

Máster de Formación Permanente Ingeniería Geomática y Geoinformación

» Modalidad: online

» Duración: 7 meses

» Titulación: TECH Universidad Tecnológica

» Acreditación: 60 ECTS

» Horario: a tu ritmo

» Exámenes: online

 ${\tt Acceso~web:} \textbf{ www.techtitute.com/ingenieria/master/master-ingenieria-geomatica-geoinformacion}$

Índice

 $\begin{array}{c|c} 01 & 02 \\ \hline Presentación & Objetivos \\ \hline 03 & 04 & 05 \\ \hline Competencias & Dirección de Curso & Estructura y contenido \\ \hline & pág. 14 & 06 & 07 \\ \hline \end{array}$

Titulación

pág. 44

pág. 36

Metodología

tech 06 | Presentación

Las nuevas herramientas tecnológicas y digitales han hecho posible que disciplinas como la Geomática puedan mejorar su precisión y eficacia. Así, la aparición de estas tecnologías disruptivas ha propiciado también el surgimiento de nuevos perfiles profesionales en esta área como el topógrafo pericial, el experto en SIG o el especialista en modelado 3D enfocado a este sector. Por esa razón, el profesional dedicado a este campo ha de estar atento a las nuevas novedades para poder incorporarlas a su trabajo.

Este Máster de Formación Permanente en Ingeniería Geomática y Geoinformación profundiza en ellas, centrándose en cuestiones como la fotogrametría, el geoposicionamiento, la informática aplicada a este ámbito; especialmente la programación y el diseño y manejo de bases de datos, la utilización de drones para representar el terreno a partir de imágenes fotográficas, entre muchas otras. De esta manera, el profesional integrará en su práctica diaria las técnicas más innovadoras que le permitirán adaptarse a las transformaciones del sector y acceder a los nuevos perfiles laborales que han aparecido recientemente.

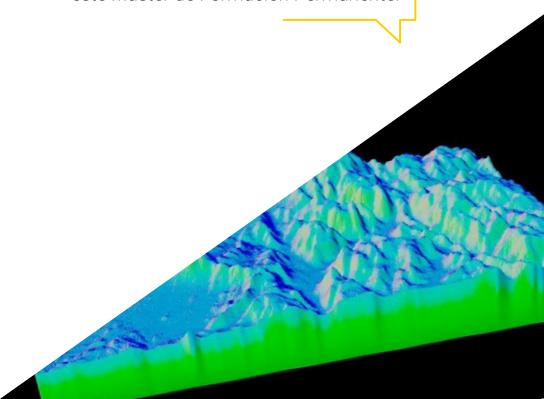
Y todo esto lo conseguirá a partir de una metodología de enseñanza en línea diseñada especialmente para que el profesional pueda compaginar su trabajo con los estudios, sin ninguna clase de interrupción. Además, le guiará a lo largo de todo el proceso un cuadro docente de primer nivel que cuenta con una amplia experiencia en este campo, al tiempo que el alumno disfruta de numerosos contenidos multimedia como resúmenes interactivos, ejercicios prácticos o clases magistrales.

Este **Máster de Formación Permanente en Ingeniería Geomática y Geoinformación** contiene el programa más completo y actualizado del mercado. Sus características más destacadas son:

- El desarrollo de casos prácticos presentados por expertos en Topografía, ingeniería civil y Geomática
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Profundiza en cuestiones como la fotogrametría mientras disfrutas de una metodología de enseñanza que se adapta a ti, permitiéndote decidir el momento y el lugar para estudiar"

En los últimos años han surgido nuevos perfiles profesionales en el campo de la Geomática como el topógrafo pericial. Esta titulación te da todas las claves para afrontar esta transformación con todas las garantías"


El programa incluye, en su cuadro docente, a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual. Es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.

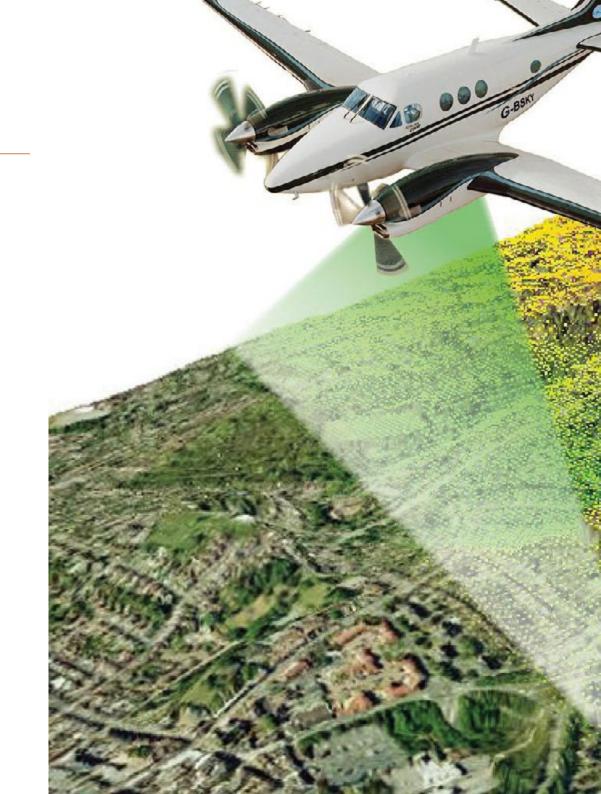
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Gracias a este programa aprenderás a emplear drones para cartografiar y representar el terreno mediante imágenes fotográficas.

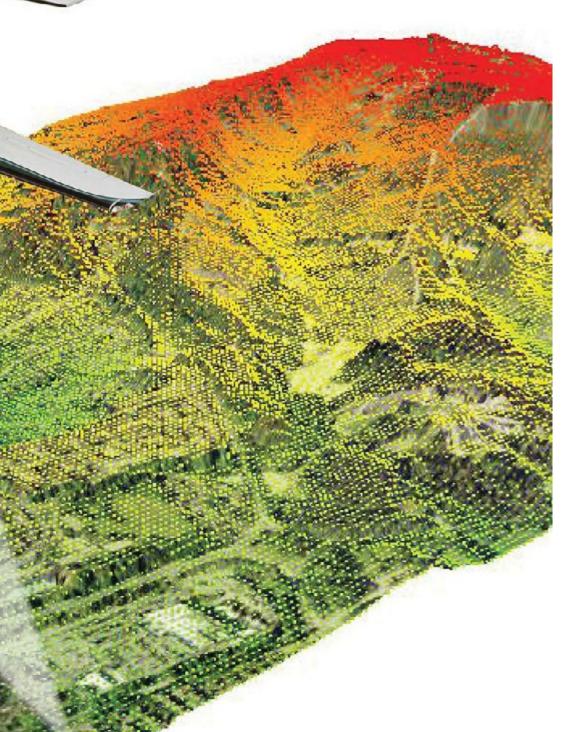
Conoce las últimas herramientas informáticas aplicadas a la Geomática con este Máster de Formación Permanente.

