

Radiophysics in External Radiotherapy in Physical Dosimetry

» Modality: online

» Duration: 6 weeks

» Certificate: TECH Global University

» Credits: 6 ECTS

» Schedule: at your own pace

» Exams: online

Website: www.techtitute.com/us/medicine/postgraduate-certificate/radiophysics-external-radiotherapy-physical-dosimetry

Index

> 06 Certificate

> > p. 28

The rise of medical technology over the last decade has driven advances in external radiation therapy. One example is Cone Beam Computed Tomography (CBCT), which makes it possible to obtain detailed three-dimensional images to design personalized treatments for patients with conditions such as tumors or cysts. As a result, specialists are able to apply therapies that minimize the irradiation of healthy tissues, also reducing the time the patient is exposed to radiation and providing more efficient care. However, in order to achieve an adequate use of this tool, it is important that experts take into account the most up-to-date considerations associated with its use. In this context, TECH has a 100% online program that will delve into this clinical practice through a disruptive methodology: Relearning.

tech 06 | Introduction

The World Health Organization estimates that, each year, 400,000 children and adolescents suffer from cancer, specifically pathologies such as leukemias, lymphomas or Wilms' tumors. In this sense, Radiotherapy is an effective procedure for their treatment. In view of this situation, healthcare institutions are constantly modernizing their procedures in order to apply the most advanced electron beam procedures. Therefore, experts must keep abreast of the latest trends in their work practice and, thus, provide cutting-edge therapies to their patients and contribute to improving their quality of life.

To help them with this task, TECH has implemented a comprehensive university program that will enable physicians to optimally handle the most innovative equipment for performing External Radiation Therapy treatments. Under the supervision of a distinguished teaching staff, the syllabus will delve into the use of the Linear Electron Accelerator. In this way, specialists will carry out special techniques such as Handrontherapy to treat localized tumors in areas close to critical structures of the body. In addition, the curriculum will analyze the equipment in image-guided External Radiation Therapy, emphasizing photon beams in physical dosimetry.

At the same time, TECH offers a 100% online educational environment, adapted to the needs of health professionals seeking to advance their careers. In addition, it will employ the *Relearning* methodology, based on the repetition of key concepts to fix knowledge and facilitate learning. In this way, the combination of flexibility and a robust pedagogical approach makes it highly accessible. In addition, the only thing the expert will need is a device with Internet access, such as a cell phone, computer or *tablet*, to access the Virtual Campus. In this space, they will have a library full of multimedia resources to develop a dynamic and interactive update of their skills.

This Postgraduate Certificate in Radiophysics in External Radiotherapy in Physical Dosimetry contains the most complete and up-to-date scientific program on the market. The most important features include:

- The development of case studies presented by experts in Radiophysics
- The graphic, schematic, and practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice
- Practical exercises where the self-assessment process can be carried out to improve learning
- Its special emphasis on innovative methodologies
- Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments
- Content that is accessible from any fixed or portable device with an Internet connection

Do you want to perform effective treatment verification prior to radiotherapy sessions?

Delve into the Initial Referral in just 6 weeks with this advanced TECH qualification"

You will create detailed process maps to identify errors and take preventive measures to avoid radiological risks for your patients"

The program's teaching staff includes professionals from the sector who contribute their work experience to this program, as well as renowned specialists from leading societies and prestigious universities.

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive education programmed to learn in real situations.

This program is designed around Problem-Based Learning, whereby the professional must try to solve the different professional practice situations that arise during the academic year For this purpose, the students will be assisted by an innovative interactive video system created by renowned and experienced experts.

You will master the particularities of the Linear Electron Accelerator and its therapeutic advantages through 180 hours of the best 100% online teaching.

