
Professional Master’s Degree
Software Development

Professional Master’s Degree
Software Development

 » Modality: online

 » Duration: 12 months

 » Certificate: TECH Technological University

 » Dedication: 16h/week

 » Schedule: at your own pace

 » Exams: online

Website: www.techtitute.com/pk/information-technology/professional-master-degree/master-software-development

http://www.techtitute.com/pk/information-technology/professional-master-degree/master-software-development

Index

Introduction

Methodology

Objectives

Skills

Certificate

Structure and Content

p. 4

p. 32

p. 8

p. 14

p. 40

p. 18

05

02 01

03

06

04

To participate in one of the areas with the greatest projection in the IT sector,
professionals must be prepared scientifically and technologically, as well as to
be able to efficiently face the challenges that arise in the professional practice of
software engineering. This Professional Master's Degree is aimed at achieving
a high mastery of Software Development, through the latest advances and
developments in this field, by means of a study methodology of maximum impact
and extraordinary flexibility.

Introduction
01

Introduction | 05

Acquire the most comprehensive knowledge
in software engineering, in the most up-
to-date program of the online educational
market and start working on developments in
this dynamic professional field”

06 | Introduction

With the advance of new technologies, software has become an extremely important
element nowadays. In recent years, the need to be able to develop software products
with the appropriate functionality and quality, while respecting the established time and
budget, has become evident.

This program is aimed at those people interested in reaching a higher level of
knowledge about Software Development. The main objective is to enable students to
apply the knowledge acquired in this Professional Master's Degree in the real world, in a
work environment that reproduces the conditions that may be encountered in the future,
in a rigorous and realistic manner.

Take advantage of the opportunity to take this educational program in a 100% online
format, without having to give up obligations, and making it easy to continue studying.
Update your knowledge and obtain a Professional Master's Degree to continue growing
personally and professionally.

You will gain extensive knowledge in the field of software engineering, but also in the
field of computating and computer structure, including the mathematical, statistical and
physical principles that are essential in engineering.

Take advantage of the opportunity to take this educational program in a 100% online
format, without having to give up obligations, and making it easy to continue studying.
Update your knowledge and get your Professional Master's Degree to continue growing
personally and professionally.

This Professional Master's Degree in Software Development contains the most
complete and up-to-date program on the market. The most important features include:

 » Development of 100 simulated scenarios presented by experts in Software Development.

 » Its graphic, schematic and eminently practical contents, with which they are conceived,
gather scientific and practical information on Software Development

 » News on the latest developments in Software Development

 » It contains practical exercises where the self-evaluation process can be carried out to
improve learning

 » Interactive learning system based on the case method and its application to real practice

 » All of this will be complemented by theoretical lessons, questions to the expert, debate
forums on controversial topics, and individual reflection assignments

 » Content that is accessible from any fixed or portable device with an Internet connection

This program will allow you to
learn about the basic structure of
a computer and its software, as a
basis for increasing your skills”

Introduction | 07

Its teaching staff includes professionals belonging to the world of Software
Development, who bring to this program the experience of their work, as well as
recognized specialists belonging to reference companies and prestigious universities.

Thanks to its multimedia content developed with the latest educational technology, they
will allow the professional a situated and contextual learning, that is to say, a simulated
environment that will provide an immersive learning programmed to train in real situations.

This program is designed around Problem-Based Learning, whereby the professional must
try to solve the different professional practice situations that arise throughout the program.
To do so, the professional will be assisted by an innovative interactive video system created
by recognized experts in Software Development with extensive teaching experience.

Learn everything you need to work
with programming languages safely,
incorporating to your knowledge the
interpretation and design of basic
algorithms to work in programming" Get to know the latest data systems

on the market, learn how to design
advanced algorithms and all the
aspects that a highly competent

professional must master.

An educational program that will enable you to
understand how to operate and intervene on all
the essential elements of a computer program.

The objective of this program is to provide professionals working in Software
Development with the knowledge and skills necessary to carry out their activity
using the most advanced protocols and techniques of the moment. Through
a work approach that is totally adaptable to the student, this Professional
Master's Degree will progressively lead you to acquire the skills that will propel
you to a higher professional level.

Objectives
02

You will delve into the field of computating
and computer structure; essential subjects
for any software developer"

Objectives | 09

10 | Objectives

 » Prepare scientifically and technologically, as well as to develop the professional practice
of software engineering, with a transversal and versatile approach adapted to the new
technologies and innovations in this field

 » Obtain extensive knowledge in the field of software engineering, but also in the field of
computation and computer structure, including the mathematical, statistical and physical
basis essential in engineering

Achieve the level of knowledge you desire
and master Software Development with
this high-level training"

General Objectives

Module 1. Programming Fundamentals
 » Understand the basic structure of a computer, software and general purpose programming languages

 » Learn to design and interpret algorithms, which are the necessary basis for developing
computer programs

 » Understand the essential elements of a computer program, such as the different types of
data, operators, expressions, statements, I/O and control statements

 » Understand the different data structures available in general purpose programming languages,
both static and dynamic, as well as to acquire the essential knowledge for file handling

 » Know the different testing techniques in computer programs and the importance of
generating good documentation together with good source code

