
Professional Master’s Degree
Computing and Programming
Languages

Professional Master’s Degree
Computing and Programming
Languages

 » Modality: online
 » Duration: 12 months
 » Certificate: TECH Technological University
 » Dedication: 16h/week
 » Schedule: at your own pace
 » Exams: online

Website: www.techtitute.com/in/information-technology/professional-master-degree/master-computing-programming-languages

http://www.techtitute.com/in/information-technology/professional-master-degree/master-computing-programming-languages

Index

Introduction

Methodology

Objectives

Course Management

Certificate

Structure and Content

p. 4

p. 30

p. 8

p. 14

p. 38

p. 18

05

02 01

03

06

04

The IT professional needs to keep their skills fully up to date to be able to continue
working in their field of competence in the most effective way, without missing out on
any of the advances that are being incorporated into this field at a dizzying rate. This
update is designed to provide students with complete and in-depth knowledge of the
essential knowledge and the most interesting innovations in the design of algorithms
for the development of computing projects, using the most innovative and efficient
methods in the sector.

Introduction
01

Introduction | 05

Acquire the fundamental know-how on Computing
and Programming Languages and how to apply it
successfully in the development of IT projects, in a
highly competitive Professional Master's Degree"

06 | Introduction

This Professional Master's Degree focuses on the fundamentals of programming
and data structure, algorithms and complexity, as well as advanced algorithm
design, advanced programming, language processors and computer graphics,
among other topics related to this area of computer science.

This Professional Master's Degree provides students with specific tools and skills
to successfully develop their professional career in the broad environment of
Computing and Programming Languages. It works on key competencies such as
knowledge of the day-to-day reality and work in different IT areas and develops
responsibility for the monitoring and supervision of work, as well as specific skills
within this field.

Additionally, as it is a 100% online Professional Master’s Degree students are
not constrained by fixed timetables or the need to commute to another physical
location, rather, they can access the contents at any time of the day, balancing their
professional or personal life with their studies.

The teaching team of this Professional Master's Degree in Computing and
Programming Languages has carefully selected each of the topics of this course to
offer the student a study opportunity as complete as possible and always linked to
current events.

This Professional Master’s Degree in Computing and Programming
Languages contains the most complete and up-to-date program on the market.
The most important features include:

 � Case studies presented by experts in Computing and Language

 � The graphic, schematic, and practical contents which they contain, provide
scientific and practical information on the disciplines that are essential for
professional practice

 � Practical exercises where a self-assessment process can be undertaken to
improve learning

 � Special emphasis on innovative methodologies in Computing and Language

 � Theoretical lessons, questions to the expert, debate forums on controversial
topics, and individual reflection assignments

 � Content that is accessible from any fixed or portable device with an
 internet connection

An exceptional opportunity to learn, in a
comfortable and straightforward way, the
mathematical knowledge and processes
necessary to carry out excellent
computer programming"

Introduction | 07

Its multimedia content, developed with the latest educational technology, will allow the
professional a situated and contextual academic experience, that is to say, a simulated
environment that will provide an immersive refresher designed to prepare the student
for real situations.

This program is designed around Problem-Based Learning, whereby the professional
must try to resolve the different professional practice situations that arise during the
academic year. For this, the professional will have the help of an innovative, interactive
video system made by recognized and experienced experts in Computing and
Programming Languages.

A Professional Master's Degree that
owes its effectiveness to the most
valued educational technology in the
market, with audiovisual and study
systems that will allow you to learn in
a faster and more comfortable way"

A program of high educational
impact that will allow you to tailor the

workload to your needs, combining
flexibility and intensity.

We place at your disposal extensive
and clear didactic materials, which
incorporate all the current topics
of interest for the professional who
wants to advance in Computing and
Programming Languages.

Objectives
02

The Professional Master's Degree in Computing and Programming Languages has been
created specifically for the professional who seeks to advance in this area quickly and
effectively, and is organized on the basis of realistic and high-value objectives that will
propel him or her to another level of performance in this field.

Objectives | 09

Our goal is to provide professionals in the IT field
with a high-quality refresher that will allow them
to operate with confidence in Computing and
Programming Languages"

10 | Objectives

General Objective

 � Provide scientific and technological development, as well as preparation
for professional practice in Computing and Programming Languages,
all with a cross-disciplinary and versatile course in line with new
technologies and innovations in this field

Specific Objectives

Module 1. Programming Fundamentals
 � Understand the basic structure of a computer, software and general-purpose
programming languages

 � Learn to design and interpret algorithms, which are the necessary basis for
software development

 � Understand the essential elements of a computer program, such as the different
data types, operators, expressions, statements, I/O and control statements

 � Understand the different data structures available in general purpose programming
languages, both static and dynamic, as well as acquiring essential knowledge for
file handling

 � Know the different software testing techniques and the importance of proper
documentation together with good source code