02 Objetivos

El objetivo principal de este Máster de Formación Permanente en Ingeniería Geomática y Geoinformación es ofrecer al profesional las mejores y más novedosas herramientas para poder recoger, gestionar y presentar información geográfica. Así, al finalizar esta titulación, estará en posesión de unos conocimientos que le permitirán acceder a numerosos proyectos de ingeniería civil y de Topografía. Esto se debe a que el profesional habrá incorporado a su práctica diaria las herramientas tecnológicas e informáticas más innovadoras para desarrollar su trabajo.



tech 10 | Objetivos



Objetivos generales

- Compilar conocimientos de diferentes disciplinas de la Topografía y enfocarlos hacia el entorno pericial
- Determinar la Topografía pericial como una rama de la Geomática
- Analizar en profundidad las particularidades del catastro para identificar las características actuales que lo definen/componen
- Examinar el urbanismo y la ordenación del Territorioterritorio haciendo un recorrido por sus leyes fundamentales
- Evaluar el posicionamiento del urbanismo y ordenación del territorio dentro del concepto suelo, así como los recursos disponibles en Internet
- Generar conocimiento especializado sobre la tecnología LIDAR
- Analizar el impacto de datos LIDAR en la tecnología que nos rodea
- Integrar, gestionar y ejecutar proyectos de modelado de información de construcción
- Evaluar los diferentes motores de bases de datos y sus bondades
- Analizar los servidores web más usados y con más proyección y prestigio
- Evaluar los diferentes clientes de escritorio existentes, clientes webs y para móviles
- Analizar diferentes clientes live
- Identificar las mejores soluciones de FrontEnd para proyectos específicos
- Desarrollar los lenguajes de programación predominantes en Geomática
- Examinar dichos lenguajes como medio de conexión a las bases de datos
- Fundamentar el entorno más apropiado para el uso de uno u otro lenguaje
- Evaluar el uso de cada lenguaje y su utilidad para pintar mapas y presentar otros resultados

Objetivos específicos

Módulo 1. Topografía pericial

- Analizar los elementos de la topografía orientada a la propiedad
- Examinar la legislación y su ámbito de aplicación en función de donde se realice el trabajo pericial
- Desarrollar el concepto de prueba pericial
- Determinar la estructura de un informe pericial
- Establecer los requisitos para ser perito
- Analizar el modo de actuación de un perito
- Identificar los diferentes actores de un procedimiento pericial

Módulo 2. Catastro y urbanismo

- Evaluar el sistema de información catastral en la red
- Analizar los servicios de cartografía catastral y sus distintos formatos de descarga
- Desarrollar los fundamentos de valor / valoración catastral y registro de la propiedad
- Identificar las nociones del urbanismo y ordenación del territorio, así como las leyes que los regulan
- Determinar las bases de la planificación urbanística
- Examinar el urbanismo en Internet

tech 12 | Objetivos

Módulo 3. Geoposicionamiento

- Establecer los sistemas de referencia y los marcos de referencia en los que se basa el geoposicionamiento
- Analizar el funcionamiento de los sistemas de posicionamiento Wlan, Wifi, celeste, Submarino, mostrando especial atención a los sistemas GNSS y móvil
- Examinar los sistemas de aumentación GNSS, objetivo y función
- Desarrollar la propagación de la señal desde su envío en el satélite hasta su recepción
- Discriminar los distintos métodos de observación GNSS y estudiar los sistemas GNSS diferencial junto a sus protocolos y estándares
- Determinar el posicionamiento por punto preciso (PPP)
- Evaluar los sistemas de posicionamiento asistido (A-GNSS) y su uso extendido entre los sistemas de posicionamiento móvil

Módulo 4. Cartografía con tecnología LIDAR

- Analizar la tecnología LIDAR y sus múltiples aplicaciones en la tecnología actual
- Concretar la importancia de la tecnología LIDAR en aplicaciones geomáticas
- Clasificar los diferentes sistemas de mapeo LIDAR y sus aplicaciones
- Definir la utilización del escáner láser 3D como parte de las tecnologías LIDAR
- Proponer la utilización del escáner láser 3D para la realización de levantamientos topográficos
- Demostrar las ventajas del sistema de adquisición masiva de Geoinformación mediante escaneo láser 3D, frente a los levantamientos topográficos tradicionales
- Detallar una metodología clara y práctica del escaneado láser 3D desde la planificación hasta la entrega fiable de resultados
- Examinar, mediante casos prácticos reales de utilización, el escáner láser 3D en diversos sectores: minería, construcción, obra civil, control de deformaciones o movimientos de tierras
- Recapitular el impacto de las tecnologías LIDAR en la Topografía actual y a futuro

Módulo 5. Modelado 3D y tecnología BIM

- Determinar la forma de proceder para capturar con fotografías el objeto deseado de modelar
- Obtener y analizar nubes de puntos a partir de dichas fotografías empleando diversos softwares específicos de fotogrametría
- Procesar las diferentes nubes de puntos de que disponga eliminando el ruido, georreferenciándolos, ajustándolos y aplicando los algoritmos de densificado de malla que más se adecúen a la realidad
- Editar, suavizar, filtrar, fusionar y analizar las mallas 3D resultado del alineamiento y reconstrucción de las nubes de puntos
- Concretar los parámetros de aplicación a las mallas de curvatura, distancia y oclusión ambiental
- Crear una animación de la malla renderizada, texturizada y según las curvas IPO establecidas
- Preparar y establecer el modelo para su impresión en 3D
- Identificar las partes de un proyecto BIM y presentar el modelo tridimensional como elemento base para el software de entorno BIM

Módulo 6. Fotogrametría con drones

- Desarrollar las virtudes y limitaciones de un dron para realizar cartografía
- Identificar la realidad de la superficie a representar, sobre el terreno
- Dotar de rigor topográfico mediante Topografía convencional, previa al vuelo fotogramétrico
- Identificar la realidad del volumen donde vamos a trabajar para minimizar cualquier riesgo
- Controlar en todo momento la trayectoria del dron en base a los parámetros programados
- Asegurar la correcta copia de los archivos para minimizar el riesgo de pérdida de los mismos
- Configurar la mejor restitución del vuelo acorde a los resultados buscados
- Descargar, filtrar y limpiar los resultados obtenidos del vuelo con la precisión requerida
- Presentar la cartografía en los formatos más habituales según las necesidades del cliente

Módulo 7. Sistemas de Información Geográfica

- Analizar los elementos, fases de proceso y almacenamiento esenciales para la gestión de un SIG
- Desarrollar mapas cartográficos georreferenciados con capas superpuestas de diversas fuentes mediante software SIG
- Evaluar los problemas topológicos que suceden en los procesos con los modelos vectoriales
- Analizar espacialmente las diferentes capas que se requieren para el proyecto, desarrollando estudios de zonas afectadas o búsquedas de espacios específicos o de otro entorno de trabajo
- Presentar proyectos analizados por funciones de píxel y superficies en capas ráster para determinar información de interés
- Trabajar con modelos digitales del terreno y modelizar, representar y visualizar la información territorial sobre y bajo la superficie terrestre
- Consultar rutas y *Tracks* de navegación interactuando en entornos de dispositivos móviles

Módulo 8. Backend para SIG

- Generar conocimiento especializado sobre el servidor Apache para compartir resultados Online
- Evaluar el servidor Nginx como alternativa al servidor Apache
- Analizar el servidor Tomcat como servidor de aplicaciones y otros servidores de aplicaciones
- Examinar el motor de bases de datos MySQL, Postgres y SQLite
- Determinar qué motor de Bases de Datos elegir para un proyecto en concreto

Módulo 9. Clientes para SIG

- Evaluar los requisitos de los diferentes clientes
- Analizar las capacidades de usar diferentes Plugins y las capacidades de customización de los clientes
- Presentar los diferentes clientes y los lenguajes de programación que usan
- Examinar las diferentes opciones de que va a disponer un usuario
- Desarrollar casos de uso de los diferentes clientes
- Generar una fuente de conocimiento para discernir qué cliente usar para cada proyecto

Módulo 10. Programación para la Geomática

- Configurar PHP y examinar sus requisitos de uso
- Presentar los datos almacenados de forma atractiva
- Analizar las estructuras de control e iteración en los diferentes lenguajes
- Determinar cómo conectarnos a Bases de Datos ubicadas en diferentes servidores o en el *Cloud*
- Examinar las posibilidades de uso de los lenguajes para aplicaciones web y de dispositivos móviles
- Desarrollar casos de uso de los diferentes lenguajes
- Generar una fuente de conocimiento para discernir qué lenguaje usar para cada proyecto, servidor de Backend o cliente de escritorio