 » Learn the basic concepts of the C++ programming language, one of the most widely used
languages in the world

Module 2. Data Structure
 » Learn the fundamentals of C++ programming, including classes, variables, conditional

expressions and objects

 » Understand abstract data types, linear data structure types, simple and complex
hierarchical data structures, as well as their implementation in C++

 » Understand the operation of advanced data structures other than the usual ones

 » Know the theory and practice related to the use of priority heaps and queues

 » Learn how Hash tables work as abstract data types and functions

 » Understand Graph theory, as well as advanced Graph algorithms and concepts

Objectives | 11

Specific Objectives

12 | Objectives

Module 3. Algorithm and Complexity
 » Learn the main strategies for algorithm design, as well as the different methods and

measures for algorithm computation

 » Know the main sorting algorithms used in software development

 » Understand the operation of the different algorithms with trees, Heaps and Graphs

 » Understand the operation of Greedy algorithms, their strategy and examples of their use in
the main known problems. We will also learn the use of greedy algorithms on graphs

 » We will learn the main strategies of minimum path search, with the approach of essential
problems of the field and algorithms for their resolution

 » Understand the Backtracking technique and its main uses, as well as other alternative techniques

Module 4. Databases
 » Learn the different applications and purposes of database systems, as well as their

operation and architecture

 » Understand the relational model, from its structure and operations to extended relational algebra

 » Learn in depth what SQL databases are, how they work, the definition of data and the
creation of queries from the most basic to the most advanced and complex

 » Learn how to design databases using the entity-relationship model, how to create diagrams
and the characteristics of the extended E-R model

 » Delve into the design of relational databases, analyzing the different normal forms and
decomposition algorithms

 » Lay the foundations for understanding the operation of NoSQL databases and to introduce
the MongoDB database

Module 5. Advanced Databases
 » Introduce the different database systems currently available on the market

 » Learn the use of XML and databases for the web

 » Understand the operation of advanced databases such as parallel and distributed databases

 » Understand the importance of indexing and association in database systems

 » Understand how transactional processing and retrieval systems work

 » Acquire knowledge related to non-relational databases and data mining

Module 6. Advanced Algorithm Design
 » Delve into advanced algorithm design, analyzing recursive and divide-and-conquer

algorithms, as well as performing amortized analysis

 » Understand the concepts of dynamic programming and algorithms for NP problems.

 » Understand the operation of combinatorial optimization, as well as the different
randomization algorithms and parallel algorithms

 » Know and understand the operation of the different local and candidate search methods

 » Learn the mechanisms of formal verification of programs and iterative programs, including
first-order logic and Hoare's formal system

 » Learn the operation of some of the main numerical methods such as the bisection method,
the Newton Raphson method and the secant method

Objectives | 13

Module 7. Human-Computer Interaction
 » Acquire solid knowledge related to human-computer interaction and the creation

of usable interfaces

 » Understand the importance of application usability and why it is important to take it into
account when designing our software

 » Understand the different types of human diversity, the limitations they imply and how to
adapt interfaces according to the specific needs of each of them

 » Learn the process of interface design, from requirements analysis to evaluation, going
through the different intermediate stages necessary to carry out an adequate interface

 » Know the different accessibility guidelines, the standards that establish them and the tools
that allow us to assess them

 » Understand the different methods of interaction with the computer, by means of
peripherals and devices

Module 8. Advanced Programming
 » In-depth knowledge of programming, especially as it relates to object-oriented

programming, and the different types of relationships between existing classes

 » Know the different design patterns for object-oriented problems

 » Learn about event-driven programming and the development of user interfaces with Qt

 » Acquire the essential knowledge of Concurrent Programming, processes and threads

 » Learn how to manage the use of threads and synchronization, as well as the resolution of
common problems within Concurrent Programming

 » Understand the importance of documentation and testing in software development

Module 9. Development of Web Applications
 » Know the characteristics of the HTML markup language and its use in web creation

together with CSS style sheets

 » Learn to use the browser-oriented programming language JavaScript, and some of its main features

 » Understand the concepts of Component Oriented Programming and Component Architecture

 » Learn how to use the Bootstrap Frontend Framework for website design

 » Understand the structure of the controller view model in the development of dynamic web sites

 » Know the service-oriented architecture and the basics of the HTTP protocol

Module 10. Software Engineering
 » Lay the foundations of software engineering and modeling, learning the main processes

and concepts

 » Understand the software process and the different models for its development including
agile technologies

 » Understand requirements engineering, their development, elaboration, negotiation and validation

 » Learn the modeling of requirements and the different elements such as scenarios,
information, analysis classes, flow, behavior and patterns

 » Understand the concepts and processes of software design, learning also about
architecture design and design at component level and based on patterns

 » Know the main standards related to software quality and project management

Skills
By passing the assessments of the Professional Master's Degree in Software
Development, you will have acquired the professional skills necessary to carry out
quality work and you will also be able to acquire new skills and techniques that will
help you to complement the computer knowledge you previously possessed.

