
Advanced Master's Degree
Software Engineering and Quality

Advanced Master's Degree
Software Engineering
and Quality

 » Modality: online
 » Duration: 2 years
 » Certificate: TECH Technological University
 » Dedication: 16h/week
 » Schedule: at your own pace
 » Exams: online

Website: www.techtitute.com/in/information-technology/advanced-master-degree/advanced-master-degree-software-engineering-quality

http://www.techtitute.com/in/information-technology/advanced-master-degree/advanced-master-degree-software-engineering-quality

Index

Introduction

Course Management

Objectives

Structure and ContentSkills

CertificateMethodology

p. 4

p. 24

p. 8

p. 54p. 46

p. 16 p. 20

05

0201

0706

03 04

The development of technology and advances in computer systems have created
a great demand from the industry for professionals who perfectly handle Software
Engineering, from the most sophisticated and accurate tools for its design and
implementation, to the security protocols that guarantee inviolable access to your
data. For this reason, and with the aim of offering specialists the opportunity to
get up to date with the most cutting-edge information on engineering applied to
this area, TECH has developed this multidisciplinary and 100% online program. It
is a program designed by experts that combines, in a single syllabus, 3,000 hours
of the best content on computer systems and software quality, and that will help
the graduate improve their computer skills in an immediate and specific way.

Introduction
01

Software quality has never been as necessary as
it is today. Enroll in this online Advanced Master’s
Degree and access the most comprehensive
content on computer engineering"

Introduction | 05

06 | Presentation

Computer engineering has grown exponentially in recent years due to the evolution of
technology and digital tools, especially in everything related to the web and its usability. That
is why today the development of software for various functions is the order of the day and
the catalog of programs is growing. However, this quantity is not always synonymous of
quality, so that frequently there are applications that do not fulfill their purpose, that return
errors or that seriously violate the security of the companies. For this reason, computer
engineers specialized in this area are increasingly in demand.

That is why TECH has decided to design this Advanced Master’s Degree in Software
Engineering and Quality, a multidisciplinary program designed by experts in the area and
designed in such a way that the graduate will find in it all the necessary tools to update their
knowledge in a comprehensive manner and based on the latest developments in the sector.
It is an educational program that combines theory and practice in 20 modules in which
software engineering and the quality of information systems projects are studied in depth.

Throughout the 24 months in which this 100% online program is taught, the engineer will
have access to the best syllabus that will allow him to improve his skills in the standardization
of databases and in the decoupling between components of a system, as well as to expand
his knowledge in scalable architectures, quality metrics and collaborative work.

In addition, you will have access to a modern and cutting-edge virtual classroom where
you will find all the tools that will allow you to get the most out of this certificate, including
hundreds of hours of additional material in different formats. All this content can be
downloaded to any device with an internet connection, ensuring that you can consult it
whenever you want and need it.

This Advanced Master's Degree in Software Engineering and Quality contains the most
complete and up-to-date educational program on the market. Its most notable features are:

 � Case studies presented by engineering experts

 � The graphic, schematic, and practical contents with which they are created,
provide scientific and practical information on the disciplines that are essential for
professional practice

 � Practical exercises where self-assessment can be used to improve learning

 � Special emphasis on innovative methodologies in Software design and construction

 � Theoretical lessons, questions to the expert, debate forums on controversial topics,
and individual reflection assignments

 � Content that is accessible from any fixed or portable device with an Internet connection

You will have access to HTML
exercises and their answers, so you
will be able to put into practice your
knowledge and the theory developed
throughout the programming"

Introduction | 07

It includes, in its teaching staff, professionals belonging to the field of engineering who
contribute their work experience to this program, as well as renowned specialists from
prestigious universities and reference societies.

The multimedia content, developed with the latest educational technology, will provide
the professional with situated and contextual learning, i.e., a simulated environment that
will provide an immersive learning experience designed to prepare for real-life situations.

This program is designed around Problem-Based Learning, whereby the student must
try to solve the different professional practice situations that arise throughout the
program. For this purpose, the professional will be assisted by an innovative interactive
video system created by renowned and experienced experts.

Thanks to the dedicated DevOps module
you will have the most comprehensive
and in-depth knowledge to speed up
the software development lifecycle and
ensure continuous high-quality delivery"

Thanks to this certificate you will
be able to start your own software
development project and apply the most
sophisticated and innovative unit stress
and endurance tests to check its quality.

Delve into Test-Driven
Development and gain a broad

and specialized view of test-driven
software design and development.

Objectives
02

Computer engineering is an industry that is constantly changing. This is why TECH
has developed this certification, not only with the objective of providing the specialist
with a broad and up-to-date knowledge of their profession, but also to provide them
with a detailed knowledge of the tools that will allow them to keep up to date after the
completion of this Advanced Master's Degree. In addition, the best theoretical, practical
and audiovisual material will be available to make this program a dynamic and highly
empowering academic experience.

If your goal is to become a specialist in Software
Engineering and Quality, this Advanced Master's
Degree will provide you with everything you need
to exceed your professional expectations with a
total guarantee of success"

Objectives | 09

10 | Objectives

General Objectives

 � Develop the criteria, tasks and advanced methodologies to understand the relevance
of Quality oriented work

 � Analyze the key factors in the quality of a software project

 � Develop the relevant regulatory aspects

 � Implement DevOps and systems processes for Quality Assurance

 � Reduce the technical debt of projects with a Quality approach rather than an approach
based on economics and short deadlines

 � Provide the student with the knowledge to be able to measure and quantify the Quality
of a software project

 � Defend the economic proposals of projects on the basis of the Quality approach

 � Acquire new knowledge in Software and Computer Systems Engineering

 � Acquire new skills in terms of new technologies and the latest software developments

 � Process the data generated in Software and Computer Systems Engineering activities

Objectives | 11

Module 1. Software Quality TRL Development Levels
 � Develop in a clear and concise way the elements that encompass Software quality

 � Apply the models and standards according to system, product and software process

 � Delve into the ISO Quality standards applied both in general and in specific parts of the system

 � Apply the standards according to the scope of the environment (local, national and international)

 � Examine the TRL maturity levels and adapt them to the different parts of the software
project to be dealt with

 � Acquire the capacity of abstraction to apply one or several criteria of elements and levels
of Software Quality

 � Distinguish the cases of application of the standards and maturity levels in a real case
simulated project

Module 2. Software Project Development. Functional and technical documentation
 � Determine the influence of project management on quality

 � Develop the different phases of a project

 � Differentiate the quality concepts inherent to functional and technical documentation

 � Analyze the requirements gathering phase, the analysis phase, team management
and the construction phase

 � Establish the different Software project management methodologies

 � Generate criteria to decide which is the most appropriate methodology according
to the type of project

Specific Objectives

Module 5. TDD (Test-Driven Development). Test-Driven Software Design
 � Know the practical application of TDD and its possibilities in the future testing of a
software project

 � Complete proposed real simulation cases, as a continuous learning of this TDD concept

 � Analyze, in the simulation cases, to what extent the tests can succeed or fail, from a
constructive point of view