Actualízate y especialízate gracias a este Máster de Formación Permanente en Ingeniería Geomática y Geoinformación"

tech 16 | Competencias

Competencias generales

- Planificar, estructurar y desarrollar informes periciales
- Establecer el entorno legislativo en el que se desenvuelve la Topografía pericial
- Presentar el abanico de posibilidades del servicio del catastro pasando por el registro de la propiedad
- Determinar los diferentes sistemas de posicionamiento estudiando su funcionamiento
- Planificar un levantamiento fotogramétrico en función de las necesidades
- Desarrollar una metodología práctica, útil y segura para obtener cartografía con drones
- Analizar, filtrar y editar con rigor topográfico, los resultados obtenidos
- Presentar de manera limpia intuitiva y práctica la cartografía o realidad representada
- Reunir, revisar e interpretar la información del terreno y lo relativo geográficamente a él
- Planificar, proyectar y ejecutar un estudio de análisis demográfico o de otra índole vinculado con la información geográfica

Este Máster de Formación Permanente te permitirá progresar profesionalmente de forma inmediata. Matricúlate y descúbrelo ya"

Competencias específicas

- Desarrollar los sistemas GNSS y evaluar sus posibilidades
- Estudiar los posibles errores en los sistemas GNSS
- Analizar los resultados GNSS obtenidos
- Compilar las aplicaciones LIDAR aplicadas a la Geomática y posibilidades de futuro
- Examinar la aplicación práctica LIDAR mediante escaneo láser 3D aplicada a la Topografía
- Diseñar y desarrollar proyectos de fotogrametría de objeto cercano
- Generar, medir, analizar y proyectar objetos tridimensionales
- Georreferenciar y calibrar el entorno del proyecto
- Definir los parámetros que sean precisos conocer para la elaboración de los diferentes métodos fotogramétricos
- Preparar el objeto tridimensional para su impresión en 3D
- Planificar, proyectar y ejecutar un plano cartográfico con Sistemas de Información Geográfica (SIG)
- Compilar, establecer y procesar los sistemas de navegación y SIG de implementación en dispositivos móviles
- Desarrollar los servidores recomendados por la Fundación Geoespacial
- Identificar las mejores soluciones de *Backend* para proyectos específicos

Dirección

D. Puértolas Salañer, Ángel Manuel

- Full Satck Developer en Alkemy Enabling Evolution
- Desarrollador de aplicaciones en Entorno Net, desarrollo en Python, gestión BBDD SQL Server y administración de sistemas en ASISPA
- Topógrafo de estudio y reconstrucción de caminos y accesos a poblaciones en el Ministerio de Defensa
- Topógrafo de georreferenciación del catastro antiguo de la provincia de Murcia en Geoinformación y Sistemas SL
- Gestión Web, administración de servidores y desarrollos y automatización de tareas en Python en Milcom
- Desarrollo de aplicaciones en Entorno Net, gestión SQL Server y soporte de software propio en Ecomputer
- Ingeniero Técnico en Topografía por la Universidad Politécnica de Valencia
- Máster en Ciberseguridad por MF Business School y la Universidad Camilo José Cela

Profesores

D. Porto Tapiquén, Carlos Efraín

- Analista, consultor y cartógrafo en Sistemas de Información Geográfica
- Profesor de Sistemas de Información Geográfica en la Maestría de Ordenamiento Territorial
- Instructor de Cursos de Extensión en SIG y Cartografía Digital
- Máster en Teledetección y SIG
- Licenciado en Geografía por la Universidad Central de Venezuela

D. Aznar Cabotá, Sergio

- Director del Departamento GIS en Idrica
- ◆ Analista y Desarrollador GIS en Belike
- Analista y Desarrollador GIS en Aditelsa
- Desarrollador de Software GIS en INDRA/MINSAIT para Ibedrola
- Profesor en la UPV en Tecnologías Digitales para el Sector Agroalimentario
- Ingeniero en Geodesia y Cartografía por la Universidad Politécnica de Valencia
- Ingeniero técnico en Topografía por la Universidad Politécnica de Valencia

D. Encinas Pérez, Daniel

- Encargado de la Oficina Técnica y Topografía en el Centro Medioambiental de Enusa Industrias Avanzadas
- Jefe de Obra y Topografía en Desmontes y Excavaciones Ortigosa SA
- Responsable de Producción y Topografía en Epsa Internacional
- Levantamiento topográfico para Administración para el Plan Parcial del Mojón Ayuntamiento de Palazuelos de Eresma
- Máster en Geotecnologías Cartográficas aplicadas a la Ingeniería y Arquitectura por la USAL
- Grado en Ingeniería en Geomática y Topografía por la USAL
- Técnico Superior en Proyectos de Edificación y Obra Civil
- Técnico Superior en Desarrollo de Proyectos Urbanísticos y Operaciones Topográficas
- Piloto Profesional de RPAS (Expedido por Aerocámaras AESA)

D. Ramo Maicas, Tomás

- Administrador y Jefe de Topografía de la Empresa Revolotear
- Jefe de Topografía en Senegal para la empresa MOPSA (Grupo Marco en Senegal)
- Labores logísticas de implantación para la empresa Blauverd en Argelia
- Jefe de obra y responsable de Topografía de diversas obras de edificación en Argel, Constantine y Orán
- Ingeniero Técnico en Topografía por la Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topografía de la Universidad Politécnica de Valencia
- Grado en Geomática y Topografía por la Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topografía de la Universidad Politécnica de Valencia
- Piloto de drones (RPAS) por Flyschool Air Academy

D. Díaz, Rodrigo

- GIS Developer en Indrica
- Desarrollador senior en ViewNext-CaixaBank
- Cofundador de Geomodel Cartografía & SIG SC
- Desarrollador de Webapps en ValeWeb
- Licenciado en Ingeniería Superior en Cartografía y Geodesia en la Universidad Politécnica de Valencia
- Licenciado en Ingeniería Técnica en Topografía en la Universidad Politécnica de Valencia
- FP Superior en Desarrollo de Aplicaciones Web en el CIPFP de Mislata

D. Moll Romeu, Kevin

- Ingeniero Especialista en Geodésica, Topografía y Cartografía
- Soldado en el Ejército de Aire en la Base Aérea de Alcantarilla
- Graduado en Ingeniería Geodésica, Topografía y Cartografía por la Universidad Politécnica de Valencia

Aprovecha la oportunidad para conocer los últimos avances en esta materia para aplicarla a tu práctica diaria"

tech 24 | Estructura y contenido

Módulo 1. Topografía Pericial

- 1.1. Topografía clásica
 - 1.1.1. Estación total
 - 1.1.1.1. Puesta en estación
 - 1.1.1.2. Estación total de seguimiento automático
 - 1.1.1.3. Medición sin prisma
 - 1.1.2. Transformación de coordenadas
 - 1.1.3. Métodos topográficos
 - 1.1.3.1. Puesta en estación libre
 - 1.1.3.2. Medición de distancias
 - 1.1.3.3. Replanteo
 - 1.1.3.4. Calculo de áreas
 - 1.1.3.5. Altura remota
- 1.2. Cartografía
 - 1.2.1. Proyecciones cartográficas
 - 1.2.2. Proyección UTM
 - 1.2.3. Sistema de coordenadas UTM
- 1.3. Geodesia
 - 1.3.1. Geoide y elipsoide
 - 1.3.2. El datum
 - 1.3.3. Sistemas de coordenadas
 - 1.3.4. Tipos de elevaciones
 - 1.3.4.1. Altura del geoide
 - 1.3.4.2. Elipsoidal
 - 1.3.4.3. Ortométrica
 - 1.3.5. Sistemas geodésicos de referencia
 - 1.3.6. Redes de nivelación
- 1.4. Geoposicionamiento
 - 1.4.1. Posicionamiento por satélites
 - 1.4.2. Errores
 - 1.4.3. GPS