03

Enhance your skills in Software
Development and move to the next level as a
professional in this constantly evolving field"

Skills | 15

 » Respond to the current needs of the field of Software Development

16 | Skills

An exceptional program in terms
of its density, its current relevance
and the way in which it is offered,
which will allow you to advance
quickly and efficiently"

General Skill

 » Be able to understand the basic structure of a computer, software and general purpose
programming languages

 » Know how to apply the fundamentals of C++ programming, including classes, variables,
conditional expressions and objects

 » Know, in depth, the main strategies for algorithm design, as well as the different methods
and measures for their calculation

 » Know the different applications and purposes of database systems, as well as their
operation and architecture, and to apply them on a day-to-day basis

 » Be able to introduce the different database systems currently on the market

 » Know how to analyze recursive and divide and conquer algorithms, as well as how to
perform amortized analysis

 » Use the knowledge of human-computer interaction and the creation of usable interfaces
in the daily practice of the profession

 » Acquire in-depth knowledge of Programming

 » Know the characteristics of the HTML markup language and its use in web creation
together with CSS style sheets

 » Be able to apply the main processes and concepts of the basics of software engineering
and modeling

Skills | 17

Specific Skills

The structure of the contents has been designed by a team of Computer Engineering
professionals with the aim of ensuring that students of this Professional Master's
Degree can learn efficiently and quickly. For this purpose, the contents have been
organized in such a way that learning is intensive and constant, trying to maintain
motivation based on the student's sense of progress.

Structure and Content
04

Structure and Content | 19

An educational program aimed at achieving
complete software development skills, which will
propel you to a new professional level"

Module 1. Programming Fundamentals
1.1. Introduction to Programming

1.1.1. Basic Structure of a Computer
1.1.2. Software
1.1.3. Programming Languages
1.1.4. Life Cycle of a Software Application

1.2. Algorithm Design
1.2.1. Problem Solving
1.2.2. Descriptive Techniques
1.2.3. Algorithm Elements and Structure

1.3. Elements of a Program
1.3.1. C++ Origin and Features
1.3.2. Development Environment
1.3.3. Concept of Program
1.3.4. Types of Fundamental Data
1.3.5. Operators
1.3.6. Expressions
1.3.7. Statements
1.3.8. Data Input and Output

1.4. Control Sentences
1.4.1. Statements
1.4.2. Branches
1.4.3. Loops

1.5. Abstraction and Modularity: Functions
1.5.1. Modular Design
1.5.2. Concept of Function and Utility
1.5.3. Definition of a Function
1.5.4. Execution Flow in a Function Call
1.5.5. Function Prototypes
1.5.6. Results Return
1.5.7. Calling a Function: Parameters
1.5.8. Passing Parameters by Reference and by Value
1.5.9. Scope Identifier

20 | Structure and Content

1.6. Static Data Structures
1.6.1. Arrays
1.6.2. Matrices. Polyhedra
1.6.3. Searching and Sorting
1.6.4. Chaining: I/O Functions for Chains
1.6.5. Structures. Unions
1.6.6. New Types of Data

1.7. Dynamic Data Structures: Pointers
1.7.1. Concept. Definition of Pointer
1.7.2. Pointer Operators and Operations
1.7.3. Pointer Arrays
1.7.4. Pointers and Arrays
1.7.5. Chain Pointers
1.7.6. Structure Pointers
1.7.7. Multiple Indirection
1.7.8. Function Pointers
1.7.9. Function, Structure and Array Passing as Function Parameters

1.8. Files
1.8.1. Basic Concepts
1.8.2. File Operations
1.8.3. Types of Files
1.8.4. File Organization
1.8.5. Introduction to C++ Files
1.8.6. Managing Files

1.9. Recursion
1.9.1. Definition of Recursion
1.9.2. Types of Recursion
1.9.3. Advantages and Disadvantages
1.9.4. Considerations
1.9.5. Iterative Recursive Conversion
1.9.6. Recursion Stack

1.10. Testing and Documentation
1.10.1. Program Testing
1.10.2. White Box Testing
1.10.3. Black Box Testing
1.10.4. Testing Tools
1.10.5. Program Documentation

Module 2. Data Structure
2. 1. Introduction to C ++ Programming

2.1.1. Classes, Constructors, Methods and Attributes
2.1.2. Variables
2.1.3. Conditional Expressions and Loops
2.1.4. Objects

2.2. Abstract Data Types (ADT)
2.2.1. Types of Data
2.2.2. Basic Structures and TADs
2.2.3. Vectors and Arrays

2.3. Linear data Structures
2.3.1. TAD List Definition
2.3.2. Linked and Doubly Linked Lists
2.3.3. Sorted Lists
2.3.4. Lists in C++
2.3.5. TAD Stack
2.3.6. TAD Queue
2.3.7. Stack and Queue in C++

2.4. Hierarchical Data Structures
2.4.1. TAD Tree
2.4.2. Paths
2.4.3. N-Ary Trees
2.4.4. Binary Trees
2.4.5. Binary Search Trees

Structure and Content | 21

22 | Structure and Content

2.5. Hierarchical Data Structures: Complex Trees
2.5.1. Perfectly Balanced or Minimum Height Trees
2.5.2. Multipath Trees
2.5.3. Bibliographical References

2.6. Mounds and Priority Queue
2.6.1. TAD Mounds
2.6.2. TAD Priority Queue

2.7. Hash Tables
2.7.1. TAD Hash Table
2.7.2. Hash Functions
2.7.3. Hash Function in Hash Tables
2.7.4. Redispersion
2.7.5. Open Hash Tables