 � Learn the basics of the C++ programming language, one of the most widely used
programming languages in the world

Module 2. Data Structure
 � Learn the basics of programming in the C++ language, including classes, variables,
conditional expressions, and objects

 � Understand abstract data types, linear data structure types, simple and complex
hierarchical data structures, and their implementation in C++

 � Understand the operation of advanced data structures that differ from the norm

 � Know about the theory and practice related to the use of priority heaps and queues

 � Learn how hash tables work as abstract data types and functions

 � Understand graph theory, as well as algorithms and advanced graph concepts

Make the most of this
opportunity and take the
next step to get up to date on
the latest developments in
Computing and Language”

Objectives | 11

Module 3. Algorithm and Complexity
 � Learn the main strategies for algorithm design, as well as the different methods and
measures for algorithm computation

 � Know the main sorting algorithms used in software development

 � Understand the operation of different algorithms with trees, Heaps and Graphs

 � Understand the operation of Greedy algorithms, their objective and examples of their
use for common problems

 � Also learn about the use of Greedy algorithms on graphs

 � Learn the main strategic concepts of minimum path finding, with an approach to
common problems in the field and algorithms for their resolution

 � Understand the Backtracking technique and its main uses, as well as other
 alternative techniques

Module 4. Advanced Algorithm Design
 � Deepen your knowledge of advanced algorithm design, analyzing recursive and divide
and conquer algorithms, as well as performing amortized analysis

 � Understand dynamic programming concepts and algorithms for NP problems

 � Understand the operation of combinatorial optimization, as well as the different
randomization algorithms and parallel algorithms

 � Know and understand the operation of the different local search methods with
candidate solutions

 � Learn the mechanisms of formal program verification and iterative program
verification, including first-order logic and Hoare's formal system

 � Learn about the operation of some of the main numerical methods such as the
bisection method, the Newton Raphson method and the secant method

Module 5. Advanced Programming
 � Build knowledge of programming, especially as it relates to object-oriented programming,
and the different types of relationships between existing classes

 � Understand the different design patterns for object-oriented problems

 � Learning about event-driven programming and user interface development with Qt

 � Acquire essential knowledge of concurrent programming, processes and threads

 � Learn how to manage the use of threads and synchronization, as well as the resolution of
common problems in concurrent programming

 � Understand the importance of documentation and testing in software development

Module 6. Theoretical Computing
 � Understand the essential theoretical mathematical concepts behind computer science,
such as propositional logic, set theory, and numerable and non-numerable sets

 � Understand the concepts of formal languages and grammars, as well as Turing machines
in their different versions

 � Learn about the different types of intractable problems, including the different versions of
these problems and their approaches

 � Understand the operation of different kinds of randomization-based languages and other
classes and grammars

 � Learn about other advanced computing systems such as Membrane Computing, DNA
Computing and Quantum Computing

12 | Objectives

Module 7. Automata Theory and Formal Languages
 � Understand the theory of automata and formal languages, learning the concepts of
alphabets, strings and languages, as well as how to perform formal demonstrations

 � Delve into the different types of finite automata, whether deterministic or non-deterministic

 � Learn the basic and advanced concepts related to regular languages and regular expressions,
as well as the application of pumping lemma and the clauses of regular languages

 � Understand context-independent grammars and the operation of stack automata

 � Gain knowledge on normal forms, the pumping lemma of context-independent grammars
and properties of context-independent languages

Module 8. Language Processors
 � Introduce the concepts related to the compilation process and the different types of analysis:
lexical, syntactic and semantic

 � Know how a lexical analyzer works, its implementation and error recovery

 � Deepen knowledge of syntactic analysis, both top-down and bottom-up, but with special
emphasis on the different types of bottom-up syntactic parsers

 � Understand the operation of semantic parsers, syntax-driven tradition, the symbol table and
the various types

 � Learn the different mechanisms for code generation, both in execution environments and for
intermediate code generation

 � Lay the groundwork for code optimization, including expression reordering and
loop optimization

Objectives | 13

Module 9. Computer Graphics and Visualization
 � Introduce the essential concepts of computer graphics and computer visualization, such
as color theory and its models and the properties of light

 � Understand the operation of the output primitives and their algorithms, both for line
drawing and for drawing circles and fills

 � Conduct an in-depth study of the different transformations, both 2D and 3D, and their
coordinate systems and computer visualization

 � Learn how to make 3D projections and cuts, as well as how to remove hidden surfaces

 � Learn the theory related to interpolation and parametric curves, as well as Bézier Curves
and B-splines

Module 10. Bio-inspired Computing
 � Introduce the concept of bio-inspired computing, as well as understanding how different
types of social adaptation algorithms and genetic algorithms work

 � Conduct an in-depth study of the different models of evolutionary computing, including
its strategies, programming, algorithms and models based on distribution estimation

 � Understand the main space exploration-exploitation strategies for genetic algorithms

 � Understand the operation of evolutionary programming applied to learning problems
and multi-objective problems

 � Learn the essential concepts related to neural networks and understand the operation
of real-life cases applied to areas as diverse as medical research, economics and
computer vision

Skills
03

After passing the assessments of the Professional Master's Degree in Computing
and Programming Languages, the professional will have acquired the necessary
skills and know the fundamental principles of computing with the ability to work with
programming languages and data.