 � Determine the alternatives to TDD, making a comparative analysis between them

Module 6. DevOps. Software Quality Management
 � Analyze the shortcomings of a traditional process

 � Assess the possible solutions and choose the most suitable one

 � Understanding business needs and their impact on implementation

 � Assess the costs of the improvements to implement

 � Develop an evolvable software lifecycle, adapted to real need

 � Anticipate possible errors and avoid them from the design process

 � Justify the use of different implementation models

Module 7. DevOps and Continuous Integration. Advanced practical solutions
in software development

 � Identify the stages of the software development and delivery cycle adapted to particular cases

 � Design a software delivery process using continuous integration

 � Build and implement continuous integration and deployment based on your previous design

 � Establish automatic quality checkpoints on each Software delivery

 � Maintain an automatic and robust Software delivery process

 � Adapt future needs to the continuous integration and deployment process

 � Analyze and anticipate security vulnerabilities during and after the software delivery process

12 | Objectives

Module 3. Software Testing. Test automation
 � Establish the differences between product quality, process quality and quality of use

 � Know the ISO/IEC 15504 standard

 � Determine the details of CMMI

 � Learn the keys to continuous integration, repositories and the repercussions they have on a
software development team

 � Establish the relevance of incorporating repositories for software projects. Learn how to
create them with TFS

 � Analyze the different types of fundamental tests, such as load, unit, stress and endurance tests

 � Assimilate the importance of software scalability in information systems design
and development

Module 4. Software Project Management Methodologies. Waterfall Methodology
vs Agile Methodology

 � Determine what the Waterfall Methodology consists on

 � Delve into the SCRUM Methodology

 � Establish the differences between Waterfall and SCRUM

 � Clarify the differences between Waterfall and SCRUM methodologies and how
the customer sees it

 � Browse the Kanban Panel

 � Approach a same project with WaterFall and SCRUM

 � Setting up a hybrid project

Objectives | 13

Module 8. Database (DB) Design. Standardization and performance. Software Quality
 � Assess the use of the Entity-Relationship Model for the preliminary design of a database

 � Apply an entity, attribute, key, etc., for the best data integrity

 � Assess the dependencies, forms and rules of database normalization

 � Specialize in the operation of an OLAP data warehouse system, developing and using both
fact and dimension tables

 � Determine the key points for database performance

 � Complete proposed real-world simulation cases as ongoing learning of database design,
normalization, and performance

 � Establish in the simulation cases, the options to resolve in the creation of the database
from a constructive point of view

Module 9. Design of Scalable Architectures. The architecture in the software life cycle
 � Develop the concept of Software architecture and its characteristics

 � Determine the different types of scalability in Software architecture

 � Analyze the different levels that can occur in a web scalability

 � Acquire a specialized knowledge of the Software life cycle concept, stages and models

 � Determine the impact of an architecture on the Software life cycle, with its advantages,
limitations and support tools

 � Complete proposed real simulation cases, as a continuous learning of the architecture
and life cycle of the Software

 � Evaluate, in the simulation cases, to what extent it may be feasible or unnecessary
to use the Software

Module 10. ISO/IEC 9126 Quality Criteria. Software Quality Metrics
 � Develop the concept of quality criteria and relevant aspects

 � Examine the ISO/IEC 9126 standard, main aspects and indicators

 � Analyze the different metrics for a Software project to meet the agreed assessments

 � Examine the internal and external attributes to be addressed in the quality
of a software project

 � Distinguish the metrics according to the type of programming (structured, object
oriented, layered, etc.)

 � Complete real simulation cases, as a continuous learning of quality measurement

 � See in the simulation cases to what extent it is feasible or unnecessary, i.e. from
a constructive point of view of the authors

Module 11. Methodologies, Development and Quality in Software Engineering
 � Know the basics of Software Engineering, as well as the set of rules or principles
of ethics and professional responsibility during and after development

 � Understand the software development process under the different programming models
and the object-oriented programming paradigm

 � Understand the different types of application modeling and design patterns in the Unified
Modeling Language (UML)

 � Acquire the knowledge for the correct application of agile methodologies in Software
development such as SCRUM, among others

 � Know the Lean development methodology to identify the activities that do not add value
to the process, in order to obtain a higher quality software

14 | Objectives

Module 14. Web-Client Computing
 � Understand the process of creating web content through HTML markup language

 � Understand the procedures and techniques to improve the appearance of a document
written in HTML

 � Know the evolution of the JavaScript language

 � Acquire the necessary knowledge for the development of web client-side applications

 � Develop applications with complex structures, by using the different procedures, functions
and objects that integrate JavaScript

 � Learn how to use the DOM programming interface for HTML and XML documents to modify
their structure, style and content

 � Understand the use of event-based flow and Listeners, as well as the use of modern Toolkit
and alignment systems

 � Know the concept of web usability, its advantages, principles, methods and techniques to
make a web site usable by the user

 � Establish knowledge of web accessibility, its importance in current digital platforms,
methodologies, norms, standards and determine compliance

Module 15. Web Server Computing
 � Understand the basic, intermediate and advanced concepts of the PHP language for the
implementation of server-side applications

 � Acquire the necessary knowledge for data modeling, relationships, keys and normalizations

 � Understand the construction of the logical data model, the specification of tables,
columns, keys and dependencies, as well as the knowledge necessary for the physical
handling of data, file types, access modes and file organization

 � Learn how to integrate applications developed in PHP with MariaDB and MySQL databases

 � Master the process of customer interactions, using forms, Cookies and session management

 � Understand the Model View Controller View (MVC) Software architecture that separates
an application's data, user interface, and control logic into three distinct components

 � Acquire the skills for the use of web services using XML, SOA and REST

Module 12. Software Project Management
 � Know the fundamental concepts of project management and the project
management life cycle

 � Understand the different stages of project management such as initiation, planning,
stakeholder management and scoping

 � Learning schedule development for time management, budget development
and risk response

 � Understand how quality management works in projects, including planning, assurance,
control, statistical concepts and available tools

 � Understand the functioning of the processes of procurement, execution, monitoring,
control and closure of a project

 � Acquire the essential knowledge related to the professional responsibility derived from
project management

Module 13. Software Development Platforms
 � Understand the different software development platforms

 � Acquire the necessary knowledge for the development of applications and graphical
interfaces in Java and .NET languages

 � Know the techniques required for the debugging and testing of the developments made

 � Learn Android mobile application development environments and debugging and
publishing processes

 � Understand cloud-based application development and determine the correct procedures
for its implementation

 � Master the basic concepts, services and tools of the Google Clouds platform

Objectives | 15

Module 16. Safety Management
 � Know the information security process, its implications on confidentiality, integrity,
availability and economic costs

 � Learn the use of good security practices in the management of information technology services

 � Acquire the knowledge for the correct certification of security processes

 � Understand authentication mechanisms and methods for access control, as well as the
access audit process

 � Understand security management programs, risk management and security policy design

 � Learn about business continuity plans, their phases and maintenance process

 � Know the procedures for the correct protection of the company through DMZ networks, the
use of intrusion detection systems and other methodologies

Module 17. Software Security
 � Understand Software security issues, vulnerabilities and how they are classified