2.8. Graphs
2.8.1. TAD Graph
2.8.2. Graph Types
2.8.3. Graphical Representation and Basic Operations
2.8.4. Graph Design

2.9. Advanced Graph Algorithms and Concepts
2.9.1. Graph Problems
2.9.2. Path Algorithms
2.9.3. Search or Path Algorithms
2.9.4. Other Algorithms

2.10. Other Data Structures
2.10.1. Sets
2.10.2. Parallel Arrays
2.10.3. Symbol Tables
2.10.4. Tries

Module 3. Algorithm and Complexity
3.1. Introduction to Algorithm Design Strategies

3.1.1. Recursion
3.1.2. Divide and Conquer
3.1.3. Other Strategies

3.2. Efficiency and Analysis of Algorithms
3.2.1. Efficiency Measures
3.2.2. Measuring the Size of the Input
3.2.3. Measuring Execution Time
3.2.4. Worst, Best and Average Case
3.2.5. Asymptotic Notation
3.2.6. Criteria for Mathematical Analysis of Non-Recursive Algorithms
3.2.7. Mathematical Analysis of Recursive Algorithms
3.2.8. Empirical Analysis of Algorithms

3.3. Sorting Algorithms
3.3.1. Concept of Sorting
3.3.2. Bubble Sorting
3.3.3. Sorting by Selection
3.3.4. Sorting by Insertion
3.3.5. Merge Sort
3.3.6. Quick Sort

3.4. Algorithms with Trees
3.4.1. Tree Concept
3.4.2. Binary Trees
3.4.3. Tree Paths
3.4.4. Representing Expressions
3.4.5. Ordered Binary Trees
3.4.6. Balanced Binary Trees

3.5. Algorithms Using Heaps
3.5.1. Heaps
3.5.2. The Heapsort Algorithm
3.5.3. Priority Queues

3.6. Graph Algorithms
3.6.1. Representation
3.6.2. Traversal in Width
3.6.3. Depth Travel
3.6.4. Topological Sorting

3.7. Greedy Algorithms
3.7.1. Greedy Strategy
3.7.2. Elements of the Greedy Strategy
3.7.3. Currency Exchange
3.7.4. Traveler’s Problem
3.7.5. Backpack Problem

3.8. Minimal Path Finding
3.8.1. The Minimum Path Problem
3.8.2. Negative Arcs and Cycles
3.8.3. Dijkstra's Algorithm

3.9. Greedy Algorithms on Graphs
3.9.1. The Minimum Covering Tree
3.9.2. Prim's Algorithm
3.9.3. Kruskal’s Algorithm
3.9.4. Complexity Analysis

3.10. Backtracking
3.10.1. Backtracking
3.10.2. Alternative Techniques

Module 4. Databases
4.1. Applications and Purposes of Database Systems

4.1.1. Applications of the Different Database Systems
4.1.2. Purpose of the Different Database Systems
4.1.3. View of the Data

4.2. Database and Architecture
4.2.1. Relational Database
4.2.2. Database Design
4.2.3. Object-Based and Semi-Structured Databases
4.2.4. Data Storage and Queries
4.2.5. Transaction Management
4.2.6. Data Mining and Analysis
4.2.7. Database Architecture

4.3. The Relational Model: Structure, Operations and Extended Relational Algebra
4.3.1. The Structure of Relational Databases
4.3.2. Fundamental Operations in the Relational Algebra
4.3.3. Other Relational Algebra Operations
4.3.4. Extended Relational Algebra Operations
4.3.5. Null Values
4.3.6. Database Modification

4.4. SQL (I)
4.4.1. What is SQL?
4.4.2. The Definition of Data
4.4.3. Basic Structure of SQL Queries
4.4.4. Operations on Sets
4.4.5. Aggregation Functions
4.4.6. Null Values

Structure and Content | 23

24 | Structure and Content

4.5. SQL (II)
4.5.1. Nested Subqueries
4.5.2. Complex Queries
4.5.3. Views
4.5.4. Cursors
4.5.5. Complex Queries
4.5.6. Triggers

4.6. Database Design and the E-R Model
4.6.1. Overview of the Design Process
4.6.2. The Entity-Relationship Model
4.6.3. Restrictions

4.7. Entity-Relationship Diagrams
4.7.1. Entity-Relationship Diagrams
4.7.2. Aspects of Entity-Relationship Design
4.7.3. Weak Entity Sets

4.8. The Extended Entity-Relationship Model
4.8.1. Characteristics of the Extended E-R Model
4.8.2. Design of a Database
4.8.3. Reduction to Relational Schemas

4.9. Designing from Relational Databases
4.9.1. Characteristics of Good Relational Designs
4.9.2. Atomic Domains and the First Normal Form (1FN)
4.9.3. Decomposition by Functional Dependencies
4.9.4. Theory of Functional Dependencies
4.9.5. Decomposition Algorithms
4.9.6. Decomposition by Means of Multivalued Dependencies
4.9.7. More Normal Forms
4.9.8. Database Design Process

