp 16.1.1. Diversity Analysis Using IBM Wa Detect Trends and Biases 16.1.2. AI Tools for Detecting and Corre in HR Processes 16.1.3. Evaluating the Impact of Inclusion using Data Analytics 	blace Administration with Al tson to 16.2.1. Automation of Hiring and Onboarding Processes cting Biases 16.2.2. Use of Al-Based Personnel Data Management Systems	 16.3. Al Technologies Applied to Payroll 16.3.1. Al Systems for Automated Payroll Calculation 16.3.2. Intelligent Profit Management with Platforms such as Gusto 16.3.3. Detection of Errors and Fraud in Payrolls Using Al Algorithms 	 16.4. Optimizing Resource Allocation with AI 16.4.1. Personnel Planning with Kronos Predictive Tools 16.4.2. AI Models for Shift and Task Assignment Optimization 16.4.3. Workload Analysis and Resource Allocation with Power BI
 16.5. Al in HR Regulatory and Le Compliance 16.5.1. Automation of Compliance with Labor Policies 16.5.2. Al Systems to Ensure Fairness a Transparency in HR 16.5.3. Contract and Regulatory Manag IBM Watson Legal Advisor 	Management 16.6.1. Predictive Models for Employee Retention with Retain's Al 16.6.2. Sentiment Analysis in Internal Communications	16.7. Automating Benefits Management with AI 16.7.1. Benefits Administration Using Intelligent Platforms such as Zenefits 16.7.2. Customizing Benefit Packages using AI 16.7.3. Optimizing Benefit Costs Using Data Analytics	 16.8. Integrating HR Systems with AI 16.8.1. Integrated Systems for Personnel Management with Salesforce Einstein 16.8.2. Interface and Usability in AI-Based HR Systems 16.8.3. Data Security and Privacy in Integrated Systems
 16.9. Al-Supported Training and Development of Personne 16.9.1. Adaptive and Personalized Learn 16.9.2. Al-Powered E-Learning Platform 16.9.3. Performance Assessment and Nusing Intelligent Technologies 	I with AI in HR ing Systems 16.10.1. Using AI for Effective Management of Organizational Change	th	

 17.1. Introduction to the Application of Artificial Intelligence in Personnel Selection 17.1.1. Definition of Artificial Intelligence in the Human Resources Context. Entelo 17.1.2. Importance of Applying AI in Selection Processes 17.1.3. Benefits of Using AI in Selection Processes 	 17.2. Automating Tasks in the Recruitment Process 17.2.1. Using AI to Automate Job Postings 17.2.2. Implementing Chatbots to Answer Candidates' Frequently Asked Questions 17.2.3. Tools XOR 	 17.3. Resume Analysis with AI 17.3.1. Using AI Algorithms to Analyze and Evaluate Resumes. Talview 17.3.2. Automatic Identification of Skills and Experience Relevant to the Position 17.3.3. Advantages and Disadvantages 	 17.4. Candidate Filtering and Ranking 17.4.1. Applying AI to Automatically Filter Candidates Based on Specific Criteria. Vervoe 17.4.2. Ranking Candidates According to Suitability for the Position Using Machine Learning Techniques 17.4.3. Using AI for Dynamic Customization of Filtering Criteria based on Job Needs
 17.5. Pattern Recognition on Social Networks and Professional Platforms 17.5.1. Using AI to Analyze Candidate Profiles on Social Networks and Professional Platforms 17.5.2. Identifying Behavioral Patterns and Trends Relevant to Recruiting 17.5.3. Assessing the Online Presence and Digital Influence of Candidates Using AI Tools 	 17.6. Al-Assisted Virtual Interviewing 17.6.1. Implementing Virtual Interviewing Systems with Language and Emotion Analysis. Talentoday 17.6.2. Automatic Evaluation of Candidate Responses Using Natural Language Processing Techniques 17.6.3. Developing Automatic and Personalized Feedback for Candidates Based on Al Interview Analysis 	 17.7. Evaluation of Skills and Competencies 17.7.1. Using Al-Based Assessment Tools to Measure Technical and Soft Skills. OutMatch 17.7.2. Automatically Analyzing Tests and Assessment Exercises Performed by Candidates. Harver 17.7.3. Correlation of Assessment Results with Success on the Job Using Al Predictive Analytics 	 17.8. Elimination of Selection Biases 17.8.1. Applying AI to Identify and Mitigate Unconscious Bias in the Selection Process 17.8.2. Implementing Unbiased and Fair AI Algorithms in Decision Making 17.8.3. Training and Continuous Tuning of AI Models to Ensure Fairness in Personnel Selection
 17.9. Prediction of Fit and Retention 17.9.1. Using Predictive AI Models to Predict Candidate Suitability and Likelihood of Retention Hiretual 17.9.2. Analyzing Historical Data and Performance Metrics to Identify Patterns of Success 17.9.3. AI Models for Simulating Job Scenarios and Their Impact on Candidate Retention 	 17.10. Ethics and Transparency in Al Selection 17.10.1. Ethical Considerations in the Use of Al in the Personnel Selection Processes 17.10.2. Ensuring Transparency and Explainability in Al Algorithms Used in Hiring Decisions 17.10.3. Developing Audit and Review Policies for Automated Decisions 		