 � Know the design principles, methodologies and standards in software security

 � Understand the application of security in the different phases of the software life cycle

 � Acquire the necessary knowledge for secure coding of the life cycle and its validation techniques

 � Understand the methodologies and processes to guarantee security during the
development and delivery of cloud services

 � Understand the basics of cryptology and the different encryption techniques currently available

Module 18. Web Server Administration
 � Know the concept, operation, architecture, resources and contents of a web server

 � Understand the functioning, structure and HTTP protocol handling

 � Understand the concept of distributed multi-server architectures

 � Master the functioning of an application server and another proxy

 � Analyze the different web servers that are trending in today's market

 � Understand the process of usage statistics and load balancing on web servers

 � Acquire the necessary knowledge for the installation, administration, configuration and
security of the Microsoft Internet Information Services (IIS) web server as well as the free
Apache web server

Module 19. Security Audit
 � Acquire the knowledge required for the correct execution of the audit process and internal
computer control

 � Understand the processes to carry out for the security audit in systems and networks

 � Understand the different support tools, methodologies and subsequent analysis during
internet and mobile device security auditing

 � Learn the properties and influencing factors that condition business risks and determine
the correct implementation of appropriate risk management

 � Know the risk mitigation measures, as well as the methodologies for the implementation
of an Information Security Management System and the norms and standards to be used

 � Understand the procedures for conducting the security audit, its traceability and
presentation of results

Module 20. Online Application Security
 � Acquire the knowledge required to evaluate and detect the vulnerabilities of online applications

 � Understand the security policies and standards to be applied to online applications

 � Know the procedures to use during the development of web applications and their
subsequent evaluation through analysis and security tests

 � Learn the security measures for the deployment and production of web applications

 � Understand the concepts, functions and technologies to be applied in the security
of web services, as well as security tests and protective measures

 � Assimilate the procedures for ethical hacking, malware analysis and forensic analysis

 � Know the mitigation and containment measures for incidents on web services

 � Incorporate best practice techniques for the development and implementation
of online applications

Skills
03

Handling Software design, planning, management and development tools perfectly is a
very complex task, among other things, because of the number of processes involved.
However, this Advanced Master's Degree will provide the graduates with all the
information they need to perfect their skills in the control of the tools in this area. In this
way, they will be able to successfully complete their tasks and complete their projects
with the most promising and high-quality results in the computer engineering sector.

Skills | 17

Specializing in this field will allow you to develop
specific leadership skills to lead software
management projects, a skill highly valued by
companies dedicated to computer engineering"

18 | Skills

General Skills

 � Reduce the technical debt of projects with a quality approach rather than an approach
based on economics and short deadlines

 � Measure and quantify the quality of a Software project

 � Perform Test-Driven Development (TDD) correctly, in order to raise Software quality standards

 � Justify the budgeting of quality-oriented projects

 � Develop quality standards, models and norms

 � Examine different technology maturity assessments

 � Reduce risk and ensure maintenance and control of subsequent releases

 � Master the phases into which a project is broken down

 � Design, manage and implement Software engineering and information systems projects

You will be able to learn in detail about the
main databases and access simulations
of real projects for their design applied to
companies in different sectors"

Skills | 19

Specific Skills

 � Assess a Software system in terms of the degree of progress in the project process

 � Address these points of reliability, metrics and assurance in software projects in a correct
and strategic way

 � Address the process of deciding on the methodology to be used in the project

 � Master the essential normative aspects for the creation of software

 � Develop the Testing automatically

 � Establish an adequate communication with the clients, understanding the way they
perceive the project according to the applied methodology

 � Elaborate the list of test requirements

 � Perform abstraction, division into more unit tests and eliminate what does not apply to the
good performance of the tests of the software project to be performed

 � Update the list of test requirements in a measured and correct way

 � Adapt DevOps culture to business needs

 � Develop the latest practices and tools in continuous integration and deployment

 � Refactoring and addressing data management and coordination

 � Understand the different types of application modeling and design patterns in the Unified
Modeling Language (UML)

 � Understand how quality management works in projects, including planning, assurance,
control, statistical concepts and available tools

 � Use the necessary knowledge for the development of applications and graphical interfaces
in Java and .NET languages

 � Understand the procedures and techniques to improve the appearance of a document
written in HTML

 � Master the process of customer interactions, using forms, Cookiesand session management

 � Understand authentication mechanisms and methods for access control, as well as the
access audit process

 � Understand the application of security in the different phases of the software life cycle

 � Know the concept, operation, architecture, resources and contents of a web server

 � Understand the different support tools, methodologies and subsequent analysis during
internet and mobile device security auditing

 � Understand the security policies and standards to be applied to online applications

Course Management
04

The direction and teaching of this Advanced Master's Degree in Software
Engineering and Quality is carried out by a team of engineering experts with
many years of experience in the management and development of technical and
specialized projects. Their professional background brings to this program a
boost in quality that will be reflected in a better contextualization of the content
by the graduate, as well as the implementation to the academic experience of
real and simulated case studies, but always aimed at offering a 100% online,
dynamic and avant-garde program based on the immediate reality of the sector.

Course Management | 21

The team of engineers in charge of teaching
this Advanced Master's Degree will be at your
disposal to guide you and help you to solve
any question or doubt you may have about
the syllabus or about the profession"t

22 | Course Management

Management

Mr. Molina Molina, Jerónimo
 � AI Engineer & Software Architect. NASSAT - Internet Satellite in Motion

 � Sr. Consultant at Hexa Ingenieros. Introducer of Artificial Intelligence (ML and CV)

 � Expert in Artificial Intelligence Based Solutions in the fields of Computer Vision, ML/DL and NLP

 � Currently investigating application possibilities of Transformers and Reinforcement Learning in a personal research project

 � University Expert in Business Creation and Development. Bancaixa-FUNDEUN Alicante

 � Computer Engineer. University of Alicante

 � Master in Artificial Intelligence. Catholic University of Avila

 � MBA-Executive. European Business Campus Forum

Mr. Martínez Calvo, Francisco Javier
 � Architect - Organic and functional analyst

 � Technical Consultant - IT

 � Development and Support to European Medical Project, FNMT, PPG and PCL
integration in HexaIngenieros

 � Trainer Visual Studio, SqlServer, CCNA (Cisco routers and switch), PHP and .NET web
programming in several centers (Salesianos, Maforem, Dreamsoft)

 � Industrial Technical Engineer, specialization in Electricity, Industrial Electronics

 � Master Cibernos in .NET. MCAD

 � Eidos Master’s Degree in Advanced Programming. Expert Level

 � WEB Master Certifications Dreamweaver, Fireworks, Flash and ActionScript, MX versions

Professors
Mr. Tenrero Morán, Marcos

 � DevOps Engineer-Allot Communications

 � Application Lifecycle Management & DevOps-Meta4 Spain. Cegid

 � QA Automation Engineer-Meta4 Spain. Cegid

 � Graduated in Computer Engineering from Rey Juan Carlos University

 � Professional application development for Android-University Galileo, Guatemala

 � Cloud Services Development (nodeJs, JavaScript, HTML5) - UPM

 � Continuous Integration with Jenkins-Meta4. Cegid

 � Web Development with Angular-CLI (4), Ionic and nodeJS. Meta4.Rey Juan Carlos University