4.10. NoSQL Databases
4.10.1. What are NoSQL Databases?
4.10.2. Analysis of the Different NoSQL Options and their Characteristics.
4.10.3. MongoDB

Module 5. Advanced Databases
5.1. Introduction to the Different Database Systems

5.1.1. Historical Recap
5.1.2. Hierarchical Databases
5.1.3. Network Databases
5.1.4. Relational Databases
5.1.5. Non-Relational Databases

5.2. XML and Databases for the Web
5.2.1. Validation of XML Documents
5.2.2. XML Document Transformations
5.2.3. XML Data Storage
5.2.4. XML Relational Databases
5.2.5. SQL/XML
5.2.6. Native XML Databases

5.3. Parallel Databases
5.3.1. Parallel Systems
5.3.2. Parallel Database Architectures
5.3.4. Parallelism in Queries
5.3.5. Query Parallelism
5.3.6. Design of Parallel Systems
5.3.7. Parallel Processing in SQL

5.4. Distributed Databases
5.4.1. Distributed Systems
5.4.2. Distributed Storage
5.4.3. Availability
5.4.4. Distributed Query Processing
5.4.5. Distributed Database Providers

5.5. Indexing and Association
5.5.1. Ordered Indexes
5.5.2. Dense and Sparse Indexes
5.5.3. Multilevel Indices
5.5.4. Index Updating
5.5.5. Static Association
5.5.6. How to Use Indexes in Databases

5.6. Introduction to Transactional Processing
5.6.1. States of a Transaction
5.6.2. Implementation of atomicity and durability.
5.6.3. Sequentiality
5.6.4. Recoverability
5.6.5. Isolation Implementation

5.7. Recovery Systems
5.7.1. Failure Classification
5.7.2. Storage Structures
5.7.3. Recovery and Atomicity
5.7.4. Retrieval Based on Historical Record
5.7.5. Concurrent Transactions and Retrieval
5.7.6. High Availability in Databases

5.8. Execution and Processing of Queries
5.8.1. Cost of a Query
5.8.2. Selection Operation
5.8.3. Sorting
5.8.4. Introduction to Query Optimization
5.8.5. Performance Monitoring

5.9. Non-Relational Databases
5.9.1. Document-Oriented Databases
5.9.2. Graph Oriented Databases
5.9.3. Key-Value Databases

5.10. Data Warehouse, OLAP and Data Mining
5.10.1. Components of Data Warehouses
5.10.2. Architecture of a Data Warehouse
5.10.3. OLAP
5.10.4. Data Mining Functionality
5.10.5. Other Types of Mining

Module 6. Advanced Algorithm Design
6.1. Analysis of Recursive and Divide and Conquer Algorithms

6.1.1. Posing and Solving Homogeneous and Non-Homogeneous Recurrence Equations
6.1.2. General Description of the Divide and Conquer Strategy

6.2. Amortized Analysis
6.2.1. Aggregate Analysis
6.2.2. The Accounting Method
6.2.3. The Potential Method

6.3. Dynamic Programming and Algorithms for NP Problems
6.3.1. Characteristics of Dynamic Programming
6.3.2. Backtracking
6.3.3. Branching and Pruning

6.4. Combinatorial Optimization
6.4.1. Representation
6.4.2. 1D Optimization

6.5. Randomization Algorithms
6.5.1. Examples of Randomization Algorithms
6.5.2. The Buffon Theorem
6.5.3. Monte Carlo Algorithm
6.5.4. Las Vegas Algorithm

6.6. Local and Candidate Search
6.6.1. Gradient Ascent
6.6.2. Hill Climbing
6.6.3. Simulated Annealing
6.6.4. Tabu Search
6.6.5. Candidate Search

Structure and Content | 25

26 | Structure and Content

6.7. Formal Verification of Programs
6.7.1. Specification of Functional Abstractions
6.7.2. The Language of First-Order Logic
6.7.3. Hoare's Formal System

6.8. Verification of Iterative Programs
6.8.1. Rules of Hoare's Formal System
6.8.2. Concept of Invariant Iterations

6.9. Numeric Methods
6.9.1. The Bisection Method
6.9.2. Newton Raphson's Method
6.9.3. The Secant Method

6.10. Parallel Algorithms
6.10.1. Parallel Binary Operations
6.10.2. Parallel Operations with Networks
6.10.3. Parallelism in Divide and Conquer
6.10.4. Parallelism in Dynamic Programming

Module 7. Human-Computer Interaction
7.1. Introduction to Human-Computer Interaction

7.1.1. What is Human-Computer Interaction
7.1.2. Relationship of Human-Computer Interaction with Other Disciplines
7.1.3. The User Interface
7.1.4. Usability and Accessibility
7.1.5. User Experience and User-Centered Design

7.2. The Computer and Interaction: User Interface and Interaction Paradigms
7.2.1. Interaction
7.2.2. Paradigms and Styles of Interaction
7.2.3. Evolution of User Interfaces
7.2.4. Classic User Interfaces: WIMP/GUI, Commands, Voice, Virtual Reality
7.2.5. Innovative User Interfaces: Mobile, Wearable, Collaborative, BCI