tech 44 | Structure and Content

and Promote Adaptability Cognician

Module 18. Al and Its Application in Talent Management and Professional Development 18.4. Personalization of Professional 18.1. Introduction to the Application 18.2. Automation of Talent 18.3. Talent Identification and Retention of AI in Talent Management and Management Processes with AI Development. Leader Amp Professional Development 18.4.1. Implementing Customized Al-Based 18.2.1. Using AI to Automate Administrative Tasks 18.3.1. Using Al Algorithms to Identify and Retain in Talent Management Talent in the Organization Professional Development Programs 18.1.1. Historical Evolution of AI in Talent 18.2.2. Implementing Al-Based Talent 18.3.2. Predictive Analytics for the Detection of 18.4.2. Using Recommendation Algorithms to Management and How It Has Transformed Management Systems Employees with High Growth Potential Suggest Learning and Growth Opportunities the Industry 18.4.3. Matching Career Development Pathways to 18.2.3. Assessing Operational Efficiency and Cost 18.3.3. Integrating AI with HR Management 18.1.2. Definition of Artificial Intelligence in the Systems for Continuous Performance and Labor Market Evolution Predictions Using Al Reduction through Automation with Al Human Resources Context Development Tracking 18.1.3. Importance of Talent Management and Professional Development, Glint 18.6. Mentoring and Virtual Coaching 18.7. Achievement and 18.8. Evaluation of Leadership Potential 18.5. Competency and Skill Gap Analysis Performance Recognition 18.5.1 Using AI to Analyze Employees' Current Skills 18.6.1. Implementation of Al-Assisted Virtual 18.8.1. Applying Al Techniques to Assess and Competencies Mentoring Systems. Crystal Leadership Potential of Employees 18.7.1. Using Al-Based Achievement Recognition 18.5.2. Identification of Skills Gaps and Training 18.6.2. Using Chatbots and Virtual Assistants to 18.8.2. Identifying Emerging Leaders and Systems to Motivate Employees BetterUp Needs Using Data Analytics Provide Personalized Coaching Developing Tailored Leadership Programs 18.7.2. Automatically Analyzing Employee 18.5.3. Implementing Real-Time Training Programs 18.6.3. Impact Assessment of Virtual Coaching 18.8.3. Using Al-Driven Simulations to Train and Performance and Productivity Using Al Based on Automated Al Recommendations Using Data Analysis and Automated Al Evaluate Leadership Skills 18.7.3. Developing an Al-Based Reward and Feedback Recognition System 18.9. Change Management and 18.10. Ethics and Accountability in Talent Management with AI Organizational Adaptability 18.9.1. Predictive Analytics to Anticipate Change 18.10.1. Ethical Considerations in the Use of Al Needs and Promote Organizational Resilience in Talent Management and Professional 18.9.2. Organizational Change Planning Using Al Development. Reflektive 18.9.3. Using Al to Manage Organizational Change 18.10.2. Ensuring Fairness and Transparency in Al