Course Management | 23

Dr. Acebes Tamargo, Patricia
 � Operations Department, working with Elasticsearch and Kivana. Sirt

 � Researcher Human Factor Line and AI Aplications. CTIC Technology Center

 � Business Unit Researcher. CTIC Technology Center

 � Digital Health and Active Aging Department. CTIC Technology Center

 � Data Science Department. CTIC Technology Center

 � PhD Candidate in Computer Engineering

 � Degree in Economics University of Oviedo

 � Studying for a Master's Degree in Data Analysis UCJC

 � Studying Master in Artificial Intelligence (ia). UNED

 � Studying Mathematics and tic engineering UNED

 � Master's Degree in Blockchain, Smart Contracts and Cryptocurrencies. University of Alcalá

 � Postgraduate in Blockchain Engineering. EADA

 � Master's Degree in Economics and Economic Analysis Tools

 � Master's Degree in Taxation

Ms. Rodríguez Míguez, Cándida
 � CoFounder and City Leader of Galicia AI network (Spain AI association)

 � Academic Streamer on YouTube

 � SISAP project for SERGAS, web functionality auto vaccination COVID Internet
Appointment. INDRA Production S.L.

 � OSAL Aixiña. Collaboration in remote TFM

 � Teaching introductory session on Artificial Intelligence. WordPress Galicia

 � Computer Engineer specialized in Software. ESEI Ourense. University of Vigo

 � Master's Degree in Computer Engineering, specializing in Large Software Systems
Development. ESEI Ourense. University of Vigo

 � Superior Cycle in Commercial Management and Marketing. Novacaixagalicia Ourense
Private Vocational Training Center

 � Superior Cycle in Computer Systems Administration. Novacaixagalicia Ourense Private
Vocational Training Center

Mr. Pi Morell, Oriol
 � Hosting and Mail Product Owner. CDMON

 � Functional Analyst and Software Engineer in different organizations such as Fihoca,
Atmira, CapGemini

 � Teacher of different courses such as BPM in CapGemini, ORACLE Forms CapGemini,
Business Processes Atmira

 � Degree in Technical Engineering in Computer Management from the Autonomous
University of Madrid

 � Master’s Degree in Artificial Intelligence

 � Master's Degree in Business Administration MBA

 � Master's Degree in Information Systems Management Teaching Experience

 � Postgraduate, Postgraduate Design Patterns. Open University of Catalonia

Structure and Content
05

For the development of this program, TECH has based the structure of its content on
three fundamental pillars: the most up-to-date and complete information from the IT
Engineering sector specialized in the Software area, the recommendations of the teaching
team, and the innovative pedagogical methodology of Relearning. In addition, in its
commitment to offer a program adapted and personalized to the academic needs of each
graduate, not only in the design of schedules, but also in the level of deepening, students
will find in the virtual classroom hundreds of hours of additional material with which they
can delve into the aspects they consider most relevant for their professional practice.

Structure and Content | 25

Thanks to this program, you will be able
to design scalable vertical, horizontal
and combined architectures, based on
the most advanced, complete and up-
to-date IT techniques and protocols"

26 | Structure and Content

Module 1. Software Quality TRL Development Levels
1.1. Elements that Influence Software Quality (I). The Technical Debt

1.1.1. The Technical Debt. Causes and Consequences
1.1.2. Software Quality General Principles
1.1.3. Unprincipled and Principled Quality Software
 1.1.3.1. Consequences
 1.1.3.2. Necessity of Applying Quality Principles in Software
1.1.4. Software Quality Typology
1.1.5. Quality Software. Specific features

1.2. Elements that Influence Software Quality (II). Associated Costs
1.2.1. Software Quality Influencing Elements
1.2.2. Software Quality Misconceptions
1.2.3. Software Quality Associated Costs

1.3. Software Quality Models (I). Knowledge Management
1.3.1. General Quality Models
 1.3.1.1. Total Quality Management
 1.3.1.2. European Business Excellence Model (EFQM)
 1.3.1.3. Six-Sigma Model
1.3.2. Knowledge Management Models
 1.3.2.1. Dyba Model
 1.3.2.2. Seks Model
1.3.3. Experience Factory and QIP Paradigm
1.3.4. Quality in Use Models (25010)

1.4. Software Quality Models (III). Quality in Data, Processes and SEI Models
1.4.1. Data Quality Data Model
1.4.2. Software Process Modeling
1.4.3. Software & Systems Process Engineering Metamodel Specification (SPEM)
1.4.4. SEI Models
 1.4.4.1. CMMI
 1.4.4.2. SCAMPI
 1.4.4.3. IDEAL

1.5. ISO Software Quality Standards (I). Analysis of the Standards
1.5.1. ISO 9000 Standards
 1.5.1.1. ISO 9000 Standards
 1.5.1.2. ISO Family of Quality Standards (9000)
1.5.2. Other ISO Standards Related to Quality
1.5.3. Quality Modeling Standards (ISO 2501)
1.5.4. Quality Measurement Standards (ISO 2502n)

1.6. ISO Software Quality Standards (II). Requirements and Assessment
1.6.1. Standards on Quality Requirements (2503n)
1.6.2. Standards on Quality Assessment (2504n)
1.6.3. ISO/IEC 24744:2007

1.7. TRL Development Levels (I). Levels 1 to 4
1.7.1. TRL Levels
1.7.2. Level 1: Basic Principles
1.7.3. Level 2: Concept and/or Application
1.7.4. Level 3: Critical Analytical Function
1.7.5. Level 4: Component Validation in Laboratory Environment 1.8

1.8. TRL Development Levels (II). Levels 5 to 9
1.8.1. Level 5: Component Validation in Relevant Environment
1.8.2. Level 6: System/Subsystem Model
1.8.3. Level 7: Demonstration in Real Environment
1.8.4. Level 8: Complete and Certified System
1.8.5. Level 9: Success in Real Environment

1.9. TRL Development Levels. Uses
1.9.1. Example of Company with Laboratory Environment
1.9.2. Example of an R&D&I Company
1.9.3. Example of an Industrial R&D&I Company
1.9.4. Example of a Laboratory-Engineering Joint Venture Company

1.10. Software Quality Key Details
1.10.1. Methodological Details
1.10.2. Technical Details
1.10.3. Software Project Management Details
 1.10.3.1. Quality of Computer Systems
 1.10.3.2. Software Product Quality
 1.10.3.3. Software Product Quality

Structure and Content | 27

Module 2. Software Project Development. Functional and technical documentation
2.1. Project Management

2.1.1. Project Management in Software Quality
2.1.2. Project Management Advantages
2.1.3. Project Management Typology

2.2. Methodology in Project Management
2.2.1. Methodology in Project Management
2.2.2. Project Methodologies. Typology
2.2.3. Methodologies in Project Management. Application

2.3. Requirements Identification Phase
2.3.1. Identification of Project Requirements
2.3.2. Management of Project Meetings
2.3.3. Documentation to Be Provided