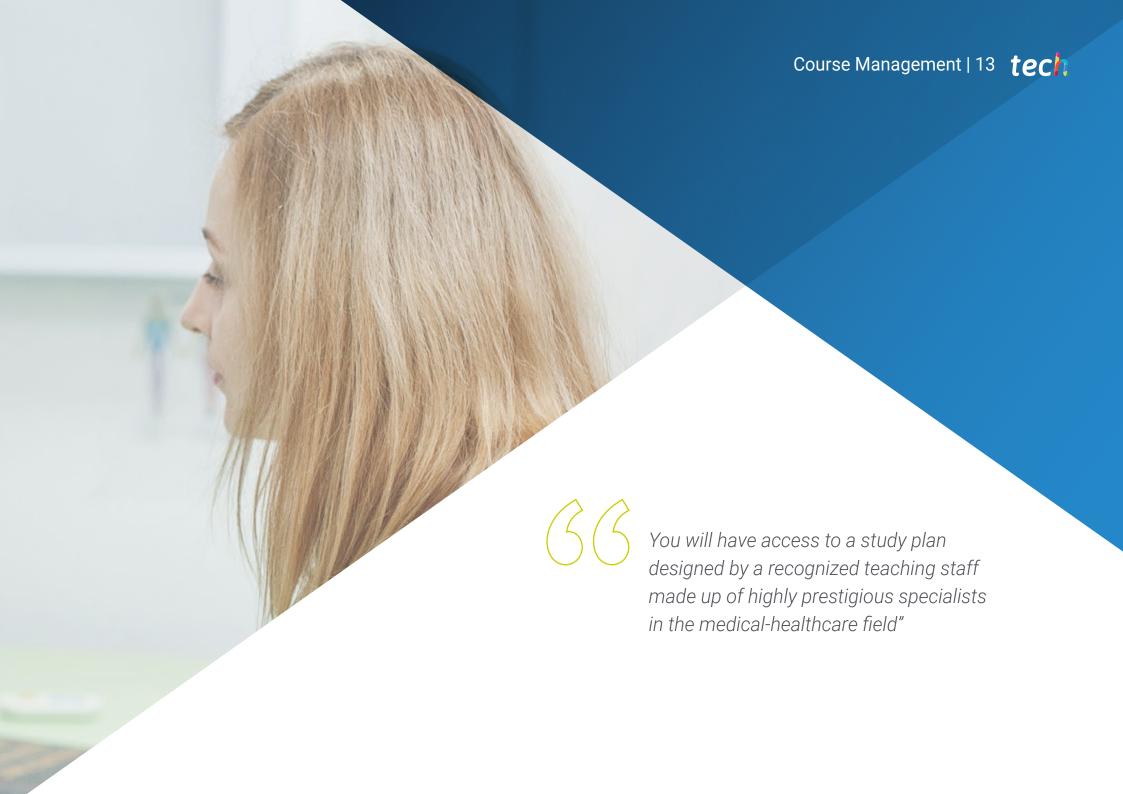
This is a flexible university qualification that is compatible with the most demanding daily responsibilities.

tech 10 | Objectives

General Objectives

- Analyze the basic interactions of ionizing radiation with tissues
- Establish the effects and risks of ionizing radiation at the cellular level
- Analyze elements of photon and electron beam measurement in external radiotherapy
- Examine the quality control program
- Identify the different treatment planning techniques for external radiotherapy treatment planning techniques
- Analyze the interactions of protons with matter
- Examine radiation protection and radiobiology in Proton Therapy
- Analyze the technology and equipment used in intraoperative radiation therapy
- Examine the clinical outcomes of brachytherapy in different oncological contexts
- Analyze the importance of the Radiological Protection
- Assimilate the existing risks derived from the use of ionizing radiation
- Develop the international regulations applicable to radiation protection

Specific Objective


• Examine the quality control program of radiotherapy equipment

A curriculum that will allow you to acquire skills in a flexible and efficient manner through the portable device of your choice"

tech 14 | Course Management

Management

Dr. De Luis Pérez, Francisco Javier

- Specialist in Hospital Radiophysics
- Head of the Radiophysics and Radiological Protection Service at Quirónsalud Hospitals in Alicante, Torrevieja and Murcia
- Research Group in Personalized Multidisciplinary Oncology, Universidad Católica San Antonio de Murcia
- Ph.D. in Applied Physics and Renewable Energies, University of Almeria
- Degree in Physical Sciences, specializing in Theoretical Physics, University of Granada
- Member of: Spanish Society of Medical Physics (SEFM), Royal Spanish Society of Physics (RSEF), Illustrious Official College of Physicists and Consulting and Contact Committee, Proton Therapy Center (Quirónsalud)

Professors

Dr. Morera Cano, Daniel

- Specialist in Hospital Radiophysics
- Hospital Radiophysics Faculty at the University Hospital Son Espases
- Master's Degree in Industrial Safety and Environment by the Polytechnic University of Valencia
- Master's Degree in Radiological Protection in Radioactive and Nuclear Facilities
- Degree in Industrial Engineering from the Polytechnic University of Valencia