7.3. The Human Factor: Psychological and Cognitive Aspects
7.3.1. The Importance of the Human Factor in Interaction
7.3.2. Human Information Processing
7.3.3. The Input and Output of Information: Visual, Auditory, and Tactile
7.3.4. Perception and Attention
7.3.5. Knowledge and Mental Models: Representation, Organization, and Acquisition

7.4. The Human Factor: Sensory and Physical Limitations
7.4.1. Functional Diversity, Disability and Impairment
7.4.2. Visual Diversity
7.4.3. Hearing Diversity
7.4.4. Cognitive Diversity
7.4.5. Motor Diversity
7.4.6. The Case of Digital Immigrants

7. 5. The Design Process (I): Requirements Analysis for User Interface Design
7.5.1. User-Centered Design
7.5.2. What is Requirements Analysis?
7.5.3. Information Gathering
7.5.4. Analysis and Interpretation of the Information
7.5.5. Usability and Accessibility Analysis

7.6. The Design Process (II): Prototyping and Task Analysis
7.6.1. Conceptual Design
7.6.2. Prototyping
7.6.3. Hierarchical Task Analysis

7.7. The Design Process (III): Evaluation
7.7.1. Evaluation in the Design Process: Objectives and Methods
7.7.2. Evaluation Methods Without Users
7.7.3. Evaluation Methods with Users
7.7.4. Evaluation Standards and Norms

7.8. Accessibility: Definition and Guidelines
7.8.1. Accessibility and Universal Design
7.8.2. The WAI Initiative and the WCAG Guidelines
7.8.3. WCAG 2.0 and 2.1 Guidelines

7.9. Accessibility: Evaluation and Functional Diversity
7.9.1. Web Accessibility Evaluation Tools
7.9.2. Accessibility and Functional Diversity

7.10. The Computer and Interaction: Peripherals and Devices
7.10.1. Traditional Devices and Peripherals
7.10.2. Alternative Devices and Peripherals
7.10.3. Cell Phones and Tablets
7.10.4. Functional Diversity, Interaction and Peripherals

Module 8. Advanced Programming
8.1. Introduction to Object-Oriented Programming

8.1.1. Introduction to Object-Oriented Programming
8.1.2. Class Design
8.1.3. Introduction to UML for Problem Modeling

8.2. Relationships Between Classes
8.2.1. Abstraction and Inheritance
8.2.2. Advanced Inheritance Concepts
8.2.3. Polymorphism
8.2.4. Composition and Aggregation

8.3. Introduction to Design Patterns for Object-Oriented Problems
8.3.1. What are Design Patterns?
8.3.2. Factory Pattern
8.3.4. Singleton Pattern
8.3.5. Observer Pattern
8.3.6. Composite Pattern

8.4. Exceptions
8.4.1. What are Exceptions?
8.4.2. Exception Catching and Handling
8.4.3. Throwing Exceptions
8.4.4. Exception Creation

8.5. User Interfaces
8.5.1. Introduction to Qt
8.5.2. Positioning
8.5.3. What Are Events?
8.5.4. Events: Definition and Catching
8.5.5. User Interface Development

8.6. Introduction to Concurrent Programming
8.6.1. Introduction to Concurrent Programming
8.6.2. The Concept of Process and Thread
8.6.3. Interaction Between Processes or Threads
8.6.4. Threads in C++
8.6.6. Advantages and Disadvantages of Concurrent Programming

8.7. Thread Management and Synchronization
8.7.1. Life Cycle of a Thread
8.7.2. Thread Class
8.7.3. Thread Planning
8.7.4. Thread Groups
8.7.5. Daemon Threads
8.7.6. Synchronization
8.7.7. Locking Mechanisms
8.7.8. Communication Mechanisms
8.7.9. Monitors

8.8. Common Problems in Concurrent Programming
8.8.1. The Problem of Consuming Producers
8.8.2. The Problem of Readers and Writers
8.8.3. The Problem of the Philosophers' Dinner Party

Structure and Content | 27

28 | Structure and Content

8.9. Software Documentation and Testing
8.9.1. Why is it Important to Document Software?
8.9.2. Design Documentation
8.9.3. Documentation Tool Use

8.10. Software Testing
8.10.1. Introduction to Software Testing
8.10.2. Types of Tests
8.10.3. Unit Test
8.10.4. Integration Test
8.10.5. Validation Test
8.10.6. System Test

Module 9. Development of Web Applications
9.1. HTML5 Markup Languages

9.1.1. HTML Basics
9.1.2. New HTML 5 Elements
9.1.3. Forms: New Controls

9.2. Introduction to CSS Style Sheets
9.2.1. First Steps with CSS
9.2.2. Introduction to CSS3

9.3. Browser Scripting Language: JavaScript
9.3.1. JavaScript Basics
9.3.2. DOM
9.3.3. Events
9.3.4. JQuery
9.3.5. Ajax

9.4. Concept of Component-Oriented Programming
9.4.1. Context
9.4.2. Components and Interfaces
9.4.3. States of a Component

9.5. Component Architecture
9.5.1. Current Architectures
9.5.2. Component Integration and Deployment

9.6. Frontend Framework: Bootstrap
9.6.1. Grid Design
9.6.2. Forms
9.6.3. Components

9.7. Model View Controller
9.7.1. Web Development Methods
9.7.2. Design Pattern: MVC

9.8. Information Grid Technologies
9.8.1. Increased Computing Resources
9.8.2. Concept of Grid Technology

9.9. Service-Oriented Architecture
9.9.1. SOA and Web Services
9.9.2. Topology of a Web Service
9.9.3. Platforms for Web Services