Algorithms Used in Talent Management

Decision-Making

Ethical Practices

18.10.3. Implementation of Audits to Monitor and Adjust Al Algorithms to Ensure

Module 19. Performance Evaluations			
19.1. Introduction to the Application of Al in Performance Appraisals	19.2. Automation of Evaluation Processes	19.3. Data Analysis and Performance Metrics	19.4. Continuous Evaluation and Real- Time Feedback
 19.1.1. Definition of Artificial Intelligence and Its Role in Performance Appraisals. 15Five 19.1.2. Importance of Using AI to Improve the Objectivity and Efficiency of Appraisals 19.1.3. Limitations of AI in Performance Appraisals 	 19.2.1. Using AI to Automate Data Collection and Analysis in Performance Appraisals Peakon 19.2.2. Implementing AI-Based Automated Evaluation Systems 19.2.3. Successful Studies in Automation with AI 	 19.3.1. Using Al Algorithms to Analyze Performance Data and Trends 19.3.2. Identifying Key Metrics and KPIs Using Advanced Data Analysis Techniques 19.3.3. Al Data Analytics Training 	 19.4.1. Implementing Al-Assisted Continuous Assessment Systems. Lattice 19.4.2. Using Chatbots and Real-Time Feedback Tools to Provide Feedback to Employees 19.4.3. Impact of Al-Based Feedback
19.5. Identification of Strengths and Areas for Improvement	19.6. Detection of Trends and Performance Patterns	19.7. Customization of Objectives and Development Plans	19.8. Elimination of Bias in Evaluations 19.8.1. Applying Al to Identify and Mitigate Bias in
 19.5.1. Applying AI to Identify Employee Strengths and Weaknesses 19.5.2. Automatic Analysis of Competencies and Skills Using Machine Learning Techniques. Workday Performance Management 19.5.3. Connection with Professional Development and Planning 	 19.6.1. Using AI to Detect Trends and Patterns in Employee Performance. TAlentSoft 19.6.2. Predictive Analytics to Anticipate Potential Performance Problems and Take Proactive Measures 19.6.3. Advanced Data Visualization Dashboards 	 19.7.1. Implementing Al-Based Personalized Target Setting Systems. Reflektive 19.7.2. Using Recommendation Algorithms to Suggest Individualized Development Plans 19.7.3. Long-Term Impact of Personalized Targets 	Performance Appraisals 19.8.2. Implementing Impartial and Equitable Algorithms in Evaluation Processes 19.8.3. Al Ethics Training for Evaluators
19.9. Data Security and Protection in Al Evaluations	19.10. Continuous Improvement and Adaptability of the System		
 19.9.1. Ethical and Legal Considerations in the Use of Personal Data in Performance Evaluations with Al. LEver 19.9.2. Ensuring the Privacy and Security of Employee Information in Al-Based Evaluation Systems 19.9.3. Implementing Data Access Protocols 	19.10.1. Using Feedback and Data Analysis to Continuously Improve Evaluation Processes 19.10.2. Adapting Evaluation Systems as the Organization's Needs and Objectives Change 19.10.3. Review Committee for Adjustment of Metrics		