tech 18 | Structure and Content

Module 1. External Radiotherapy. Physical Dosimetry

- 1.1. Linear Electron Accelerator. Equipment in External Radiotherapy
 - 1.1.1. Linear Electron Accelerator (LEA)
 - 1.1.2. External Radiotherapy Treatment Planner (TPS)
 - 1.1.3. Record Keeping and Verification System
 - 1.1.4. Special Techniques
 - 1.1.5. Hadrontherapy
- 1.2. Simulation and Localization Equipment in External Radiation Therapy
 - 1.2.1. Conventional Simulator
 - 1.2.2. Computed Tomography (CT) Simulation
 - 1.2.3. Other Image Modalities
- 1.3. Image-guided External Radiation Therapy Equipment
 - 1.3.1. Simulation equipment
 - 1.3.2. Image-guided Radiotherapy Equipment. CBCT
 - 1.3.3. Image-guided Radiotherapy Equipment. Planar Image
 - 1.3.4. Auxiliary Localization Systems
- 1.4. Photon Beams in Physical Dosimetry
 - 1.4.1. Measuring Equipment
 - 1.4.2. Calibration Protocols
 - 1.4.3. Calibration of Photon Beams
 - 1.4.4. Relative Dosimetry of Photon Beams
- 1.5. Electron Beams in Physical Dosimetry
 - 1.5.1. Measuring Equipment
 - 1.5.2. Calibration Protocols
 - 1.5.3. Calibration of Electron Beams
 - 1.5.4. Relative Dosimetry of Electron Beams
- 1.6. Implementation of External Radiotherapy Equipment
 - 1.6.1. Installation of External Radiotherapy Equipment
 - 1.6.2. Acceptance of External Radiotherapy Equipment
 - 1.6.3. Initial Reference Status (IRS)
 - 1.6.4. Clinical Use of External Radiotherapy Equipment
 - 1.6.5. Treatment Planning Systems

Structure and Content | 19 tech

- 1.7. Quality Control of External Radiotherapy Equipment
 - 1.7.1. Quality Control of Linear Accelerators
 - 1.7.2. Quality Control in the IGRT Equipment
 - 1.7.3. Quality Control in Simulation Systems
 - 1.7.4. Special Techniques
- 1.8. Quality Control of Radiation Measuring Equipment
 - 1.8.1. Dosimetry
 - 1.8.2. Measuring Tools
 - 1.8.3. Mannequins Employed
- 1.9. Application of Risk Analysis Systems in External Radiation Therapy
 - 1.9.1. Risk Analysis Systems
 - 1.9.2. Error Reporting Systems
 - 1.9.3. Process Mapping
- 1.10. Quality Assurance Programming in Physical Dosimetry
 - 1.10.1. Responsibilities
 - 1.10.2. Requirements in External Radiotherapy
 - 1.10.3. Quality Assurance Programming Clinical and Physical Aspects
 - 1.10.4. Maintenance of Quality Control Program

You will expand your professional practice and will be able to apply disruptive procedures in each of your consultations. Enroll now!"

tech 22 | Methodology

At TECH we use the Case Method

What should a professional do in a given situation? Throughout the program, students will face multiple simulated clinical cases, based on real patients, in which they will have to do research, establish hypotheses, and ultimately resolve the situation. There is an abundance of scientific evidence on the effectiveness of the method. Specialists learn better, faster, and more sustainably over time.

With TECH you will experience a way of learning that is shaking the foundations of traditional universities around the world.

According to Dr. Gérvas, the clinical case is the annotated presentation of a patient, or group of patients, which becomes a "case", an example or model that illustrates some peculiar clinical component, either because of its teaching power or because of its uniqueness or rarity. It is essential that the case is based on current professional life, trying to recreate the real conditions in the physician's professional practice.

Did you know that this method was developed in 1912, at Harvard, for law students? The case method consisted of presenting students with real-life, complex situations for them to make decisions and justify their decisions on how to solve them. In 1924, Harvard adopted it as a standard teaching method"

The effectiveness of the method is justified by four fundamental achievements:

- Students who follow this method not only achieve the assimilation of concepts, but also a development of their mental capacity, through exercises that evaluate real situations and the application of knowledge.
- 2. Learning is solidly translated into practical skills that allow the student to better integrate into the real world.
- 3. Ideas and concepts are understood more efficiently, given that the example situations are based on real-life.
- 4. Students like to feel that the effort they put into their studies is worthwhile. This then translates into a greater interest in learning and more time dedicated to working on the course.

Relearning Methodology

At TECH we enhance the case method with the best 100% online teaching methodology available: Relearning.

This university is the first in the world to combine the study of clinical cases with a 100% online learning system based on repetition, combining a minimum of 8 different elements in each lesson, a real revolution with respect to the mere study and analysis of cases.

Professionals will learn through real cases and by resolving complex situations in simulated learning environments. These simulations are developed using state-of-the-art software to facilitate immersive learning.

Methodology | 25 tech

At the forefront of world teaching, the Relearning method has managed to improve the overall satisfaction levels of professionals who complete their studies, with respect to the quality indicators of the best online university (Columbia University).

With this methodology, more than 250,000 physicians have been trained with unprecedented success in all clinical specialties regardless of surgical load. Our pedagogical methodology is developed in a highly competitive environment, with a university student body with a strong socioeconomic profile and an average age of 43.5 years old.

Relearning will allow you to learn with less effort and better performance, involving you more in your specialization, developing a critical mindset, defending arguments, and contrasting opinions: a direct equation to success.