2.4. Models
2.4.1. Initial Phase
2.4.2. Analysis Phase
2.4.3. Construction Phase
2.4.4. Testing Phase
2.4.5. Delivery

2.5. Data Model to Be Used
2.5.1. Determination of the New Data Model
2.5.2. Identification of the Data Migration Plan
2.5.3. Data Set

2.6. Impact on Other Projects
2.6.1. Impact of a Project. Examples:

2.7. MUST of the Project
2.7.1. MUST of the Project
2.7.2. Identification of Project MUST
2.7.3. Identification of the Execution Points for Project Delivery

2.8. The Project Construction Team
2.8.1. Roles to be Involved According to the Project
2.8.2. Contact with HR for Recruitment
2.8.3. Project Deliverables and Schedule

2.9. Technical Aspects of a Software Project
2.9.1. Project Architect. Technical Aspects
2.9.2. Technical Leaders
2.9.3. Construction of the Project Software
2.9.4. Code Quality Assessment, Sonar

2.10. Project Deliverables
2.10.1. Functional Analysis
2.10.2. Data Model
2.10.3. State Diagram
2.10.4. Technical Documentation

Module 3. Software Testing. Test Automation
3.1. Software Quality Models

3.1.1. Product Quality
3.1.2. Process Quality
3.1.3. Quality of Use

3.2. Process Quality
3.2.1. Process Quality
3.2.2. Maturity Models
3.2.3. ISO 15504 Standards
 3.2.3.1. Purposes
 3.2.3.2. Context
 3.2.3.3. Stages

3.3. ISO/IEC 15504 Standard
3.3.1. Process Categories
3.3.2. Development Process Example
3.3.3. Profile Fragment
3.3.4. Stages

3.4. CMMI (Capability Maturity Model Integration)
3.4.1. Capability Maturity Model Integration
3.4.2. Models and Areas. Typology
3.4.3. Process Areas
3.4.4. Capacity Levels
3.4.5. Process Management
3.4.6. Project Management

3.5. Change and Repository Management
3.5.1. Software Change Management
 3.5.1.1. Configuration Item. Continuous Integration
 3.5.1.2. Lines
 3.5.1.3. Flowcharts
 3.5.1.4. Branches
3.5.2. Repository
 3.5.2.1. Version Control
 3.5.2.2. Work Team and Use of the Repository
 3.5.2.3. Continuous Integration in the Repository

3.6. Team Foundation Server (TFS)
3.6.1. Installation and Configuration
3.6.2. Creation of a Team Project
3.6.3. Adding Content to Source Code Control
3.6.4. TFS on Cloud

3.7. Testing
3.7.1. Motivation for Testing
3.7.2. Verification Testing
3.7.3. Beta Testing
3.7.4. Implementation and Maintenance

3.8. Load Testing
3.8.1. Load Testing
3.8.2. LoadView Testing
3.8.3. K6 Cloud Testing
3.8.4. Loader Testing

3.9. Unit Stress and Endurance Tests
3.9.1. Motivation of Unit Tests
3.9.2. Unit Testing Tools
3.9.3. Motivation for Stress Testing
3.9.4. Testing UsingStressTesting
3.9.5. Motivation for stress Resistance
3.9.6. Tests Using LoadRunner

3.10. Scalability. Scalable Software Design
3.10.1. Scalability and Software Architecture
3.10.2. Independence Between Layers
3.10.3. Coupling Between Layers Architecture Patterns

Module 4. Software Project Management Methodologies. Waterfall
Methodology vs Agile Methodology
4.1. Waterfall Methodology

4.1.1. Waterfall Methodology
4.1.2. Waterfall Methodology Influence on Software Quality
4.1.3. Waterfall Methodology Examples:

4.2. Agile Methodology
4.2.1. Agile Methodology
4.2.2. Agile Methodology. Influence on Software Quality
4.2.3. Agile Methodology. Examples:

4.3. SCRUM Methodology
4.3.1. SCRUM Methodology
4.3.2. SCRUM Manifesto
4.3.3. SCRUM Application

4.4. Panel Kanban
4.4.1. Kanban Method
4.4.2. Kanban Board
4.4.3. Kanban Board. Application Examples

4.5. Waterfall Project Management
4.5.1. Project Phases
4.5.2. Vision in a Waterfall Project
4.5.3. Deliverables to Consider

4.6. Project Management in SCRUM
4.6.1. Phases in a SCRUM Project
4.6.2. Vision in a SCRUM Project
4.6.3. Deliverables to Consider

4.7. Waterfall vs. SCRUM. Comparison
4.7.1. Pilot Project Approach
4.7.2. Project Applying Waterfall. Example
4.7.3. Project Applying Waterfall. Example

28 | Structure and Content

4.8. Customer Vision
4.8.1. Documents in a Waterfall
4.8.2. Documents in a SCRUM
4.8.3. Comparison

4.9. Kanban Structure
4.9.1. User Stories
4.9.2. Backlog
4.9.3. Kanban Analysis

4.10. Hybrid Projects
4.10.1. Project Construction
4.10.2. Project Management
4.10.3. Deliverables to Consider

Module 5. TDD (Test-Driven Development). Test-Driven Software Design
5.1. TDD. Test-Driven Development

5.1.1. TDD. Test-Driven Development
5.1.2. TDD. Influence of TDD on Quality
5.1.3. Test-Driven Design and Development. Examples:

5.2. TDD Cycle
5.2.1. Choice of a Requirement
5.2.2. Performing Tests. Typology
 5.2.2.1. Unit Tests
 5.2.2.2. Integration Tests
 5.2.2.3. End To End Tests
5.2.3. Test Verification. Errors
5.2.4. Creation of the Implementation
5.2.5. Automated Test Execution
5.2.6. Elimination of Duplication
5.2.7. Requirements Lists Update
5.2.8. Repeating the TDD Cycle
5.2.9. TDD Cycle. Theoretical and Practical Example

5.3. TDD Implementation Strategies
5.3.1. Mock Implementation
5.3.2. Triangular Implementation
5.3.3. Obvious Implementation

5.4. TDD. Use. Advantages and Disadvantages
5.4.1. Advantages of Use
5.4.2. Limitations of Use
5.4.3. Quality Balance in the Implementation

5.5. TDD. Good Practices
5.5.1. TDD Rules
5.5.2. Rule 1: Have a Previous Test that Fails Before Coding in Production
5.5.3. Rule 2: Not to Write More than One Unit Test
5.5.4. Rule 3: Not to Write More Code than Necessary
5.5.5. Errors and Anti-Patterns to Avoid in TDD

5.6. Simulation of a Real Project to use TDD (I)
5.6.1. Project Overview (Company A)
5.6.2. Application of TDD
5.6.3. Proposed Exercises
5.6.4. Exercises Feedback

5.7. Simulation of a Real Project to use TDD (II)
5.7.1. Project Overview (Company B)
5.7.2. Application of TDD
5.7.3. Proposed Exercises
5.7.4. Exercises Feedback

5.8. Simulation of a Real Project to use TDD (III)
5.8.1. General Description of the Project (Company C)
5.8.2. Application of TDD
5.8.3. Proposed Exercises
5.8.4. Exercises Feedback