tech 46 | Structure and Content

Mod	ule 20. Monitoring and Improving Work	Climate with Al		
20.1.1 20.1.2	Applying AI in Workplace Climate Management Definition and Relevance of Work Climate Overview of AI in the Management of Workplace Climate Benefits of Using AI to Monitor Workplace Climate	 20.2. Al Tools for Workplace Data Collection 20.2.1. Real-Time Feedback Systems with IBM Watson 20.2.2. Automated Survey Platforms 20.2.3. Sensors and Wearables for Physical and Environmental Data Collection 	 20.3. Sentiment Analysis with AI 20.3.1. Fundamentals of Sentiment Analysis 20.3.2. Using Google Cloud Natural Language to Analyze Emotions in Written Communication 20.3.3. Applying Sentiment Analysis in Emails and Corporate Social Networks 	 20.4. Machine Learning for the Identification of Behavioral Patterns 20.4.1. Clustering with K-Means in Python for Segmenting Workplace Behaviors 20.4.2. Pattern Recognition in Behavioral Data 20.4.3. Predicting Trends in Work Climate
20.5.1 20.5.2	Al in the Proactive Detection of Workplace Problems Predictive Models to Identify Conflict Risks Al-Based Early Warning Systems Detection of Harassment and Discrimination Using Text Analytics with spaCy	 20.6. Improving Internal Communication with AI 20.6.1. Chatbots for Internal Communication 20.6.2. Network Analysis with AI to Improve Collaboration Using Gephi 20.6.3. AI Tools to Personalize Internal Communications 	 20.7. Change Management with Al Support 20.7.1. Al Simulations to Predict Impacts of Organizational Change with AnyLogic 20.7.2. Al Tools to Manage Resistance to Change 20.7.3. Al Models for Optimizing Change Strategies 	 20.8. Assessment and Continuous Improvement of Work Climate with AI 20.8.1. Continuous Work Climate Monitoring Systems 20.8.2. Algorithms for Analyzing the Effectiveness of Interventions 20.8.3. AI for the Customization of Work Climate Improvement Plans
20.9.1 20.9.2	Integration of Al and Organizational Psychology Psychological Theories Applied to Al Analysis Al Models for Understanding Motivation and Job Satisfaction Al Tools to Support Employee Emotional Well-Being	20.10. Ethics and Privacy in the Use of Al to Monitor Workplace Climate 20.10.1. Ethical Considerations of Workplace Monitoring 20.10.2. Data Privacy and Regulatory Compliance 20.10.3. Transparent and Responsible Data Management		

This comprehensive approach will equip you with key competencies to lead the digital transformation in HR and maximize the strategic value of your teams. With all the TECH quality guarantees!"

This academic program offers students a different way of learning. Our methodology uses a cyclical learning approach: **Relearning.**

This teaching system is used, for example, in the most prestigious medical schools in the world, and major publications such as the **New England Journal of Medicine** have considered it to be one of the most effective.

日日

tech 50 | Methodology

TECH Business School uses the Case Study to contextualize all content

Our program offers a revolutionary approach to developing skills and knowledge. Our goal is to strengthen skills in a changing, competitive, and highly demanding environment.

This program prepares you to face business challenges in uncertain environments and achieve business success.

Our program prepares you to face new challenges in uncertain environments and achieve success in your career.

A learning method that is different and innovative

This TECH program is an intensive educational program, created from scratch to present executives with challenges and business decisions at the highest level, whether at the national or international level. This methodology promotes personal and professional growth, representing a significant step towards success. The case method, a technique that lays the foundation for this content, ensures that the most current economic, social and business reality is taken into account.

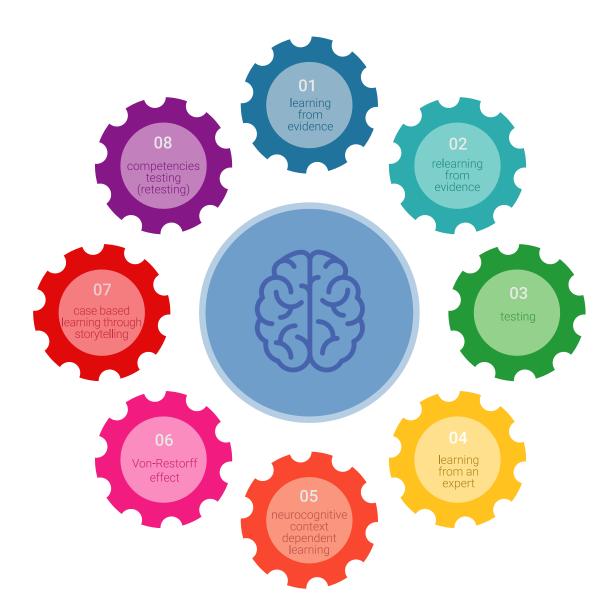
You will learn, through collaborative activities and real cases, how to solve complex situations in real business environments"

The case method has been the most widely used learning system among the world's leading business schools for as long as they have existed. The case method was developed in 1912 so that law students would not only learn the law based on theoretical content. It consisted of presenting students with real-life, complex situations for them to make informed decisions and value judgments on how to resolve them. In 1924, Harvard adopted it as a standard teaching method.