Skills | 15

Gain the ability to carry out new computer
developments based on the understanding
and control of the different languages and
algorithms and their practical application"

16 | Skills

General Skills

 � Successfully perform the tasks related to Computing
and Programming Languages

Improve your skills to work on
various technological projects"

Skills | 17

Specific Skills

 � Design algorithms to develop computer programs and apply programming language

 � Understand and use IT data structure

 � Use the necessary algorithms to solve computer problems

 � Gain in-depth knowledge of advanced algorithm design and search methods

 � Carry out computer programming tasks

 � Understand and apply the theory behind computer science, such as mathematics

 � Know automata theory and how to apply computing language

 � Know the theoretical foundations of programming languages and the associated lexical,
syntactic and semantic processing techniques

 � Understand the basic concepts of mathematics and computational complexity in order to
apply them to the resolution of IT problems

 � Know and apply the fundamental principles of computer science to carry out new
computer developments

Structure and Content
04

The structure of the contents has been created in such a way that the knowledge
is assimilated in a progressive way, achieving a growth trajectory that will lead
you to excellence in your profession.

Structure and Content | 19

All the areas of interest that you need to master
in order to work confidently and successfully
in Computing and Programming Languages,
gathered together in a top-quality syllabus"

Module 1. Programming Fundamentals
1.1. Introduction to Programming

1.1.1. Basic Computer Structure
1.1.2. Software
1.1.3. Programming Languages
1.1.4. Computer Application Life Cycle

1.2. Algorithm Design
1.2.1. Problem Solving
1.2.2. Descriptive Techniques
1.2.3. Algorithm Elements and Structure

1.3. Program Elements
1.3.1. C++ Origin and Features
1.3.2. Development Environment
1.3.3. Concept of Program
1.3.4. Types of Fundamental Data
1.3.5. Operators
1.3.6. Expressions
1.3.7. Statements
1.3.8. Data Input and Output

1. 4. Control Statements
1.4.1. Statements
1.4.2. Branches
1.4.3. Loops

1.5. Abstraction and Modularity: Functions
1.5.1. Modular Design
1.5.2. Concept of Function and Utility
1.5.3. Definition of a Function
1.5.4. Execution Flow in the Call of a Function
1.5.5. Function Prototypes
1.5.6. Results Return
1.5.7. Calling Functions: Parameters
1.5.8. Parameter Passing According to Reference and Value
1.5.9. Scope Identifier

20 | Structure and Content

1.6. Statistical Data Structures
1.6.1. Arrays
1.6.2. Matrices Polyhedra
1.6.3. Searching and Sorting
1.6.4. Chaining: I/O Functions for Chains
1.6.5. Structures: Unions
1.6.6. New Types of Data

1.7. Dynamic Data Structures: Pointers
1.7.1. Concept. Definition of Pointer
1.7.2. Pointer Operators and Operations
1.7.3. Pointer Arrays
1.7.4. Pointers and Arrays
1.7.5. Chain Pointers
1.7.6. Structure Pointers
1.7.7. Multiple Indirection
1.7.8. Function Pointers
1.7.9. Function, Structure and Array Passing as Function Parameters

1.8. Files
1.8.1. Basic Concepts
1.8.2. File Operations
1.8.3. Types of Files
1.8.4. File Organization
1.8.5. Introduction to C++ Files
1.8.6. Managing Files

1.9. Recursion
1.9.1. Definition of Recursion
1.9.2. Types of Recursion
1.9.3. Advantages and Disadvantages
1.9.4. Considerations
1.9.5. Recursive-Iterative Conversion
1.9.6. Recursion Stack

Structure and Content | 21

1.10. Testing and Documentation
1.10.1. Program Testing
1.10.2. White Box Testing
1.10.3. Black Box Testing
1.10.4. Testing Tools
1.10.5. Program Documentation

Module 2. Data Structure
2.1. Introduction to C++ Programming

2.1.1. Classes, Constructors, Methods and Attributes
2.1.2. Variables:
2.1.3. Conditional Expressions and Loops
2.1.4. Objects

2.2. Abstract Data Types (ADT)
2.2.1. Types of Data
2.2.2. Basic Structures and ADTs
2.2.3. Vectors and Arrays

2.3. Lineal Data Structures
2.3.1. ADT List Definition
2.3.2. Linked and Doubly Linked Lists
2.3.3. Ordered Lists
2.3.4. Lists in C++
2.3.5. ADT Stack
2.3.6. ADT Queue
2.3.7. Stack and Queue in C++