- 1.4.4. GLONAS
- 1.4.5. Galileo
- 1.4.6. Métodos de posicionamiento
 - 1.4.6.1. Estático
 - 1.4.6.2. Estático-Rápido
 - 1.4.6.3. RTK
 - 1.4.6.4. Tiempo real
- 1.5. Fotogrametría y técnicas LIDAR
 - 1.5.1. Fotogrametría
 - 1.5.2. Modelo digital de elevaciones
 - 1.5.3. LIDAR
- 1.6. Topografía orientada a la propiedad
 - 161 Sistemas de medida
 - 1.6.2. Deslindes
 - 1.6.2.1. Tipos
 - 1.6.2.2. Regulación
 - 1.6.2.3. Deslindes administrativos
 - 163 Servidumbres
 - 1.6.4. Segregación, división, agrupación y agregación
- 1.7. Registro de la propiedad
 - 1.7.1. Catastro
 - 1.7.2. Registro de la propiedad
 - 1.7.2.1. Organización
 - 1.7.2.2. Discrepancias registrales
 - 1.7.3. Notariado
- 1.8. Legislación
 - 1.8.1. Legislación estatal
 - 1.8.2. Legislación autonómica
 - 1.8.3. Casos con legislación particular por componentes históricos
- 1.9. Prueba pericial
 - 1.9.1. La prueba pericial
 - 1.9.2. Requisitos para ser perito
 - 1.9.3. Tipos

Estructura y contenido | 25 tech

- 1.9.4. Actuación del Perito
- 1.9.5. Pruebas en la delimitación de propiedades
- 1.10. Informe pericial
 - 1.10.1. Pasos previos al informe
 - 1.10.2. Actores del procedimiento pericial
 - 1.10.2.1. Juez-magistrado
 - 1.10.2.2. Secretario Judicial
 - 1.10.2.3. Procuradores
 - 1.10.2.4. Abogados
 - 1.10.2.5. Parte demandante y parte demandada
 - 1.10.3. Partes del informe pericial

Módulo 2. Catastro y urbanismo

- 2.1. El catastro
 - 2.1.1. El Catastro
 - 2.1.2. Legislación que regula el Catastro
- 2.2. El catastro inmobiliario
 - 2.2.1. Catastro inmobiliario
 - 2.2.2. La cartografía catastral
 - 2.2.3 Referencia catastral
 - 2.2.4. Certificación catastral descriptiva y gráfica
- 2.3. Presencia del catastro en Internet
 - 2.3.1. Cartografía catastral
 - 2.3.2. Formato de descarga Gml Inspire
 - 2.3.2.1. Servicio Wms para visualizar mapas
 - 2.3.2.2. Servicio Wfs de descarga
 - 2.3.2.3. Servicio Atom de descarga
 - 2.3.3. Cartografía catastral: formato Shapefile
 - 2.3.4. Cartografía catastral: formato Cat
 - 2.3.5. Otros formatos
- 2.4. Valoración catastral
 - 2.4.1. Valor catastral
 - 2.4.2. Valoración catastral urbana

- 2.4.3. Valoración catastral rústica
- 2.4.4. Valoración del suelo
- 2.5. Registro de la propiedad y notariado
 - 2.5.1. Nota simple y certificación
 - 2.5.2. Inmatriculación y referencia catastral
 - 2.5.3. Notariado
 - 2.5.4. El geómetra experto
- 2.6. Coordinación catastro inmobiliario. Registro de la propiedad
 - 2.6.1. Catastro y registro
 - 2.6.2. Finca registral y parcela catastral
 - 2.6.3. Coordinación catastro registro
 - 2.6.4. Coordinación gráfica
- 2.7. Legislación urbanística
 - 2.7.1. Sucesivas leyes del suelo
 - 2.7.2. R.D.L. 07/2015 Texto refundido de la ley del suelo y rehabilitación urbana
- 2.8. El suelo
 - 2.8.1. Régimen del suelo en la legislación estatal
 - 2.8.2. Régimen del suelo en la legislación autonómica
 - 2.8.3. Clases de suelo
- 2.9. Urbanismo y ordenación del territorio
 - 2.9.1. Urbanismo y ordenación del territorio
 - 2 9 2 Instrumentos de ordenación
 - 2.9.3. Instrumentos de planificación urbanística
- 2.10. Presencia del urbanismo en Internet
 - 2.10.1. Urbanismo y sostenibilidad urbana
 - 2.10.2. Sistema de información urbana
 - 2.10.3. Visor cartográfico SIU
 - 2.10.4. Planeamiento urbanístico
 - 2.10.5. Urbanismo en red

tech 26 | Estructura y contenido

3.4.3. Reloj u oscilador GNSS

Módulo 3. Geoposicionamiento 3.1. Geoposicionamiento 3.1.1. Geoposicionamiento 3.1.2. Objetivos del posicionamiento 3.1.3. Movimientos de la tierra 3.1.3.1. Traslación y rotación 3.1.3.2. Precesión y nutación 3.1.3.3. Movimientos del polo Sistemas de georreferenciación 3.2.1. Sistemas de referencia 3.2.1.1. Sistema de referencia terrestre internacional. ITRS 3.2.1.2. Sistema local de referencia. ETRS 89 (Datum europeo) 3.2.2. Marco de referencia 3.2.2.1. Marco de referencia internacional terrestre. ITRF 3.2.2.2. Marco de referencia internacional GNSS. Materialización ITRS 3.2.3. Elipsoides de revolución internacionales GRS-80 y WGS-84 3.3. Mecanismos o sistemas de Posicionamiento 3.3.1. Posicionamiento GNSS 3.3.2. Posicionamiento Móvil 3.3.3. Posicionamiento Wlan 3.3.4. Posicionamiento WIFI 3.3.5. Posicionamiento celeste 3.3.6. Posicionamiento submarino Tecnologías GNSS 3.4.1. Tipo de satélites según órbita 3.4.1.1. Geoestacionarios 3.4.1.2. De órbita media 3.4.1.3. De órbita baja 3.4.2. Tecnologías GNSS multiconstelación 3.4.2.1. Constelación NAVSTAR 3.4.2.2. Constelación GALILEO 3.4.2.2.1. Fases y realización del proyecto

Sistema	s de aumentación					
3.5.1.	Sistema de aumentación basado en satélites (SBAS)					
3.5.2.	Sistema de aumentación basado en tierra (GBAS)					
3.5.3.	GNSS asistido (A-GNSS)					
Propaga	ación de la señal GNSS					
3.6.1.	La señal GNSS					
3.6.2.	Atmósfera e ionosfera					
	3.6.2.1. Elementos en la propagación de ondas					
	3.6.2.2. Comportamiento de la señal GNSS					
	3.6.2.3. Efecto ionosférico					
	3.6.2.4. Modelos ionosféricos					
3.6.3.	Troposfera					
	3.6.3.1. Refracción troposférica					
	3.6.3.2. Modelos troposféricos					
	3.6.3.3. Retardos troposféricos					
Fuentes	de error GNSS					
3.7.1.	Errores de satélite y órbita					
3.7.2.	Errores atmosféricos					
3.7.3.	Errores en recepción de señal					
3.7.4.	Errores por aparatos externos					
Técnica	s de observación y posicionamiento GNSS					
3.8.1.	Métodos de observación					
	3.8.1.1. Según tipo de observable					
	3.8.1.1.1. Observable de código/pseudodistancias					
	3.8.1.1.2. Observable de fase					
	3.8.1.2. Según la acción del receptor					
	3.8.1.2.1. Estático					
	3.8.1.2.2. Cinemático					
	3.8.1.3. Según momento en que se realiza el cálculo					
	3.8.1.3.1. Postproceso					
	3.8.1.3.2. Tiempo real					
	3.8.1.4. Según el tipo de solución					

3.8.1.4.1. Absoluto

3.5.