5.9. Alternatives to TDD. Test Driven Development
5.9.1. TCR (Test Commit Revert)
5.9.2. BDD (Behavior Driven Development)
5.9.3. ATDD (Acceptance Test Driven Development)
5.9.4. TDD. Theoretical Comparison

5.10. TDD TCR, BDD and ATDD. Practical Comparison
5.10.1. Defining the Problem
5.10.2. Resolution with TCR
5.10.3. Resolution with BDD
5.10.4. Resolution with ATDD

Structure and Content | 29

Module 6. DevOps. Software Quality Management
6.1. DevOps. Software Quality Management

6.1.1. DevOps
6.1.2. DevOps and Software Quality
6.1.3. DevOps. Benefits of DevOps Culture

6.2. DevOps. Relation to Agile
6.2.1. Accelerated Delivery
6.2.2. Quality
6.2.3. Cost Reduction

6.3. DevOps Implementation
6.3.1. Problem identification
6.3.2. Implementation in a Company
6.3.3. Implementation Metrics

6.4. Software Delivery Cycle
6.4.1. Design Methods
6.4.2. Agreements
6.4.3. Roadmap

6.5. Error-Free Code Development
6.5.1. Maintainable Code
6.5.2. Development Patterns
6.5.3. Code Testing
6.5.4. Software Development at Code Level. Good Practices

6.6. Automation
6.6.1. Automation Types of Tests
6.6.2. Cost of Automation and Maintenance
6.6.3. Automation Mitigating Errors

6.7. Deployment
6.7.1. Target Assessment
6.7.2. Design of an Automatic and Adapted Process
6.7.3. Feedback and Responsiveness

6.8. Incident Management
6.8.1. Incident Management
6.8.2. Incident Analysis and Resolution
6.8.3. How to Avoid Future Mistakes

6.9. Deployment Automation
6.9.1. Preparing for Automated Deployments
6.9.2. Assessment of the Health of the Automated Process
6.9.3. Metrics and Rollback Capability

6.10. Good Practices. Evolution of DevOps
6.10.1. Guide of Good Practices applying DevOps
6.10.2. DevOps. Methodology for the Team
6.10.3. Avoiding Niches

Module 7. DevOps and Continuous Integration. Advanced Practical Solutions
in Software Development
7.1. Software Delivery Flow

7.1.1. Identification of Actors and Artifacts
7.1.2. Software Delivery Flow Design
7.1.3. Software Delivery Flow. Inter-Stage Requirements

7.2. Process Automation
7.2.1. Continuous Integration
7.2.2. Continuous Deployment
7.2.3. Environment Configuration and Secret Management

7.3. Declarative Pipelines
7.3.1. Differences Between Traditional, Code-like and Declarative Pipelines
7.3.2. Declarative Pipelines
7.3.3. Declarative Pipelines in Jenkins
7.3.4. Comparison of Continuous Integration Providers

7.4. Quality Gates and Enriched Feedback
7.4.1. Quality Gates
7.4.2. Quality Standards with Quality gates. Maintenance
7.4.3. Business Requirements in Integration Requests

30 | Structure and Content

7.5. Artifact Management
7.5.1. Artifacts and Life Cycle
7.5.2. Artifact Storage and Management Systems
7.5.3. Security in Artifact Management

7.6. Continuous Deployment
7.6.1. Continuous Deployment as Containers
7.6.2. Continuous Deployment with PaaS

7.7. Pipeline Runtime Improvement: Static Analysis and Git Hooks
7.7.1. Static Analysis
7.7.2. Code Style Rules
7.7.3. Git Hooks and Unit Tests
7.7.4. The Impact of Infrastructure

7.8. Vulnerabilities in Containers
7.8.1. Vulnerabilities in Containers
7.8.2. Image Scanning
7.8.3. Periodic Reports and Alerts

Module 8. Database (DB) Design. Standardization and performance.
Software Quality
8.1. Database Design

8.1.1. Databases. Typology
8.1.2. Databases Currently Used
 8.1.2.1. Relational
 8.1.2.2. Key-Value
 8.1.2.3. Based on Graphs
8.1.3. Data Quality

8.2. Entity-Relationship Model Design (I)
8.2.1. Entity-Relationship Model. Quality and Documentation
8.2.2. Entities
 8.2.2.1. Strong Entity
 8.2.2.2. Weak Entity
8.2.3. Attributes

8.2.4. Set of Relationships
 8.2.4.1. 1 to 1
 8.2.4.2. 1 to Many
 8.2.4.3. Many to 1
 8.2.4.4. Many to Many
8.2.5. Keys
 8.2.5.1. Primary Key
 8.2.5.2. Foreign Key
 8.2.5.3. Weak Entity Primary Key
8.2.6. Restrictions
8.2.7. Cardinality
8.2.8. Heritage
8.2.9. Aggregation

8.3. Entity-Relationship Model (II). Tools
8.3.1. Entity-Relationship Model. Tools
8.3.2. Entity-Relationship Model. Practical Example
8.3.3. Entity-Relationship Model feasible
 8.3.3.1. Visual Sample
 8.3.3.2. Sample in Table Representation

8.4. Database (DB) Standardization (I). Software Quality Considerations
8.4.1. DB Standardization and Quality
8.4.2. Dependency
 8.4.2.1. Functional Dependence
 8.4.2.2. Properties of Functional Dependence
 8.4.2.3. Deduced Properties
8.4.3. Keys

8.5. Database (DB) Normalization (II). Normal Forms and Codd Rules
8.5.1. Normal Shapes
 8.5.1.1. First Normal Form (1FN)
 8.5.1.2. Second Normal Form (2FN)
 8.5.1.3. Third Normal Form (3FN)
 8.5.1.4. Boyce-Codd Normal Form (BCNF)
 8.5.1.5. Fourth Normal Form (4FN)
 8.5.1.6. Fifth Normal Form (5FN)

Structure and Content | 31

8.5.2. Codd's Rules
 8.5.2.1. Rule 1: Information
 8.5.2.2. Rule 2: Guaranteed Access
 8.5.2.3. Rule 3: Systematic Treatment of Null Values
 8.5.2.4. Rule 4: Description of the Database
 8.5.2.5. Rule 5: Integral Sub-Language
 8.5.2.6. Rule 6: View Update
 8.5.2.7. Rule 7: Insert and Update
 8.5.2.8. Rule 8: Physical Independence
 8.5.2.9. Rule 9: Logical Independence
 8.5.2.10. Rule 10: Integrity Independence
 8.5.2.10.1. Integrity Rules
 8.5.2.11. Rule 11: Distribution
 8.5.2.12. Rule 12: Non-Subversion
8.5.3. Practical Example

8.6. Data Warehouse/OLAP System
8.6.1. Data Warehouse
8.6.2. Fact Table
8.6.3. Dimension Table
8.6.4. Creation of the OLAP System. Tools

8.7. Database (DB) Performance
8.7.1. Index Optimization
8.7.2. Query Optimization
8.7.3. Table Partitioning

8.8. Simulation of Real Project for DB Design (I)
8.8.1. Project Overview (Company A)
8.8.2. Database Design Application
8.8.3. Proposed Exercises
8.8.4. Proposed Exercises Feedback