What should a professional do in a given situation? This is the question we face in the case method, an action-oriented learning method. Throughout the program, the studies will be presented with multiple real cases. They must integrate all their knowledge, research, argue and defend their ideas and decisions.

tech 52 | Methodology

Relearning Methodology


TECH effectively combines the Case Study methodology with a 100% online learning system based on repetition, which combines different teaching elements in each lesson.

We enhance the Case Study with the best 100% online teaching method: Relearning.

Our online system will allow you to organize your time and learning pace, adapting it to your schedule. You will be able to access the contents from any device with an internet connection.

At TECH you will learn using a cutting-edge methodology designed to train the executives of the future. This method, at the forefront of international teaching, is called Relearning.

Our online business school is the only one in the world licensed to incorporate this successful method. In 2019, we managed to improve our students' overall satisfaction levels (teaching quality, quality of materials, course structure, objectives...) based on the best online university indicators.

Methodology | 53 tech

In our program, learning is not a linear process, but rather a spiral (learn, unlearn, forget, and re-learn). Therefore, we combine each of these elements concentrically. With this methodology we have trained more than 650,000 university graduates with unprecedented success in fields as diverse as biochemistry, genetics, surgery, international law, management skills, sports science, philosophy, law, engineering, journalism, history, markets, and financial instruments. All this in a highly demanding environment, where the students have a strong socio-economic profile and an average age of 43.5 years.

Relearning will allow you to learn with less effort and better performance, involving you more in your specialization, developing a critical mindset, defending arguments, and contrasting opinions: a direct equation to success.

From the latest scientific evidence in the field of neuroscience, not only do we know how to organize information, ideas, images and memories, but we know that the place and context where we have learned something is fundamental for us to be able to remember it and store it in the hippocampus, to retain it in our long-term memory.

In this way, and in what is called neurocognitive context-dependent e-learning, the different elements in our program are connected to the context where the individual carries out their professional activity.

tech 54 | Methodology

This program offers the best educational material, prepared with professionals in mind:

Study Material

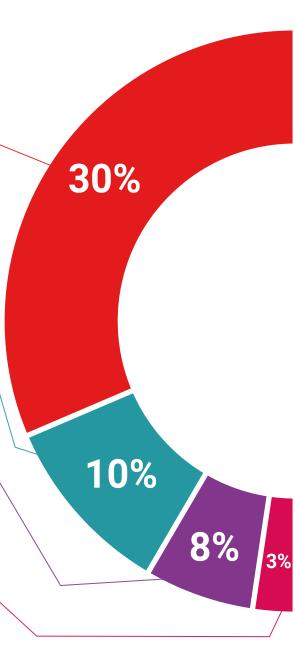
All teaching material is produced by the specialists who teach the course, specifically for the course, so that the teaching content is highly specific and precise.

These contents are then applied to the audiovisual format, to create the TECH online working method. All this, with the latest techniques that offer high quality pieces in each and every one of the materials that are made available to the student.

Classes

There is scientific evidence suggesting that observing third-party experts can be useful.

Learning from an Expert strengthens knowledge and memory, and generates confidence in future difficult decisions.


Management Skills Exercises

They will carry out activities to develop specific executive competencies in each thematic area. Practices and dynamics to acquire and develop the skills and abilities that a high-level manager needs to develop in the context of the globalization we live in.

Additional Reading

Recent articles, consensus documents and international guidelines, among others. In TECH's virtual library, students will have access to everything they need to complete their course.