3.6.

3.7.

3.8.

Estructura y contenido | 27 tech

3.8.1.4.2. Relativo/Diferencia	
3.8.1.5. Según el tiempo de observación	

3.8.1.5.1. Estático

3.8.1.5.2. Estático rápido

3.8.1.5.3. Cinemático

3.8.1.5.4. Cinemático RTK

3.8.2. Posicionamiento punto preciso PPP

3.8.2.1. Principios

3.8.2.2. Ventajas y desventajas

3.8.2.3. Errores y correcciones

3.8.3 GNSS diferencial

3.8.3.1. Cinemático en tiempo real RTK

3.8.3.2. Protocolo NTRIP

3.8.3.3. Estándar NMEA

3.8.4. Tipos de receptores

3.9. Análisis de resultados

3.9.1. Análisis estadístico de resultados

3.9.2. Test tras el ajuste

3.9.3. Detección de errores

3931 Fiabilidad interna

3.9.3.2. Test de Baarda

3.9.4. Figuras de error

3.10. Posicionamiento en dispositivos móviles

3.10.1. Sistemas de posicionamiento A-GNSS (GNSS asistido)

3.10.2. Sistema basado en localización

3.10.3. Sistemas basados en satélites

3 10 4 Telefonía móvil CELLID

3.10.5. Redes Wifi

Módulo 4. Cartografía con tecnología LIDAR

- 4.1. Tecnología LIDAR
 - 4.1.1. Tecnología LIDAR
 - 4.1.2. Funcionamiento del sistema
 - 4.1.3. Componentes principales
- 4.2. Aplicaciones LIDAR
 - 4.2.1. Aplicaciones
 - 4.2.2. Clasificación
 - 4.2.3. Implantación actual
- 4.3. LIDAR aplicado a la Geomática
 - 4.3.1. Sistema de mapeo móvil
 - 4.3.2. LIDAR aerotransportado
 - 4.3.3. LIDAR terrestre. Backpack y escaneado estático
- 4.4. Levantamientos topográficos mediante escáner láser 3D
 - 4.4.1. Funcionamiento del escaneado láser 3D para Topografía
 - 4.4.2 Análisis de errores
 - 4.4.3. Metodología general de levantamiento
 - 4.4.4. Aplicaciones
- 4.5. Planificación de levantamiento mediante escáner láser 3D
 - 4.5.1. Objetivos a escanear
 - 4.5.2. Planificación de posicionamiento y georreferenciación
 - 4.5.3. Planificación de densidad de captura
- 4.6. Escaneo 3D y georreferenciación
 - 4.6.1. Configuración del escáner
 - 4.6.2. Adquisición de datos
 - 4.6.3. Lectura de dianas: georreferenciación
- 4.7. Gestión inicial de la Geoinformación
 - 4.7.1. Descarga de la Geoinformación
 - 4.7.2. Encaje de nubes de puntos
 - 4.7.3. Georreferenciación y exportación de nubes de puntos
- 4.8. Edición de nubes de puntos y aplicación de resultados
 - 4.8.1. Procesamiento de nubes de puntos. Limpieza, remuestreo o simplificación

tech 28 | Estructura y contenido

- 4.8.2. Extracción geométrica
- 4.8.3. Modelando 3D. Generación de mallas y aplicación de texturas
- 4.8.4. Análisis. Secciones transversales y mediciones
- 4.9. Levantamiento mediante escáner láser 3D
 - 4.9.1. Planificación: precisiones e instrumental a utilizar
 - 4.9.2. Trabajo de campo: escaneo y georreferenciación
 - 4.9.3. Descarga procesamiento, edición y entrega
- 4.10. Repercusión de las Tecnologías LIDAR
 - 4.10.1. Repercusión general de las tecnologías LIDAR
 - 4.10.2. Impacto particular del escáner láser 3D en la Topografía

Módulo 5. Modelado 3D y tecnologías BIM

- 5.1. Modelos 3D
 - 5.1.1. Tipos de datos
 - 5.1.2. Antecedentes
 - 5.1.2.1. Por contacto
 - 5.1.2.2. Sin contacto
 - 5.1.3. Aplicaciones
- 5.2. La cámara como herramienta de toma de datos
 - 5.2.1. Cámaras de fotografía
 - 5.2.1.1. Tipos de cámaras
 - 5.2.1.2. Elementos de control
 - 5.2.1.3. Calibración
 - 5.2.2. Datos EXIF
 - 5.2.2.1. Parámetros extrínsecos (3D)
 - 5.2.2.2. Parámetros intrínsecos (2D)
 - 5.2.3. Toma de fotografías
 - 5.2.3.1. Efecto Domo
 - 5.2.3.2. Flash
 - 5.2.3.3. Cantidad de capturas
 - 5.2.3.4. Distancias cámara objeto
 - 5.2.3.5. Método
 - 5.2.4. Calidad necesaria

Estructura y contenido | 29 tech

5.3.	Captura	de	nuntos	de a	novo	v de	control
0.0.	Captula	uc	puntos	uc c	1DO10	y uc	COLLLO

5.3.1. Topografía clásica y tecnologías GNSS

5.3.1.1. Aplicación a la fotogrametría de objeto cercano

5.3.2. Método de observación

5.3.2.1. Estudio de la zona

5.3.2.2. Justificación del método

5.3.3. Red de observación

5.3.3.1. Planificación

5.3.4. Análisis de precisión

5.4. Generación de una nube de puntos con Photomodeler Scanner

5.4.1. Antecedentes

5.4.1.1. Photomodeler

5.4.1.2. Photomodeler Scanner

5.4.2. Requisitos

5.4.3. Calibración

5.4.4. Smart Matching

5.4.4.1. Obtención de la nube de puntos densa

5.4.5. Creación de una malla con textura

5.4.6. Creación de un modelo 3D a partir de imágenes con Photomodeler Scanner

5.5. Generación de una nube de puntos mediante Structure from Motion

5.5.1. Cámaras, nube de puntos, software

5.5.2. Metodología

5.5.2.1. Mapa 3D disperso

5.5.2.2. Mapa 3D denso

5.5.2.3. Malla de triángulos

5.5.3. Aplicaciones

5.6. Georreferenciación de nube de puntos

5.6.1. Sistemas de referencias y sistemas de coordenadas

5.6.2. Transformación

5.6.2.1. Parámetros

5.6.2.2. Orientación absoluta

tech 30 | Estructura y contenido

5.6.2.3. Puntos de apoyo

		5.6.2.4. Puntos de control (GCP)
	5.6.3.	3DVEM
5.7.	Meshlab	o. Edición de mallas 3D
	5.7.1.	Formatos
	5.7.2.	Comandos
	5.7.3.	Herramientas
	5.7.4.	Métodos de reconstrucción 3D
5.8.	Blender.	Renderizado y animación de modelos 3D
	5.8.1.	Producción 3D
		5.8.1.1. Modelado
		5.8.1.2. Materiales y texturas
		5.8.1.3. Iluminación
		5.8.1.4. Animación
		5.8.1.5. Renderizado fotorrealista
		5.8.1.6. Edición de vídeo
	5.8.2.	Interfaz
	5.8.3.	Herramientas
	5.8.4.	Animación
	5.8.5.	Renderizado
	5.8.6.	Preparado para impresión 3D
5.9.	Impresion	ón 3D
	5.9.1.	Impresión 3D
		5.9.1.1. Antecedentes
		5.9.1.2. Tecnologías de fabricación 3D
		5.9.1.3. Slicer
		5.9.1.4. Materiales
		5.9.1.5. Sistemas de coordenadas
		5.9.1.6. Formatos
		5.9.1.7. Aplicaciones