8.9. Simulation of Real Project for BD Design (II)
8.9.1. Project Overview (Company B)
8.9.2. Application of Database Design
8.9.3. Proposed Exercises
8.9.4. Proposed Exercises Feedback

8.10. Relevance of DB Optimization to Software Quality
8.10.1. Design Optimization
8.10.2. Query Code Optimization
8.10.3. Stored Procedure Code Optimization
8.10.4. Influence of Triggers on Software Quality. Recommendations for Use

Module 9. Design of Scalable Architectures. The Architecture in the Software
Life Cycle
9.1. Design of Scalable Architectures (I)

9.1.1. Scalable Architectures
9.1.2. Principles of a Scalable Architecture
 9.1.2.1. Reliable
 9.1.2.2. Scalable
 9.1.2.3. Maintainable
9.1.3. Types of Scalability
 9.1.3.1. Vertical
 9.1.3.2. Horizontal
 9.1.3.3. Combined

9.2. Architecture DDD (Domain-Driven Design)
9.2.1. The DDD Model Domain Orientation
9.2.2. Layers, Distribution of Responsibility and Design Patterns
9.2.3. Decoupling as a Basis for Quality

9.3. Design of Scalable Architectures (II). Benefits, Limitations and Design Strategies
9.3.1. Scalable Architecture. Benefits
9.3.2. Scalable Architecture. Limitations
9.3.3. Strategies for the Development of Scalable Architectures (Descriptive TABLE)

9.4. Software Life Cycle (I). Stages
9.4.1. Software Life Cycle
 9.4.1.1. Planning Stage
 9.4.1.2. Analysis Stage
 9.4.1.3. Design Stage
 9.4.1.4. Implementation Stage
 9.4.1.5. Testing Stage
 9.4.1.6. Installation/Deployment Stage
 9.4.1.7. Use and Maintenance Stage

32 | Structure and Content

9.5. Software Life Cycle Models
9.5.1. Waterfall Model
9.5.2. Repetitive Model
9.5.3. Spiral Model
9.5.4. Big Bang Model

9.6. Software Life Cycle (II). Automation
9.6.1. Software Development Life Cycle. Solutions
 9.6.1.1. Continuous Integration and Development (CI/CD)
 9.6.1.2. Agile Methodologies
 9.6.1.3. DevOps/Production Operations
9.6.2. Future Trends
9.6.3. Practical Examples

9.7. Software Architecture in the Software Life Cycle
9.7.1. Benefits
9.7.2. Limitations
9.7.3. Tools

9.8. Real Project Simulation for Software Architecture Design (I)
9.8.1. Project Overview (Company A)
9.8.2. Application of Software Architecture Design
9.8.3. Proposed Exercises
9.8.4. Proposed Exercises Feedback

9.9. Simulation of a Real Project for Software Architecture Design (II)
9.9.1. Project Overview (Company B)
9.9.2. Software Architecture Design Application
9.9.3. Proposed Exercises
9.9.4. Proposed Exercises Feedback

9.10. Simulation of a Real Project for Software Architecture Design (III)
9.10.1. General Description of the Project (Company C)
9.10.2. Software Architecture Design Application
9.10.3. Proposed Exercises
9.10.4. Proposed Exercises Feedback

Module 10. ISO, IEC 9126 Quality Criteria. Software Quality Metrics
10.1. Quality Criteria. ISO, IEC 9126 Standard

10.1.1. Quality Criteria
10.1.2. Software Quality Justification. ISO, IEC 9126 Standard
10.1.3. Software Quality Measurement as a Key Indicator

10.2. Software Quality Criteria. Features
10.2.1. Reliability
10.2.2. Functionality
10.2.3. Efficiency
10.2.4. Usability
10.2.5. Maintainability
10.2.6. Portability

10.3. ISO Standard, IEC 9126 (I). Introduction
10.3.1. Description of ISO, IEC 9126 Standard
10.3.2. Functionality
10.3.3. Reliability
10.3.4. Usability
10.3.5. Maintainability
10.3.6. Portability
10.3.7. Quality in Use
10.3.8. Software Quality Metrics
10.3.9. ISO 9126 Quality Metrics

10.4. ISO Standard, IEC 9126 (II). McCall and Boehm Models
10.4.1. McCall Model: Quality factors
10.4.2. Boehm Model
10.4.3. Intermediate Level. Features

10.5. Software Quality Metrics (I). Components
10.5.1. Measurement
10.5.2. Metrics
10.5.3. Indicator
 10.5.3.1. Types of Indicators
10.5.4. Measurements and Models
10.5.5. Scope of Software Metrics
10.5.6. Classification of Software Metrics

Structure and Content | 33

10.6. Software Quality Measurement (II). Measurement Practice
10.6.1. Metric Data Collection
10.6.2. Measurement of Internal Product Attributes
10.6.3. Measurement of External Product Attributes
10.6.4. Measurement of Resources
10.6.5. Metrics for Object-Oriented Systems

10.7. Design of a Single Software Quality Indicator
10.7.1. Single Indicator as a Global Qualifier
10.7.2. Indicator Development, Justification and Application
10.7.3. Example of Application. Need to Know the Detail

10.8. Simulation of Real Project for Quality Measurement (I)
10.8.1. General Description of the Project (Company A)
10.8.2. Application of Quality Measurement
10.8.3. Proposed Exercises
10.8.4. Proposed Exercises Feedback

10.9. Real Project Simulation for Quality Measurement (II)
10.9.1. General Description of the Project (Company B)
10.9.2. Application of Quality Measurement
10.9.3. Proposed Exercises
10.9.4. Proposed Exercises Feedback

10.10. Real Project Simulation for Quality Measurement (III)
10.10.1. General Description of the Project (Company C)
10.10.2. Application of Quality Measurement
10.10.3. Proposed Exercises
10.10.4. Proposed Exercises Feedback

Module 11. Methodologies, Development and Quality in Software Engineering
11.1. Model-Based Software Development

11.1.1. The Need for
11.1.2. Object Modeling
11.1.3. UML
11.1.4. CASE Tools

11.2. Application Modeling and Design Patterns with UML
11.2.1. Advanced Requirements Modeling
11.2.2. Advanced Static Modeling
11.2.3. Advanced Dynamic Modeling
11.2.4. Component Modeling
11.2.5. Introduction to Design Patterns with UML
11.2.6. Adapter
11.2.7. Factory
11.2.8. Singleton
11.2.9. Strategy
11.2.10. Composite
11.2.11. Facade
11.2.12. Observer

11.3. Model-Driven Engineering
11.3.1. Introduction
11.3.2. Metamodeling of Systems
11.3.3. MDA
11.3.4. DSL
11.3.5. Model Refinements with OCL
11.3.6. Model Transformations

11.4. Ontologies in Software Engineering
11.4.1. Introduction
11.4.2. Ontology Engineering
11.4.3. Application of Ontologies in Software Engineering

34 | Structure and Content

Module 12. Software Project Management
12.1. Stakeholders and Outreach Management