Students will complete a selection of the best case studies chosen specifically for this program. Cases that are presented, analyzed, and supervised by the best senior management specialists in the world.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia lessons that include audio, videos, images, diagrams, and concept maps in order to reinforce knowledge.

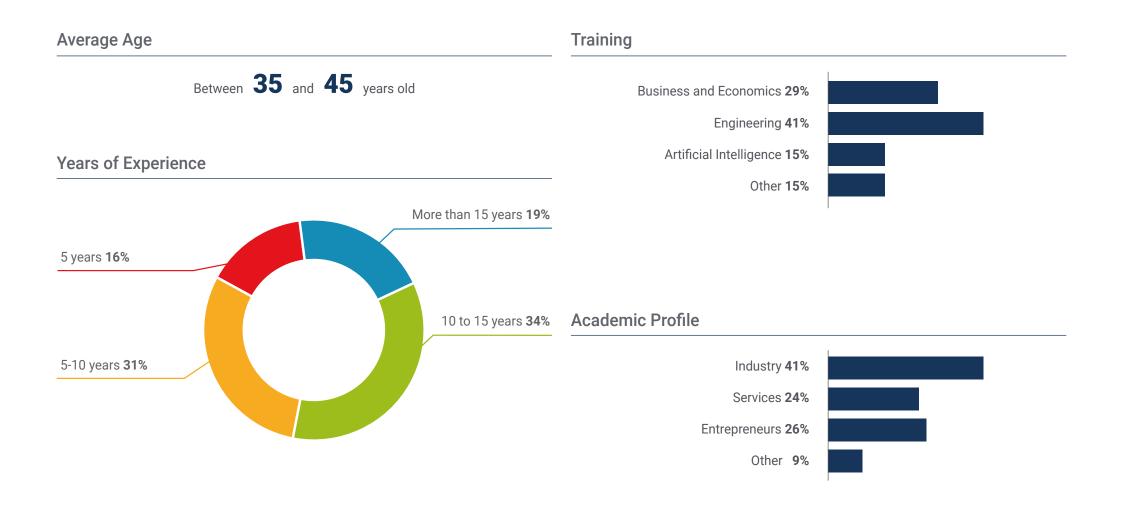


This exclusive educational system for presenting multimedia content was awarded by Microsoft as a "European Success Story".

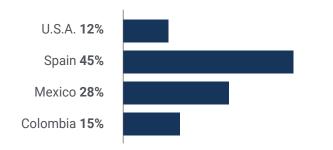
Testing & Retesting

 \bigcirc

We periodically evaluate and re-evaluate students' knowledge throughout the program, through assessment and self-assessment activities and exercises, so that they can see how they are achieving their goals.



30%



tech 58 | Our Students' Profiles

Geographical Distribution

Margarita Gutiérrez Castillo

Head of Personnel Administration

"I can say with complete confidence that the Executive Master's Degree in Artificial Intelligence in Human Resources Department has been a transformative experience. Not only did it provide me with a deep understanding of how AI can optimize my daily operations, but it also gave me practical tools to automate processes and improve accuracy in payroll and recruitment management. What impressed me most was how the knowledge gained has had an immediate impact on my efficiency in my job. Now, I feel more confident and prepared to lead the digital evolution. It has definitely paid off!"

tech 62 | Course Management

Management

Dr. Peralta Martín-Palomino, Arturo

- CEO and CTO at Prometeus Global Solutions
- CTO at Korporate Technologies
- CTO at AI Shepherds GmbH
- Consultant and Strategic Business Advisor at Alliance Medical
- Director of Design and Development at DocPath
- PhD in Psychology from the University of Castilla La Mancha
- PhD in Economics, Business and Finance from the Camilo José Cela University
- PhD in Psychology from University of Castilla La Mancha
- Master's Degree in Executive MBA from the Isabel I University
- Master's Degree in Sales and Marketing Management, Isabel I University
- Expert Master's Degree in Big Data by Hadoop Training
- Master's Degree in Advanced Information Technologies from the University of Castilla La Mancha
- Member of: SMILE Research Group