		5.9.2.1. Ejes X e Y
		5.9.2.2. Eje Z
		5.9.2.3. Alineación de la cama
		5.9.2.4. Flujo
	5.9.3.	Impresión con Cura
5.10.	Tecnolo	ogías BIM
	5.10.1.	Tecnologías BIM
	5.10.2.	Partes de un proyecto BIM
		5.10.2.1. Información geométrica (3D)
		5.10.2.2. Tiempos de proyecto (4D)
		5.10.2.3. Costos (5D)
		5.10.2.4. Sostenibilidad (6D)
		5.10.2.5. Operación y mantenimiento (7D)
	5.10.3.	Software BIM
		5.10.3.1. Visores BIM
		5.10.3.2. Modelado BIM
		5.10.3.3. Planificación de obra (4D)
		5.10.3.4. Medición y presupuesto (5D)
		5.10.3.5. Gestión ambiental y eficacia energética (6D)
		5.10.3.6. Facility Management (7D)
	5.10.4.	Fotogrametría en entorno BIM con REVIT

Módulo 6. Fotogrametría con drones

- 6.1. Topografía, cartografía y geomática
 - 6.1.1. Topografía, cartografía y geomática
 - 6.1.2. Fotogrametría

5.9.2. Calibración

- 6.2. Estructura del sistema
 - 6.2.1. UAV (Drones de uso Militar), RPAS (Aeronaves Civiles) o DRONES
 - 6.2.2. Normativas legales
 - 6.2.3. Método fotogramétrico con drones

- 6.3. Planificación de trabajo
 - 6.3.1. Estudio del espacio aéreo
 - 6.3.2. Previsión meteorológica
 - 6.3.3. Acotación geográfica y configuración del vuelo
- 6.4. Topografía de campo
 - 6.4.1. Inspección inicial del área de trabajo
 - 6.4.2. Materialización de puntos de apoyo y control de calidad
 - 6.4.3. Levantamientos topográficos complementarios
- 6.5. Vuelos fotogramétricos
 - 6.5.1. Planificación y configuración de vuelos
 - 6.5.2. Análisis sobre el terreno y puntos de despegue y aterrizaje
 - 6.5.3. Revisión de vuelo y control de calidad
- 6.6. Puesta en proceso y configuración
 - 6.6.1. Descarga de información. Soporte, seguridad y comunicaciones
 - 6.6.2. Tratamiento de imágenes y datos topográficos
 - 6.6.3. Puesta en proceso, restitución fotogramétrica y configuración
- 6.7. Edición de resultados y análisis
 - 6.7.1. Interpretación de resultados obtenidos
 - 6.7.2. Limpieza, filtrado y tratamiento de nubes de puntos
 - 6.7.3. Obtención de mallas, superficies y ortomosaicos
- 6.8. Presentación-Representación
 - 6.8.1. Cartografiado. Formatos y extensiones comunes
 - 6.8.2. Representación 2d y 3d. Curvas de nivel, ortomosaicos y MDT
 - 6.8.3. Presentación, difusión y almacenamiento de resultados
- 6.9. Fases de un proyecto
 - 6.9.1. Planificación
 - 6.9.2. Trabajo de campo (Topografía y vuelos)
 - 6.9.3. Descarga procesamiento y edición y entrega
- 6.10. Topografía con drones
 - 6.10.1. Partes del método expuesto
 - 6.10.2. Impacto o repercusión en la Topografía
 - 6.10.3. Proyección a futuro de la Topografía con drones

Módulo 7. Sistemas de Información Geográfica

- 7.1. Sistemas de Información Geográfica (SIG)
 - 7.1.1. Sistemas de Información Geográfica (SIG)
 - 7.1.2. Diferencias entre un CAD y un SIG
 - 7.1.3. Tipos de visualizadores de datos (Clientes pesados / ligeros)
 - 7.1.4. Tipos de datos geográficos 7.1.4.1. Información geográfica
 - 7.1.5. Representación geográfica
- 7.2. Visualización de elementos en QGIS
 - 7.2.1. Instalación QGIS
 - 7.2.2. Visualización de datos con QGIS
 - 7.2.3. Etiquetado de datos con OGIS
 - 7.2.4. Superposición de capas de coberturas diferentes con QGIS
 - 7.2.5. Mapas
 - 7.2.5.1. Partes de un mapa
 - 7.2.6. Impresión de un plano con QGIS
- 7.3. Modelo vectorial
 - 7.3.1. Tipos de geometrías vectoriales
 - 7.3.2. Tablas de atributos
 - 7.3.3. Topología
 - 7.3.3.1. Reglas topológicas
 - 7.3.3.2. Aplicación de topologías en QGIS
 - 7.3.3.3. Aplicación de topologías en base de datos
- 7.4. Modelo vectorial. Operadores
 - 7.4.1. Funcionalidades
 - 7.4.2. Operadores de análisis espacial
 - 7.4.3. Ejemplos de operaciones geoespaciales
- 7.5. Generación de modelo de datos con BBDD
 - 7.5.1. Instalación de PostgreSQL y POSTGIS
 - 7.5.2. Creación de una base de datos geoespacial con PGAdmin
 - 7.5.3. Creación de elementos

tech 32 | Estructura y contenido

7.6.

7.7.

7.8.

7.9.

7.5.4.	Consultas geoespaciales con POSTGIS
7.5.5.	Visualización de elementos de la base de datos con QGIS
7.5.6.	Servidores de mapas
	7.5.6.1. Tipos y creación de servidor de mapas con Geoserver
	7.5.6.2. Tipos de servicios de datos WMS/WFS
	7.5.6.3. Visualización de servicios en QGIS
Modelo	Raster
7.6.1.	Modelo Raster
7.6.2.	Bandas de color
7.6.3.	Almacenamiento en base de datos
7.6.4.	Calculadora Raster
7.6.5.	Pirámides de imágenes
Modelo	Raster. Operaciones
7.7.1.	Georreferenciación de imágenes
	7.7.1.1. Puntos de control
7.7.2.	Funcionalidades Raster
	7.7.2.1. Funciones de superficies
	7.7.2.2. Funciones para distancias
	7.7.2.3. Funciones de reclasificación
	7.7.2.4. Funciones de análisis de superposición
	7.7.2.5. Funciones de análisis estadísticos
	7.7.2.6. Funciones de selección
7.7.3.	Carga de datos Raster en una base de datos
Aplicac	iones prácticas de datos Raster
7.8.1.	Aplicación en el sector Agrario
7.8.2.	Tratamiento de MDE
7.8.3.	Automatización de clasificación de elementos en un Raster
7.8.4.	Tratamiento de datos LIDAR
Normat	iva
7.9.1.	Estándares en cartografía
	7.9.1.1. OGC
	7.9.1.2. ISO

7.9.1.5. Cartografía estatal 7.9.2. Inspire 7.9.2.1. Principios 7.9.2.2. Anexos 7.9.3. Lisige 7.10. Open Data 7.10.1. Open Street Maps (OSM) 7.10.1.1. Comunidad y edición cartográfica 7.10.2. Obtención de cartografía vectorial gratuita 7.10.3. Obtención de cartografía Raster gratuita Módulo 8. Backend para SIG 8.1. Servidor Web Apache 8.1.1. Servidor Web Apache 8.1.2. Instalación 8.1.3. Anatomía del servidor Apache 8.1.3.1. Carpetas de contenido estándar 8.1.3.2. Los 8.1.4. Configuración Lenguajes de programación soportados 8.1.5.1. Php 8.1.5.2. Perl 8.1.5.3. Ruby 8.1.5.4. Otros 8.2. Servidor Web Nginx 8.2.1. Servidor Web Nginx 8.2.2. Instalación 8.2.3. Características