2.4. Hierarchical Data Structures
2.4.1. ADT Tree
2.4.2. Routes
2.4.3. N-ary Trees
2.4.4. Binary Trees
2.4.5. Binary Search Trees

2.5. Hierarchical Data Structures: Complex Trees
2.5.1. Perfectly Balanced Trees or Minimum Height Trees
2.5.2. Multi-path Trees
2.5.3. Bibliographical References

2.6. Priority Heaps and Queues
2.6.1. ADT Heaps
2.6.2. ADT Priority Queues

2.7. Hash Tables
2.7.1. ADT Hash Table
2.7.2. Hash Functions
2.7.3. Hash Function in Hash Tables
2.7.4. Redistribution
2.7.5. Open Hash Tables

2.8. Graphs
2.8.1. ADT Graph
2.8.2. Types of Graph
2.8.3. Graphical Representation and Basic Operations
2.8.4. Graph Design

2.9. Algorithms and Advanced Concepts on Graphs
2.9.1. Problems with Graphs
2.9.2. Path Algorithms
2.9.3. Search or Path Algorithms
2.9.4. Other Algorithms

2.10. Other Data Structures
2.10.1. Sets
2.10.2. Parallel Arrays
2.10.3. Table of Symbols
2.10.4. Tries

22 | Structure and Content

Module 3. Algorithm and Complexity
3.1. Introduction to Algorithm Design Strategies

3.1.1. Recursion
3.1.2. Divide and Conquer
3.1.3. Other Strategies

3.2. Algorithm Efficiency and Analysis
3.2.1. Efficiency Measures
3.2.2. Measuring Entry Size
3.2.3. Measuring Execution Time
3.2.4. Worst, Best and Average Case
3.2.5. Asymptotic Notation
3.2.6. Mathematical Analysis Criteria for Non-Recursive Algorithms
3.2.7. Mathematical Analysis for Recursive Algorithms
3.2.8. Empirical Analysis for Algorithms

3.3. Sorting Algorithms
3.3.1. Concept of Sorting
3.3.2. Bubble Sorting
3.3.3. Selection Sorting
3.3.4. Insertion Sorting
3.3.5. Merge Sorting
3.3.6. Quick Sorting

3.4. Tree Algorithms
3.4.1. Concept of Tree
3.4.2. Binary Trees
3.4.3. Tree Paths
3.4.4. Representing Expressions
3.4.5. Sorted Binary Trees
3.4.6. Balanced Binary Trees

3.5. Algorithms Using Heaps
3.5.1. Heaps
3.5.2. The HeapSort Algorithm
3.5.3. Priority Queues

3.6. Graph Algorithms
3.6.1. Representation
3.6.2. Width Traversal
3.6.3. Depth Traversal
3.6.4. Topological Sorting

3.7. Greedy Algorithms
3.7.1. Greedy Strategy
3.7.2. Greedy Strategy Elements
3.7.3. Currency Exchange
3.7.4. Traveling Salesman Problem
3.7.5. Knapsack Problem

3.8. Minimal Pathways Search
3.8.1. Shortest Path Problem
3.8.2. Cycles and Negative Arcs
3.8.3. Dijkstra's Algorithm

3.9. Greedy Algorithms for Graphs
3.9.1. Minimum Spanning Tree
3.9.2. Prim's Algorithm
3.9.3. Kruskal’s Algorithm
3.9.4. Complexity Analysis

3.10. Backtracking
3.10.1. Backtracking
3.10.2. Alternative Techniques

Structure and Content | 23

Module 4. Advanced Algorithm Design
4.1. Analysis of Recursive and Divide and Conquer Algorithms

4.1.1. Posing and Solving Homogeneous and Non-Homogeneous Recurrence
Equations

4.1.2. Divide and Conquer Strategy Overview
4.2. Amortized Analysis

4.2.1. Aggregated Analysis
4.2.2. The Accounting Method
4.2.3. The Potential Method

4.3. Dynamic Programming and Algorithms for NP Problems
4.3.1. Dynamic Programming Features
4.3.2. Backtracking
4.3.3. Branching and Pruning

4.4. Combinatorial Optimization
4.4.1. Representation of Problems
4.4.2. Optimization in 1D

4.5. Randomization Algorithms
4.5.1. Examples of Randomization Algorithms
4.5.2. The Buffon Theorem
4.5.3. The Monte Carlo Algorithm
4.5.4. The Las Vegas Algorithm

4.6. Local Search and with Candidates
4.6.1. Garcient Ascent
4.6.2. Hill Climbing
4.6.3. Simulated Annealing
4.6.4. Tabu Search
4.6.5. Search with Candidates