In our program, learning is not a linear process, but rather a spiral (learn, unlearn, forget, and re-learn). Therefore, we combine each of these elements concentrically.

The overall score obtained by TECH's learning system is 8.01, according to the highest international standards.

tech 26 | Methodology

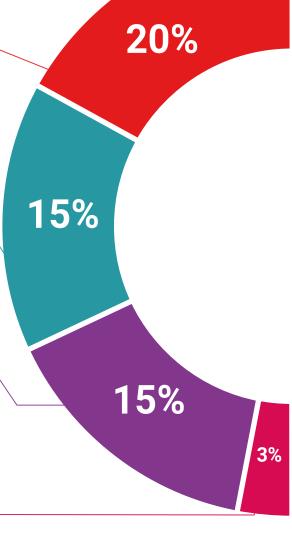
This program offers the best educational material, prepared with professionals in mind:

Study Material

All teaching material is produced by the specialists who teach the course, specifically for the course, so that the teaching content is highly specific and precise.

These contents are then applied to the audiovisual format, to create the TECH online working method. All this, with the latest techniques that offer high quality pieces in each and every one of the materials that are made available to the student.

Surgical Techniques and Procedures on Video


TECH introduces students to the latest techniques, the latest educational advances and to the forefront of current medical techniques. All of this in direct contact with students and explained in detail so as to aid their assimilation and understanding. And best of all, you can watch the videos as many times as you like.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia lessons that include audio, videos, images, diagrams, and concept maps in order to reinforce knowledge.

This exclusive educational system for presenting multimedia content was awarded by Microsoft as a "European Success Story".

Additional Reading

Recent articles, consensus documents and international guidelines, among others. In TECH's virtual library, students will have access to everything they need to complete their course.

Expert-Led Case Studies and Case Analysis

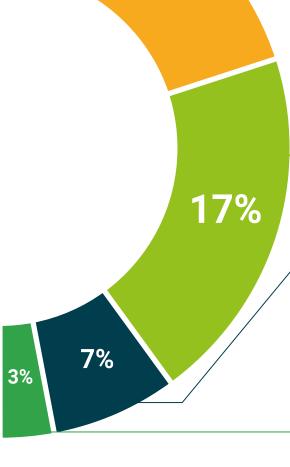
Effective learning ought to be contextual. Therefore, TECH presents real cases in which the expert will guide students, focusing on and solving the different situations: a clear and direct way to achieve the highest degree of understanding.

Testing & Retesting

We periodically evaluate and re-evaluate students' knowledge throughout the program, through assessment and self-assessment activities and exercises, so that they can see how they are achieving their goals.

Classes

There is scientific evidence on the usefulness of learning by observing experts.


The system known as Learning from an Expert strengthens knowledge and memory, and generates confidence in future difficult decisions.

Quick Action Guides

TECH offers the most relevant contents of the course in the form of worksheets or quick action guides. A synthetic, practical, and effective way to help students progress in their learning.

tech 30 | Certificate

This program will allow you to obtain your **Postgraduate Certificate in Radiophysics in External Radiotherapy in Physical Dosimetry** endorsed by **TECH Global University**, the world's largest online university.

TECH Global University is an official European University publicly recognized by the Government of Andorra (*official bulletin*). Andorra is part of the European Higher Education Area (EHEA) since 2003. The EHEA is an initiative promoted by the European Union that aims to organize the international training framework and harmonize the higher education systems of the member countries of this space. The project promotes common values, the implementation of collaborative tools and strengthening its quality assurance mechanisms to enhance collaboration and mobility among students, researchers and academics.

This **TECH Global University** title is a European program of continuing education and professional updating that guarantees the acquisition of competencies in its area of knowledge, providing a high curricular value to the student who completes the program.

Title: Postgraduate Certificate in Radiophysics in External Radiotherapy in Physical Dosimetry

Modality: online

Duration: 6 weeks

Accreditation: 6 ECTS

Mr./Ms. _____, with identification document _____ has successfully passed and obtained the title of:

Postgraduate Certificate in Radiophysics in External Radiotherapy in Physical Dosimetry

This is a program of 180 hours of duration equivalent to 6 ECTS, with a start date of dd/mm/yyyy and an end date of dd/mm/yyyy.

TECH Global University is a university officially recognized by the Government of Andorra on the 31st of January of 2024, which belongs to the European Higher Education Area (EHEA).

In Andorra la Vella, on the 28th of February of 2024

^{*}Apostille Convention. In the event that the student wishes to have their paper diploma issued with an apostille, TECH Global University will make the necessary arrangements to obtain it, at an additional cost.

Postgraduate Certificate

Radiophysics in External Radiotherapy in Physical Dosimetry

- » Modality: online
- » Duration: 6 weeks
- » Certificate: TECH Global University
- » Credits: 6 ECTS
- » Schedule: at your own pace
- » Exams: online