7.9.1.3. CEN 7.9.1.4. AENOR

	8.3.1.	Servidor Web Tomcat
	8.3.2.	Instalación
	8.3.3.	El plugin Maven
	8.3.4.	Conectores
8.4.	GeoServ	ver ver
	8.4.1.	Geoserver
	8.4.2.	Instalación
	8.4.3.	Usando el plugin ImageMosaic
8.5.	MapSer	ver
	8.5.1.	MapServer
	8.5.2.	Instalación
	8.5.3.	Mapfile
	8.5.4.	MapScript
	8.5.5.	MapCache
8.6.	Deegree	
	8.6.1.	Deegree
	8.6.2.	Características de Deegree
	8.6.3.	Instalación
	8.6.4.	Configuración
	8.6.5.	Uso
8.7.	QGIS Se	erver
	8.7.1.	QGIS Server
	8.7.2.	Instalación en Ubuntu
	8.7.3.	Capacidades
	8.7.4.	Configuración
	8.7.5.	Uso
8.8.	Postgre	SQL
	8.8.1.	PostgreSQL
	8.8.2.	Instalación

8.3. Servidor Web Tomcat

	8.8.3.	Posgis	
	8.8.4.	PgAdmin	
8.9.	SQLite		
	8.9.1.	SQLite	
	8.9.2.	Spatialite	
	8.9.3.	Spatialite-gui	
	8.9.4.	Spatialite-tools	
		8.9.4.1. Herramientas generales	
		8.9.4.2. Herramientas OSM	
		8.9.4.3. Herramientas XML	
		8.9.4.4. VirtualPG	
8.10.	MySQL		
	8.10.1.	MySQL	
	8.10.2.	Spatial Data Types	
	8.10.3.	phpMyAdmin	
Módulo 9. Clientes para SIG			

J. I.	Glass Gls		
	9.1.1.	Grass GIS	
	9.1.2.	Componentes del interfaz gráfico	
	9.1.3.	Comandos del interfaz gráfico	
	9.1.4.	Procesamiento	

9.2. Kosmo Desktop

9.2.1. Kosmo Desktop

9.2.2. Instalación

9.2.3. Características

9.3. OpenJump

9.3.1. OpenJump

9.3.2. Instalación

9.3.3. Plugins

tech 34 | Estructura y contenido

9.4.	QGIS					
	9.4.1.	QGIS				
	9.4.2.	Instalación				
	9.4.3.	Orfeo Toolbox				
9.5.	Tile Mill					
	9.5.1.	Tile Mill				
	9.5.2.	Instalación				
	9.5.3.	Creación de un mapa desde un CSV				
9.6.	gvSIG					
	9.6.1.	gvSIG				
	9.6.2.	Instalación				
	9.6.3.	Casos de Uso				
	9.6.4.	Repositorio de Scripts				
9.7.	uDig					
	9.7.1.	uDig				
	9.7.2.	Instalación				
	9.7.3.	Características				
	9.7.4.	Uso				
9.8.	Leaflet					
	9.8.1.	Leaflet				
	9.8.2.	Instalación				
	9.8.3.	Plugins				
9.9.	Mapbender					
	9.9.1.	Mapbender				
	9.9.2.	Características				
	9.9.3.	Instalación				
	9.9.4.	Configuración				
	9.9.5.	Uso				
9.10.	OpenLa	OpenLayers				
	9.10.1.	OpenLayers				
	9.10.2.	Características				
	9103	Instalación				

Módulo 10. Programación para la geomática


- 10.1. Programación para Backend en GIS. Instalación y configuración de PHP
 - 10.1.1. Programación para Backend en GIS
 - 10.1.2. Instalación de PHP
 - 10.1.3. Configuración: el fichero php.ini
- 10.2. Programación para Backend en GIS. Sintaxis y estructuras de control en PHP
 - 10.2.1. Sintaxis
 - 10.2.2. Tipos de datos
 - 10.2.3. Estructuras de control
 - 10.2.3.1. Estructuras de selección simple
 - 10.2.3.2. Estructuras de iteración While
 - 10.2.3.3. Estructuras de intervención For
 - 10.2.4. Funciones
- 10.3. Programación para Backend en GIS. Conexiones a BBDD en PHP
 - 10.3.1. Conexiones para la base de datos MySQL
 - 10.3.2. Conexiones para la base de datos PosgreSQL
 - 10.3.3. Conexiones para la base de datos SQLite
- 10.4. Programación en Python para GIS. Instalación, sintaxis y funciones
 - 10.4.1. Programación en Python para GIS
 - 10.4.2. Instalación
 - 10.4.3. Variables
 - 10.4.4. Expresiones y operadores
 - 10.4.5. Funciones
 - 10.4.6. Trabajando con strings
 - 10.4.6.1. Formateando strings
 - 10.4.6.2. Argumentos
 - 10.4.6.3. Expresiones regulares
- 10.5. Programación en Python para GIS. Estructuras de control y tratamiento de errores
 - 10.5.1. Estructuras de selección simple
 - 10.5.2. Estructuras de iteración While
 - 10.5.3. Estructuras de iteración For
 - 10.5.4 Tratamiento de errores

Estructura y contenido | 35 tech

- 10.6. Programación en Python para GIS. Acceso a base de datos
 - 10.6.1. Acceso a base de datos MySQL
 - 10.6.2. Acceso a base de datos PostgreSQL
 - 10.6.3. Acceso a base de datos SQLite
- 10.7. Programación en R para GIS. Instalación y sintaxis básica
 - 10.7.1. Programación en R para GIS
 - 10.7.2. Instalación de paquetes
 - 10.7.3. Sintaxis básica de R
- 10.8. Programación en R para GIS. Estructuras de control y funciones
 - 10.8.1. Estructuras de selección simple
 - 10.8.2. Bucles
 - 10.8.3. Funciones
 - 10.8.4. Tipos de datos
 - 10.8.4.1. Listas
 - 10.8.4.2. Vectores
 - 10.8.4.3. Factores
 - 10.8.4.4. Dataframes
- 10.9. Programación en R para GIS. Acceso a base de datos
 - 10.9.1. Conexión a Mysql con Rstudio
 - 10.9.2. Integrar PostgreSQL PostGIS en R
 - 10.9.3. Uso de JDBC en R
- 10.10. Programación en Javascript para GIS
 - 10.10.1. Programación en Javascript para GIS
 - 10.10.2. Características
 - 10.10.3. NodeJS

Estos contenidos te acercarán las últimas novedades en Geomática para que experimentes el progreso profesional que estás buscando"

tech 38 | Metodología

Estudio de Caso para contextualizar todo el contenido

Nuestro programa ofrece un método revolucionario de desarrollo de habilidades y conocimientos. Nuestro objetivo es afianzar competencias en un contexto cambiante, competitivo y de alta exigencia.

Con TECH podrás experimentar una forma de aprender que está moviendo los cimientos de las universidades tradicionales de todo el mundo"

Accederás a un sistema de aprendizaje basado en la reiteración, con una enseñanza natural y progresiva a lo largo de todo el temario.

El alumno aprenderá, mediante actividades colaborativas y casos reales, la resolución de situaciones complejas en entornos empresariales reales.

Un método de aprendizaje innovador y diferente

El presente programa de TECH es una enseñanza intensiva, creada desde 0, que propone los retos y decisiones más exigentes en este campo, ya sea en el ámbito nacional o internacional. Gracias a esta metodología se impulsa el crecimiento personal y profesional, dando un paso decisivo para conseguir el éxito. El método del caso, técnica que sienta las bases de este contenido, garantiza que se sigue la realidad económica, social y profesional más vigente.