4.7. Formal Program Verification
4.7.1. Specification of Functional Abstractions
4.7.2. The Language of First Order Logic
4.7.3. Hoare's Formal System

4.8. Iterative Program Verification
4.8.1. Rules of Hoare's Formal System
4.8.2. Concept of Invariant Iterations

4.9. Numeric Methods
4.9.1. The Bisection Method
4.9.2. The Newton Raphson Method
4.9.3. The Secant Method

4.10. Parallel Algorithms
4.10.1. Parallel Binary Operations
4.10.2. Parallel Operations with Graphs
4.10.3. Parallelism in Divide and Conquer
4.10.4. Parallelism in Dynamic Programming

Module 5. Advanced Programming
5.1. Introduction to Object Oriented Programming

5.1.1. Introduction to Object Oriented Programming
5.1.2. Class Design
5.1.3. Introduction to Unified Modeling Language (UML) for Problem Modeling

5.2. Class Relations
5.2.1. Abstractions and Heritage
5.2.2. Advanced Concepts of Heritage
5.2.3. Polymorphism
5.2.4. Composition and Aggregation

5.3. Introduction to Design Patterns for Object Oriented problems
5.3.1. What Are Design Patterns?
5.3.2. Factory Pattern
5.3.3. Singleton Pattern
5.3.4. Observer Pattern
5.3.5. Composite Pattern

5.4. Exceptions
5.4.1. What Are the Exceptions?
5.4.2. Catching and Handling Exceptions
5.4.3. Launching Exceptions
5.4.4. Creation Exceptions

24 | Structure and Content

5.5. User Interface
5.5.1. Introduction to Qt
5.5.2. Positioning
5.5.3. What Are Events?
5.5.4. Events: Definition and Capture
5.5.5. User Interface Development

5.6. Introduction to Concurrent Programming
5.6.1. Introduction to Concurrent Programming
5.6.2. Concept of Process and Thread
5.6.3. Process and Thread Interaction
5.6.4. C++ Threads
5.6.5. Advantages and Disadvantages of Concurrent Programming

5.7. Thread Management and Synchronization
5.7.1. Thread Life Cycle
5.7.2. Thread Class
5.7.3. Thread Planning
5.7.4. Thread Groups
5.7.5. Daemon Threads
5.7.6. Synchronization
5.7.7. Locking Mechanisms
5.7.8. Communication Mechanisms
5.7.9. Monitors

5.8. Common Problems in Concurrent Programming
5.8.1. Producer-Consumer Problem
5.8.2. Readers-Writers Problem
5.8.3. Dining Philosophers Problem

5.9. Software Testing and Documentation
5.9.1. Why Is It Important to Document Software?
5.9.2. Design Documentation
5.9.3. Documentation Tool Use

5.10. Software Tests
5.10.1. Introduction to Software Tests
5.10.2. Types of Tests
5.10.3. Unit Test
5.10.4. Integration Tests
5.10.5. Validation Test
5.10.6. System Tests

Module 6. Theoretical Computing
6.1. Mathematical Concepts Used

6.1.1. Introduction to Propositional Logic
6.1.2. Relationship Theory
6.1.3. Numerable and Non-Numerable Sets

6.2. Formal Languages and Grammar and Introduction to Turing Machines
6.2.1. Formal Languages and Grammar
6.2.2. Decision Problem
6.2.3. The Turing Machine

6.3. Extensions for Turing Machines, Constrained Turing Machines and Computers
6.3.1. Programming Techniques for Turing Machines
6.3.2. Programming Techniques for Turing Machines
6.3.3. Restricted Turing Machines
6.3.4. Turing Machines and Computers

6.4. Undecidable Problems
6.4.1. Non-Recursively Enumerable Language
6.4.2. An Undecidable Recursively Enumerable Problem

6.5. Other Undecidable Problems
6.5.1. Programming Techniques for Turing Machines
6.5.2. Post Correspondence Problem (PCP)

6.6. Intractable Problems
6.6.1. P and NP Classes
6.6.2. A Complete NP Problem
6.6.3. Restricted Satisfiability Problem
6.6.4. Other Complete NP Problems

Structure and Content | 25

6.7. Co-NP and PS Problems
6.7.1. Complements to NP languages
6.7.2. Solvable Problems in Polynomial Space
6.7.3. Complete PS Problems

6.8. Classes of Randomization-Based Languages
6.8.1. MT Model with Randomization
6.8.2. RP and ZPP Classes
6.8.3. Primality Test
6.8.4. Complexity of the Primality Test

6.9. Other Classes and Grammars
6.9.1. Probabilistic Finite Automata
6.9.2. Cellular Automata
6.9.3. McCullogh and Pitts Cells
6.9.4. Lindenmayer Grammar

6.10. Advanced Computing Systems
6.10.1. Membrane Computing: Systems
6.10.2. Computing with DNA
6.10.3. Quantum Computing