9.10. HTTP Protocol
9.10.1. Messages
9.10.2. Persistent Sessions
9.10.3. Cryptographic System
9.10.4. HTTPS Protocol Operation

Module 10. Software Engineering
10.1. Introduction to Software Engineering and Modeling

10.1.1. The Nature of Software
10.1.2. The Unique Nature of WebApps
10.1.3. Software Engineering
10.1.4. The Software Process
10.1.5. Software Engineering Practice
10.1.6. Software Myths
10.1.7. How It All Begins
10.1.8. Object-Oriented Concepts
10.1.9. Introduction to UML

10.2. The Software Process
10.2.1. A General Process Model
10.2.2. Prescriptive Process Models
10.2.3. Specialized Process Models
10.2.4. The Unified Process
10.2.5. Personal and Team Process Models
10.2.6. What is Agility?
10.2.7. What is an Agile Process?
10.2.8. Scrum
10.2.9. Agile Process Toolkit

10.3. Principles Guiding Software Engineering Practice
10.3.1. Principles Guiding the Process
10.3.2. Principles Guiding the Practice
10.3.3. Principles of Communication
10.3.4. Planning Principles
10.3.5. Modeling Principles
10.3.6. Construction Principles
10.3.7. Deployment Principles

10.4. Understanding the Requirements
10.4.1. Requirements Engineering
10.4.2. Establish the Basis
10.4.3. Inquiry of Requirements
10.4.4. Development of Cases Studies
10.4.5. Elaboration of the Requirements Model
10.4.6. Negotiation of Requirements
10.4.7. Validation of Requirements

10.5. Requirements Modeling: Scenarios, Information and Analysis Classes
10.5.1. Analysis of Requirements
10.5.2. Scenario-Based Modeling
10.5.3. UML Models that provide the Case Study
10.5.4. Data Modeling Concepts
10.5.5. Class-Based Modeling
10.5.6. Class Diagrams

10.6. Requirements Modeling: Flow, Behavior and Patterns
10.6.1. Requirements that Shape Strategies
10.6.2. Flow-Oriented Modeling
10.6.3. Status Diagrams
10.6.4. Creation of a Behavioral Model
10.6.5. Sequence Diagrams
10.6.6. Communication Diagrams
10.6.7. Patterns for Requirements Modeling

10.7. Design Concepts
10.7.1. Design in the Software Engineering Context
10.7.2. The Design Process
10.7.3. Design Concepts
10.7.4. Object-Oriented Design Concepts
10.7.5. Model of the Design

Structure and Content | 29

30 | Structure and Content

10.8. Designing the Architecture:
10.8.1. Software Architecture
10.8.2. Architectural Genres
10.8.3. Architectural Styles
10.8.4. Architectural Design
10.8.5. Evolution of Alternative Designs for Architecture
10.8.6. Mapping the Architecture Using the Data Flow

10.9. Component-Level and Pattern-Based Design
10.9.1. What is a Component?
10.9.2. Class-Based Component Design
10.9.3. Realization of the Design at the Component Level
10.9.4. Design of Traditional Components
10.9.5. Component-Based Development
10.9.6. Design Patterns
10.9.7. Pattern-Based Software Design
10.9.8. Architectural Patterns
10.9.9. Design Patterns at the Component Level
10.9.10. User Interface Design Patterns

A unique, key, and decisive
educational experience to boost
your professional development”

10.10. Software Quality and Project Management
10.10.1. Quality
10.10.2. Software Quality
10.10.3. The Software Quality Dilemma
10.10.4. Achieving Software Quality
10.10.5. Software Quality Assurance
10.10.6. The Administrative Spectrum
10.10.7. The Staff
10.10.8. The product
10.10.9. The Process
10.10.10. The Project
10.10.11. Principles and Practices

Structure and Content | 31

05
Methodology
This academic program offers students a different way of learning. Our methodology
uses a cyclical learning approach: Relearning.
This teaching system is used, for example, in the most prestigious medical schools in
the world, and major publications such as the New England Journal of Medicine have
considered it to be one of the most effective.

Discover Relearning, a system that abandons
conventional linear learning, to take you through
cyclical teaching systems: a way of learning that
has proven to be extremely effective, especially in
subjects that require memorization"

Methodology | 33

34 | Methodology

Case Study to contextualize all content

 You will have access to a
learning system based on repetition,

with natural and progressive teaching
throughout the entire syllabus.

Our program offers a revolutionary approach to developing skills and
knowledge. Our goal is to strengthen skills in a changing, competitive, and
highly demanding environment.

At TECH, you will experience a learning
methodology that is shaking the
foundations of traditional universities
around the world"

Methodology | 35

The student will learn to solve
complex situations in real business
environments through collaborative
activities and real cases.

This TECH program is an intensive educational program, created from scratch,
which presents the most demanding challenges and decisions in this field,

both nationally and internationally. This methodology promotes personal and
professional growth, representing a significant step towards success. The case

method, a technique that lays the foundation for this content, ensures that the
most current economic, social and professional reality is taken into account.