Course Management | 63 tech

Professors

Ms. Del Rey Sánchez, Cristina

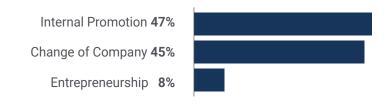
- Talent Management Administrative Officer at Securitas Seguridad España, S.L
- Extracurricular Activities Center Coordinator
- Support classes and pedagogical interventions with Primary and Secondary Education students
- Postgraduate in Development, Delivery and Tutoring of e-Learning Training Actions
- Postgraduate in Early Childhood Care
- Degree in Pedagogy from the Complutense University of Madrid

You will use predictive analytics tools to improve decision making, applying data processing techniques to customize professional development plans. What are you waiting for to enroll?

Are you ready to take the leap? Excellent professional development awaits you

The Executive Master's Degree in Artificial Intelligence in Human Resources from TECH is an intensive program that prepares you to face challenges and business decisions in the field of Artificial Intelligence applied to the Financial Department of companies. The main objective is to promote your personal and professional growth. Helping you achieve success.

If you want to improve yourself, make a positive change at a professional level, and network with the best, then this is the place for you.


You will be trained in the use of emerging technologies to identify talent, analyze work climate and manage payroll with greater accuracy and efficiency, thanks to an extensive library of innovative multimedia resources.

Time of Change

During the program 63%

After 2 years 26%

Type of change

Salary increase

This program represents a salary increase of more than 26.24% for our students

\$ **52,000**

A salary increase of

26.24%

\$ 65,644

tech 70 | Benefits for Your Company

Developing and retaining talent in companies is the best long-term investment.

Growth of talent and intellectual capital

The professional will introduce the company to new concepts, strategies, and perspectives that can bring about significant changes in the organization.

Retaining high-potential executives to avoid talent drain

This program strengthens the link between the company and the professional and opens new avenues for professional growth within the company.

Building agents of change

You will be able to make decisions in times of uncertainty and crisis, helping the organization overcome obstacles.

Increased international expansion possibilities

Thanks to this program, the company will come into contact with the main markets in the world economy.

Project Development

The professional can work on a real project or develop new projects in the field of R & D or business development of your company.

Increased competitiveness

This program will equip students with the skills to take on new challenges and drive the organization forward.

tech 74 | Certificate

This private qualification will allow you to obtain a **Executive Master's Degree diploma** in Artificial Intelligence in Human Resources endorsed by TECH Global University, the world's largest online university.

TECH Global University, is an official European University publicly recognized by the Government of Andorra (official bulletin). Andorra is part of the European Higher Education Area (EHEA) since 2003. The EHEA is an initiative promoted by the European Union that aims to organize the international training framework and harmonize the higher education systems of the member countries of this space. The project promotes common values, the implementation of collaborative tools and strengthening its quality assurance mechanisms to enhance collaboration and mobility among students, researchers and academics.

Mr./Ms. ______ with identification document ______ has successfully passed and obtained the title of:

Executive Master's Degree in Artificial Intelligence in Human Resources

This is a private qualification of 1,800 hours of duration equivalent to 60 ECTS, with a start date of dd/mm/yyyy and an end date of dd/mm/yyyy.

TECH Global University is a university officially recognized by the Government of Andorra on the 31st of January of 2024, which belongs to the European Higher Education Area (EHEA).

In Andorra la Vella, on the 28th of February of 2024

This **TECH Global University** private qualification is a European program of continuing education and professional updating that guarantees the acquisition of competencies in its area of knowledge, providing a high curricular value to the student who completes the program.

Title: Executive Master's Degree in Artificial Intelligence in Human Resources

Modality: online

Duration: 12 months

Accreditation: 60 ECTS

^{*}Apostille Convention. In the event that the student wishes to have their paper diploma issued with an apostille, TECH Global University will make the necessary arrangements to obtain it, at an additional cost.

Executive Master's Degree

Artificial Intelligence in Human Resources

- » Modality: online
- » Duration: 12 months
- » Certificate: TECH Global University
- » Accreditation: 60 ECTS
- » Schedule: at your own pace
- » Exams: online