Module 7. Automata Theory and Formal Languages
7.1. Introduction to Automata Theory

7.1.1. Why Study Automata Theory?
7.1.2. Introduction to Formal Demonstrations
7.1.3. Other Types of Demonstration
7.1.4. Mathematical Induction
7.1.5. Alphabets, Strings and Languages

7.2. Deterministic Finite Automata
7.2.1. Introduction to Finite Automata
7.2.2. Deterministic Finite Automata

7.3. Non-Deterministic Finite Automata
7.3.1. Non-Deterministic Finite Automata
7.3.2. Equivalency between AFD and AFN
7.3.3. Finite Automata with Transitions

7.4. Languages and Regular Expressions (I)
7.4.1. Languages and Regular Expressions
7.4.2. Finite Automata and Regular Expressions

7.5. Languages and Regular Expressions (II)
7.5.1. Conversion of Regular Expressions into Automata
7.5.2. Applications of Regular Expressions
7.5.3. Algebra of Regular Expressions

7.6. Lemma Pumping and Closure of Regular Languages
7.6.1. Lemma Pumping
7.6.2. Closure Properties of Regular Languages

7.7. Equivalence and Minimization of Automata
7.7.1. FA Equivalence
7.7.2. FA Minimization

7.8. Context Independent Grammars (CIG)
7.8.1. Context Independent Grammars
7.8.2. Derivation Trees
7.8.3. GIC Applications
7.8.4. Ambiguity in Grammars and Languages

7.9. Stack Automatons and GIC
7.9.1. Definition of Stack Automata
7.9.2. Languages Accepted by a Stack Automaton
7.9.3. Equivalence between Stack Automata and GICs
7.9.4. Deterministic Stack Automata

7.10. Normal Forms, GIC Lemma Pumping and Properties of LICs
7.10.1. Normal Forms of GICs
7.10.2. Lemma Pumping
7.10.3. Closure Properties of Languages
7.10.4. Decision Properties of LICs

26 | Structure and Content

Module 8. Language Processors
8.1. Introduction to the Compilation Process

8.1.1. Compilation and Interpretation
8.1.2. Compiler Execution Environment
8.1.3. Analysis Process
8.1.4. Synthesis Process

8.2. Lexical Analyzer
8.2.1. What is a Lexical Analyzer?
8.2.2. Implementation of the Lexical Analyzer
8.2.3. Semantic Actions
8.2.4. Error Recovery
8.2.5. Implementation Issues

8.3. Parsing
8.3.1. What is a Syntactic Analyzer?
8.3.2. Previous Concepts
8.3.3. Top-down Analyzers
8.3.4. Bottom-up Analyzers

8.4. Top-down Parsing and Bottom-up Parsing
8.4.1. LL Analyzer (1)
8.4.2. LR Analyzer (0)
8.4.3. Analyzer Example

8.5. Advanced Bottom-Up Parsing
8.5.1. SLR Analyzers
8.5.2. LR Analyzer (1)
8.5.3. LR Analyzer(K)
8.5.4. LALR Analyzers

8.6. Semantic Analysis (I)
8.6.1. Syntax-Driven Translation
8.6.2. Table of Symbols

8.7. Semantic Analysis (II)
8.7.1. Type Checking
8.7.2. The Type Subsystem
8.7.3. Type Equivalence and Conversions

8.8. Code Generation and Execution Environment
8.8.1. Design Aspects
8.8.2. Execution Environment
8.8.3. Memory Organization
8.8.4. Memory Allocation

8.9. Intermediate Code Generation
8.9.1. Synthesis-driven Translation
8.9.2. Intermediate Representations
8.9.3. Examples of Translations

8.10. Code Optimization
8.10.1. Assignment of Records
8.10.2. Elimination of Dead Assignments
8.10.3. Compile-time Execution
8.10.4. Reordering of Expressions
8.10.5. Loop Optimization

Module 9. Computer Graphics and Visualization
9.1. Color Theory

9.1.1. Properties of Light
9.1.2. Color Models
9.1.3. The CIE Standard
9.1.4. Profiling

9.2. Output Primitives
9.2.1. The Video Controller
9.2.2. Line Drawing Algorithms
9.2.3. Circumferences Drawing Algorithms
9.2.4. Backfill Algorithms

Structure and Content | 27

9.3. 2D Transformations and 2D Coordinate Systems and 2D Clipping
9.3.1. Basic Geometric Transformations
9.3.2. Homogeneous Coordinates
9.3.3. Inverse Transformation
9.3.4. Transformation Composition
9.3.5. Other Transformations
9.3.6. Coordinate Changing
9.3.7. 2D Coordinate Systems
9.3.8. Coordinate Changing
9.3.9. Standardization
9.3.10. Clipping Algorithms