The case method has been the most widely used learning system among the world's
leading Information Technology schools for as long as they have existed. The case

method was developed in 1912 so that law students would not only learn the law
based on theoretical content. It consisted of presenting students with real-life, complex
situations for them to make informed decisions and value judgments on how to resolve

them. In 1924, Harvard adopted it as a standard teaching method.

What should a professional do in a given situation? This is the question that you are
presented with in the case method, an action-oriented learning method. Throughout the

course, students will be presented with multiple real cases. They will have to combine
all their knowledge and research, and argue and defend their ideas and decisions.

Our program prepares you to face new
challenges in uncertain environments
and achieve success in your career”

A learning method that is different and innovative

TECH effectively combines the Case Study methodology with a 100%
online learning system based on repetition, which combines different
teaching elements in each lesson.

We enhance the Case Study with the best 100% online teaching
method: Relearning.

At TECH, you will learn using a cutting-edge methodology designed
to train the executives of the future. This method, at the forefront of
international teaching, is called Relearning.

Our university is the only one in the world authorized to employ this
successful method. In 2019, we managed to improve our students'
overall satisfaction levels (teaching quality, quality of materials, course
structure, objectives...) based on the best online university indicators.

In 2019, we obtained the best learning
results of all online universities in the world.

Relearning Methodology

36 | Methodology

In our program, learning is not a linear process, but rather a spiral (learn, unlearn,
forget, and re-learn). Therefore, we combine each of these elements concentrically.

This methodology has trained more than 650,000 university graduates with
unprecedented success in fields as diverse as biochemistry, genetics, surgery,

international law, management skills, sports science, philosophy, law, engineering,
journalism, history, and financial markets and instruments. All this in a highly

demanding environment, where the students have a strong socio-economic profile
and an average age of 43.5 years.

From the latest scientific evidence in the field of neuroscience, not only do we know
how to organize information, ideas, images and memories, but we know that the

place and context where we have learned something is fundamental for us to be able
to remember it and store it in the hippocampus, to retain it in our long-term memory.

In this way, and in what is called neurocognitive context-dependent e-learning, the
different elements in our program are connected to the context where the individual

carries out their professional activity.

Relearning will allow you to learn with less effort and
better performance, involving you more in your training,

developing a critical mindset, defending arguments, and
contrasting opinions: a direct equation for success.

Methodology | 37

30%

10%

8%
3%

Study Material

All teaching material is produced by the specialists who teach the course, specifically
for the course, so that the teaching content is highly specific and precise.

These contents are then adapted in audiovisual format, to create the TECH online
working method. All this, with the latest techniques that offer high-quality pieces in each
and every one of the materials that are made available to the student.

Additional Reading

Recent articles, consensus documents and international guidelines, among others. In
TECH's virtual library, students will have access to everything they need to complete their
course.

Practising Skills and Abilities

They will carry out activities to develop specific competencies and skills in each
thematic area. Exercises and activities to acquire and develop the skills and abilities
that a specialist needs to develop in the context of the globalization that we are
experiencing.

Classes

There is scientific evidence suggesting that observing third-party experts can be
useful.

Learning from an Expert strengthens knowledge and memory, and generates
confidence in future difficult decisions.

38 | Methodology

This program offers the best educational material, prepared with professionals in mind:

4%

25%

3%

20%

Testing & Retesting

We periodically evaluate and re-evaluate students’ knowledge throughout the
program, through assessment and self-assessment activities and exercises, so that

they can see how they are achieving their goals.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia
lessons that include audio, videos, images, diagrams, and concept maps in order to

reinforce knowledge.

This exclusive educational system for presenting multimedia content was awarded
by Microsoft as a "European Success Story".

Case Studies

Students will complete a selection of the best case studies chosen specifically
for this program. Cases that are presented, analyzed, and supervised by the best

specialists in the world.

Methodology | 39

Certificate
06

The Professional Master's Degree in Software Development guarantees students,
in addition to the most rigorous and up-to-date education, access to a Professional
Master's Degree issued by TECH Technological University.

Certificate | 41

Successfully complete this program and
receive your university qualification without
having to travel or fill out laborious paperwork"

42 | Certificate

This Professional Master's Degree in Software Development contains the most
complete and up-to-date program on the market.

After the student has passed the assessments, they will receive their corresponding
Professional Master’s Degree issued by TECH Technological University via tracked
delivery*.

The certificate issued by TECH Technological University will reflect the qualification
obtained in the Professional Master's Degree, and meets the requirements commonly
demanded by labor exchanges, competitive examinations, and professional career
evaluation committees.

Title: Professional Master’s Degree in Software Development

Official Nº of Hours: 1,500 h.

*Apostille Convention. In the event that the student wishes to have their paper certificate issued, with an apostille, TECH EDUCATION will make the necessary arrangements to obtain it, at an additional cost.

Professional Master’s Degree
Software Development

 » Modality: online

 » Duration: 12 months

 » Certificate: TECH Technological University

 » Dedication: 16h/week

 » Schedule: at your own pace

 » Exams: online

Professional Master’s Degree
Software Development