Nuestro programa te prepara para afrontar nuevos retos en entornos inciertos y lograr el éxito en tu carrera"

El método del caso ha sido el sistema de aprendizaje más utilizado por las mejores facultades del mundo. Desarrollado en 1912 para que los estudiantes de Derecho no solo aprendiesen las leyes a base de contenidos teóricos, el método del caso consistió en presentarles situaciones complejas reales para que tomasen decisiones y emitiesen juicios de valor fundamentados sobre cómo resolverlas. En 1924 se estableció como método estándar de enseñanza en Harvard.

Ante una determinada situación, ¿qué debería hacer un profesional? Esta es la pregunta a la que te enfrentamos en el método del caso, un método de aprendizaje orientado a la acción. A lo largo del programa, los estudiantes se enfrentarán a múltiples casos reales. Deberán integrar todos sus conocimientos, investigar, argumentar y defender sus ideas y decisiones.

tech 40 | Metodología

Relearning Methodology

TECH aúna de forma eficaz la metodología del Estudio de Caso con un sistema de aprendizaje 100% online basado en la reiteración, que combina 8 elementos didácticos diferentes en cada lección.

Potenciamos el Estudio de Caso con el mejor método de enseñanza 100% online: el Relearning.

En 2019 obtuvimos los mejores resultados de aprendizaje de todas las universidades online en español en el mundo.

En TECH se aprende con una metodología vanguardista concebida para capacitar a los directivos del futuro. Este método, a la vanguardia pedagógica mundial, se denomina Relearning.

Nuestra universidad es la única en habla hispana licenciada para emplear este exitoso método. En 2019, conseguimos mejorar los niveles de satisfacción global de nuestros alumnos (calidad docente, calidad de los materiales, estructura del curso, objetivos...) con respecto a los indicadores de la mejor universidad online en español.

Metodología | 41 tech

En nuestro programa, el aprendizaje no es un proceso lineal, sino que sucede en espiral (aprender, desaprender, olvidar y reaprender). Por eso, se combinan cada uno de estos elementos de forma concéntrica. Con esta metodología se han capacitado más de 650.000 graduados universitarios con un éxito sin precedentes en ámbitos tan distintos como la bioquímica, la genética, la cirugía, el derecho internacional, las habilidades directivas, las ciencias del deporte, la filosofía, el derecho, la ingeniería, el periodismo, la historia o los mercados e instrumentos financieros. Todo ello en un entorno de alta exigencia, con un alumnado universitario de un perfil socioeconómico alto y una media de edad de 43,5 años.

El Relearning te permitirá aprender con menos esfuerzo y más rendimiento, implicándote más en tu capacitación, desarrollando el espíritu crítico, la defensa de argumentos y el contraste de opiniones: una ecuación directa al éxito.

A partir de la última evidencia científica en el ámbito de la neurociencia, no solo sabemos organizar la información, las ideas, las imágenes y los recuerdos, sino que sabemos que el lugar y el contexto donde hemos aprendido algo es fundamental para que seamos capaces de recordarlo y almacenarlo en el hipocampo, para retenerlo en nuestra memoria a largo plazo.

De esta manera, y en lo que se denomina Neurocognitive context-dependent e-learning, los diferentes elementos de nuestro programa están conectados con el contexto donde el participante desarrolla su práctica profesional.

Este programa ofrece los mejores materiales educativos, preparados a conciencia para los profesionales:

Material de estudio

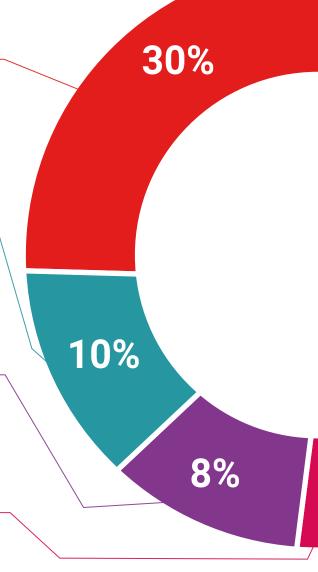
Todos los contenidos didácticos son creados por los especialistas que van a impartir el curso, específicamente para él, de manera que el desarrollo didáctico sea realmente específico y concreto.

Estos contenidos son aplicados después al formato audiovisual, para crear el método de trabajo online de TECH. Todo ello, con las técnicas más novedosas que ofrecen piezas de gran calidad en todos y cada uno los materiales que se ponen a disposición del alumno.

Clases magistrales

Existe evidencia científica sobre la utilidad de la observación de terceros expertos.

El denominado Learning from an Expert afianza el conocimiento y el recuerdo, y genera seguridad en las futuras decisiones difíciles.


Prácticas de habilidades y competencias

Realizarán actividades de desarrollo de competencias y habilidades específicas en cada área temática. Prácticas y dinámicas para adquirir y desarrollar las destrezas y habilidades que un especialista precisa desarrollar en el marco de la globalización que vivimos.

Lecturas complementarias

Artículos recientes, documentos de consenso y guías internacionales, entre otros. En la biblioteca virtual de TECH el estudiante tendrá acceso a todo lo que necesita para completar su capacitación.

Completarán una selección de los mejores casos de estudio elegidos expresamente para esta titulación. Casos presentados, analizados y tutorizados por los mejores especialistas del panorama internacional.

Resúmenes interactivos

El equipo de TECH presenta los contenidos de manera atractiva y dinámica en píldoras multimedia que incluyen audios, vídeos, imágenes, esquemas y mapas conceptuales con el fin de afianzar el conocimiento.

Este exclusivo sistema educativo para la presentación de contenidos multimedia fue premiado por Microsoft como "Caso de éxito en Europa".

Testing & Retesting

Se evalúan y reevalúan periódicamente los conocimientos del alumno a lo largo del programa, mediante actividades y ejercicios evaluativos y autoevaluativos para que, de esta manera, el estudiante compruebe cómo va consiguiendo sus metas.

25%

4%

20%

tech 46 | Titulación

Este programa te permitirá obtener el título de **Máster de Formación Permanente en Ingeniería Geomática y Geoinformación** emitido por TECH Universidad Tecnológica.

TECH Universidad Tecnológica, es una Universidad española oficial, que forma parte del Espacio Europeo de Educación Superior (EEES). Con un enfoque centrado en la excelencia académica y la calidad universitaria a través de la tecnología.

Este título propio contribuye de forma relevante al desarrollo de la educación continua y actualización del profesional, garantizándole la adquisición de las competencias en su área de conocimiento y aportándole un alto valor curricular universitario a su formación. Es 100% válido en todas las Oposiciones, Carrera Profesional y Bolsas de Trabajo de cualquier Comunidad Autónoma española.

Además, el riguroso sistema de garantía de calidad de TECH asegura que cada título otorgado cumpla con los más altos estándares académicos, brindándole al egresado la confianza y la credibilidad que necesita para destacarse en su carrera profesional.

Título: Máster de Formación Permanente en Ingeniería Geomática y Geoinformación

Modalidad: online

Duración: 7 meses

Acreditación: 60 ECTS

^{*}Apostilla de La Haya. En caso de que el alumno solicite que su título en papel recabe la Apostilla de La Haya, TECH EDUCATION realizará las gestiones oportunas para su obtención, con un coste adicional.

Máster de Formación Permanente

Ingeniería Geomática y Geoinformación

- » Modalidad: online
- » Duración: 7 meses
- » Titulación: TECH Universidad Tecnológica
- » Acreditación: 60 ECTS
- » Horario: a tu ritmo
- » Exámenes: online