9.4. 3D Transformations
9.4.1. Translation
9.4.2. Rotation
9.4.3. Scaling
9.4.4. Reflection
9.4.5. Shearing

9.5. Viewing and Changing 3D Coordinates
9.5.1. 3D Coordinate Systems
9.5.2. Visualisation
9.5.3. Coordinate Changing
9.5.4. Projection and Standardization

9.6. 3D Projection and Cropping
9.6.1. Orthogonal Projection
9.6.2. Oblique Parallel Projection
9.6.3. Projection Perspective
9.6.4. 3D Clipping Algorithms

28 | Structure and Content

9.7. Elimination of Hidden Surfaces
9.7.1. Back Face Removal
9.7.2. Z-buffer
9.7.3. Painter Algorithm
9.7.4. Warnock Algorithm
9.7.5. Hidden Line Detection

9.8. Interpolation and Parametric Curves
9.8.1. Interpolation and Approximation with Polynomials
9.8.2. Parametric Representation
9.8.3. Lagrange's Polynomial
9.8.4. Natural Cubic Splines
9.8.5. Base Functions
9.8.6. Matrix Representation

9.9. Bézier Curves
9.9.1. Algebraic Construction
9.9.2. Matrix Form
9.9.3. Composition
9.9.4. Geometric Construction
9.9.5. Drawing Algorithm

9.10. B-Splines
9.10.1. The Problem of Local Control
9.10.2. Uniform Cubic B-Splines
9.10.3. Base Functions and Control Points
9.10.4. Derivation of the origin and Multiplicity
9.10.5. Matrix Representation
9.10.6. Non-Uniform B-Splines

Module 10. Bio-Inspired Computing
10.1. Introduction to Bio-Inspired Computing

10.1.1. Introduction to Bio-Inspired Computing

Structure and Content | 29

10.2. Social Adaptation Algorithms
10.2.1. Bio-inspired Computing Based on Ant Colonies
10.2.2. Variants of Ant Colony Algorithms
10.2.3. Particle Cloud Computing

10.3. Genetic Algorithms
10.3.1. General Structure
10.3.2. Implementations of the Main Operators

10.4. Space Exploration-Exploitation Strategies for Genetic Algorithms
10.4.1. CHC Algorithm
10.4.2. Multimodal Problems

10.5. Evolutionary Computing Models (I)
10.5.1. Evolutionary Strategies
10.5.2. Evolutionary Programming
10.5.3. Algorithms Based on Differential Evolution

10.6. Evolutionary Computing Models (II)
10.6.1. Evolution Models based on Estimation of Distributions (EDA)
10.6.2. Genetic Programming

10.7. Evolutionary Programming Applied to Learning Disabilities
10.7.1. Rule-Based Learning
10.7.2. Evolutionary Methods in Instance Selection Problems

10.8. Multi-objective Problems
10.8.1. Concept of Dominance
10.8.2. Application of Evolutionary Algorithms to Multi-objective Problems

10.9. Neural Networks (I)
10.9.1. Introduction to Neural Networks
10.9.2. Case Study with Neural Networks

10.10. Neural Networks (II)
10.10.1. Examples of the Use of Neural Networks in Medical Research
10.10.2. Examples of the Use of Neural Networks in the Economy
10.10.3. Examples of the Use of Neural Networks in Artificial Vision

Methodology
This academic program offers students a different way of learning. Our methodology
uses a cyclical learning approach: Relearning.
This teaching system is used, for example, in the most prestigious medical schools in
the world, and major publications such as the New England Journal of Medicine have
considered it to be one of the most effective.

05

Discover Relearning, a system that abandons
conventional linear learning, to take you through
cyclical teaching systems: a way of learning that
has proven to be extremely effective, especially in
subjects that require memorization"

Methodology | 31

32 | Methodology

Case Study to contextualize all content

 You will have access to a
learning system based on repetition,

with natural and progressive teaching
throughout the entire syllabus.

Our program offers a revolutionary approach to developing skills and
knowledge. Our goal is to strengthen skills in a changing, competitive, and
highly demanding environment.

At TECH, you will experience
a learning methodology that
is shaking the foundations
of traditional universities
around the world"

Methodology | 33

The student will learn to solve
complex situations in real business
environments through collaborative
activities and real cases.

This TECH program is an intensive educational program, created from scratch,
which presents the most demanding challenges and decisions in this field,

both nationally and internationally. This methodology promotes personal and
professional growth, representing a significant step towards success. The case

method, a technique that lays the foundation for this content, ensures that the
most current economic, social and professional reality is taken into account.

The case method has been the most widely used learning system among the world's
leading Information Technology schools for as long as they have existed. The case

method was developed in 1912 so that law students would not only learn the law
based on theoretical content. It consisted of presenting students with real-life, complex
situations for them to make informed decisions and value judgments on how to resolve

them. In 1924, Harvard adopted it as a standard teaching method.

What should a professional do in a given situation? This is the question that you are
presented with in the case method, an action-oriented learning method. Throughout the

course, students will be presented with multiple real cases. They will have to combine
all their knowledge and research, and argue and defend their ideas and decisions.

Our program prepares you to face new
challenges in uncertain environments
and achieve success in your career”

A learning method that is different and innovative

34 | Methodology

TECH effectively combines the Case Study methodology with a 100%
online learning system based on repetition, which combines different
teaching elements in each lesson.

We enhance the Case Study with the best 100% online teaching
method: Relearning.

At TECH you will learn using a cutting-edge methodology designed
to train the executives of the future. This method, at the forefront of
international teaching, is called Relearning.

Our university is the only one in the world authorized to employ this
successful method. In 2019, we managed to improve our students'
overall satisfaction levels (teaching quality, quality of materials, course
structure, objectives...) based on the best online university indicators.

In 2019, we obtained the best learning
results of all online universities in the world.

Relearning Methodology

Methodology | 35

In our program, learning is not a linear process, but rather a spiral (learn, unlearn,
forget, and re-learn). Therefore, we combine each of these elements concentrically.

This methodology has trained more than 650,000 university graduates with
unprecedented success in fields as diverse as biochemistry, genetics, surgery,

international law, management skills, sports science, philosophy, law, engineering,
journalism, history, and financial markets and instruments. All this in a highly

demanding environment, where the students have a strong socio-economic profile
and an average age of 43.5 years.

From the latest scientific evidence in the field of neuroscience, not only do we know
how to organize information, ideas, images and memories, but we know that the

place and context where we have learned something is fundamental for us to be able
to remember it and store it in the hippocampus, to retain it in our long-term memory.

In this way, and in what is called neurocognitive context-dependent e-learning, the
different elements in our program are connected to the context where the individual

carries out their professional activity.

Relearning will allow you to learn with less effort and
better performance, involving you more in your training,

developing a critical mindset, defending arguments, and
contrasting opinions: a direct equation for success.

36 | Methodology

30%

10%

8%
3%

Study Material

All teaching material is produced by the specialists who teach the course, specifically
for the course, so that the teaching content is highly specific and precise.

These contents are then applied to the audiovisual format, to create the TECH online
working method. All this, with the latest techniques that offer high quality pieces in each
and every one of the materials that are made available to the student.

Additional Reading

Recent articles, consensus documents and international guidelines, among others.
In TECH's virtual library, students will have access to everything they need to
complete their course.

Practising Skills and Abilities

They will carry out activities to develop specific skills and abilities in each subject area.
Exercises and activities to acquire and develop the skills and abilities that a specialist
needs to develop in the context of the globalization that we are experiencing.

Classes

There is scientific evidence suggesting that observing third-party experts can be useful.

Learning from an Expert strengthens knowledge and memory, and generates
confidence in future difficult decisions.

This program offers the best educational material, prepared with professionals in mind:

Methodology | 37

4%

25%

3%

20%

Testing & Retesting

We periodically evaluate and re-evaluate students’ knowledge throughout the
program, through assessment and self-assessment activities and exercises, so that

they can see how they are achieving their goals.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia
lessons that include audio, videos, images, diagrams, and concept maps in order to

reinforce knowledge.

This exclusive educational system for presenting multimedia content was awarded
by Microsoft as a "European Success Story".

Case Studies

Students will complete a selection of the best case studies chosen specifically
for this program. Cases that are presented, analyzed, and supervised by the best

specialists in the world.

Certificate
06

The Professional Master’s Degree in Computing and Programming Languages
guarantees students, in addition to the most rigorous and up-to-date education, access
to a Professional Master’s Degree issued by TECH Technological University.

Certificate | 39

Successfully complete this program and receive
your university qualification without having to
travel or fill out laborious paperwork”

40 | Certificate

*Apostille Convention. In the event that the student wishes to have their paper certificate issued with an apostille, TECH EDUCATION will make the necessary arrangements to obtain it, at an additional cost.

This Professional Master's Degree in Computing and Programming Languages
contains the most complete and up-to-date program on the market.

After the student has passed the assessments, they will receive their corresponding
Professional Master’s Degree issued by TECH Technological University via tracked
delivery*.

The certificate issued by TECH Technological University will reflect the qualification
obtained in the Professional Master's Degree, and meets the requirements commonly
demanded by labor exchanges, competitive examinations and professional career
evaluation committees.

Title: Professional Master’s Degree in Computing and Programming Languages

Official Nº of hours: 1,500 h.

Professional Master’s
Degree
Computing and Programming
Languages

 » Modality: online
 » Duration: 12 months
 » Certificate: TECH Technological University
 » Dedication: 16h/week
 » Schedule: at your own pace
 » Exams: online

Professional Master’s Degree
Computing and Programming
Languages