12.1.1. Identify Stakeholders
12.1.2. Develop Plan for Stakeholder Management
12.1.3. Manage Stakeholder Engagement
12.1.4. Control Stakeholder Engagement
12.1.5. The Objective of the Project
12.1.6. Scope Management and its Plan
12.1.7. Gathering Requirements
12.1.8. Define the Scope Statement
12.1.9. Create the WBS
12.1.10. Verify and Control the Scope

12.2. The Development of the Time-Schedule
12.2.1. Time Management and its Plan
12.2.2. Define Activities
12.2.3. Establishment of the Sequence of Activities
12.2.4. Estimated Resources for Activities
12.2.5. Estimated Duration of Activities
12.2.6. Development of the Time-Schedule and Calculation of the Critical Path
12.2.7. Schedule Control

12.3. Budget Development and Risk Response
12.3.1. Estimate Costs
12.3.2. Develop Budget and S-Curve
12.3.3. Cost Control and Earned Value Method
12.3.4. Risk Concepts
12.3.5. How to Perform a Risk Analysis
12.3.6. The Development of the Response Plan

12.4. Communication and Human Resources
12.4.1. Planning Communications Management
12.4.2. Communications Requirements Analysis
12.4.3. Communication Technology
12.4.4. Communication Models

12.4.5. Communication Methods
12.4.6. Communications Management Plan
12.4.7. Manage Communications
12.4.8. Management of Human Resources
12.4.9. Main Stakeholders and their Roles in the Projects
12.4.10. Types of Organization
12.4.11. Project Organization
12.4.12. The Work Equipment

12.5. Procurement
12.5.1. The Procurement Process
12.5.2. Plan
12.5.3. Search for Suppliers and Request for Quotations
12.5.4. Contract Allocation
12.5.5. Contract Administration
12.5.6. Contracts
12.5.7. Types of Contracts
12.5.8. Contract Negotiation

12.6. Execution, Monitoring and Control and Closure
12.6.1. Process Groups
12.6.2. Project Execution
12.6.3. Project Monitoring and Control
12.6.4. Project Closure

12.7. Professional Responsibility
12.7.1. Professional Responsibility
12.7.2. Characteristics of Social and Professional Responsibility
12.7.3. Project Leader Code of Ethics
12.7.4. Liability vs. PMP®
12.7.5. Examples of Liability
12.7.6. Benefits of Professionalization

Structure and Content | 35

Module 13. Software Development Platforms
13.1. Introduction to Application Development

13.1.1. Desktop Applications
13.1.2. Programming Language
13.1.3. Integrated Development Environments
13.1.4. Web Applications
13.1.5. Mobile Applications
13.1.6. Cloud Applications

13.2. Application Development and Graphical User Interface in Java
13.2.1. Integrated Development Environments for Java
13.2.2. Main IDE for Java
13.2.3. Introduction to the Eclipse Development Platform
13.2.4. Introduction to the NetBeans Development Platform
13.2.5. Controller View Model for Graphical User Interfaces
13.2.6. Design a Graphical Interface in Eclipse
13.2.7. Design a Graphical Interface in NetBeans

13.3. Debugging and Testing in Java
13.3.1. Testing and Debugging of Java programs
13.3.2. Debugging in Eclipse
13.3.3. Debugging in NetBeans

13.4. Application Development and Graphical User Interface in. NET
13.4.1. Net Framework
13.4.2. Components of the .NET Development Platform
13.4.3. Visual Studio .NET
13.4.4. .NET tools for GUI
13.4.5. The GUI with Windows Presentation Foundation
13.4.6. Debugging and Compiling a WPF Application

36 | Structure and Content

13.5. Programming for .NET Networks
13.5.1. Introduction to .NET Network Programming
13.5.2. Requests and Responses in .NET
13.5.3. Use of Application Protocols in .NET
13.5.4. Security in .NET Network Programming

13.6. Mobile Application Development Environments
13.6.1. Mobile Applications
13.6.2. Android Mobile Applications
13.6.3. Steps for Development in Android
13.6.4. The IDE Android Studio

13.7. Development of Applications in the Environment Android Studio
13.7.1. Install and Start Android Studio
13.7.2. Running an Android Application
13.7.3. Development of the Graphic Interface in Android Studio
13.7.4. Starting Activities in Android Studio

13.8. Debugging and Publishing of Android Applications
13.8.1. Debugging an Application in Android Studio
13.8.2. Memorizing Applications in Android Studio
13.8.3. Publishing an Application on Google Play

13.9. Cloud Application Development
13.9.1. Cloud Computing
13.9.2. Cloud Levels: SaaS, PaaS, IaaS
13.9.3. Main Development Platforms in the Cloud
13.9.4. Bibliographical References

13.10. Introduction to Google Cloud Platform
13.10.1. Basic Concepts of Google Cloud Platform
13.10.2. Google Cloud Platform Services
13.10.3. Tools in Google Cloud Platform

Structure and Content | 37

Module 14. Web-Client Computing
14.1. Introduction to HTML

14.1.1. Structure of the Document
14.1.2. Color
14.1.3. Text:
14.1.4. Hypertext Links
14.1.5. Images
14.1.6. Lists
14.1.7. Tables
14.1.8. Frames
14.1.9. Forms
14.1.10. Specific Elements for Mobile Technologies
14.1.11. Obsolete Elements

14.2. Cascading Style Sheets (CSS)
14.2.1. Elements and Structure of a Cascading Style Sheet
 14.2.1.1. Creation of Style Sheets
 14.2.1.2. Application of Styles Selectors
 14.2.1.3. Style Inheritance and Cascading
 14.2.1.4. Page Formatting Using Styles
 14.2.1.5. Page Structuring Using Styles. The Box Model
14.2.2. Style Design for different Devices
14.2.3. Types of Style Sheets: Static and Dynamic The Pseudo-Classes
14.2.4. Best Practices in the Use of Style Sheets

14.3. Introduction and History of JavaScript
14.3.1. Introduction
14.3.2. History of JavaScript
14.3.3. Development Environment to be Used

14.4. Basic Notions of Web Programming
14.4.1. Basic JavaScript Syntax
14.4.2. Primitive Data Types and Operators
14.4.3. Variables and Areas
14.4.4. Text Strings and Template Literals
14.4.5. Numbers and Booleans
14.4.6. Comparisons

14.5. Complex JavaScript Structures
14.5.1. Vectors or Arrays and Objects
14.5.2. Sets
14.5.3. Maps
14.5.4. Disjunctive
14.5.5. Loops

14.6. Functions and Objects
14.6.1. Function Definition and Invocation
14.6.2. Arguments
14.6.3. Arrow Functions
14.6.4. Callback Functions
14.6.5. Higher Order Functions
14.6.6. Literal Objects
14.6.7. The This Object
14.6.8. Objects as Namespaces: theMaths and Date Objects

14.7. The Document Object Model (DOM)
14.7.1. What is DOM?
14.7.2. A Bit of History
14.7.3. Navigation and Element Retrieval
14.7.4. A Virtual DOM with JSDOM
14.7.5. Query Selectors
14.7.6. Navigation using Properties
14.7.7. Assigning Attributes to Elements
14.7.8. Creation and Modification of Nodes
14.7.9. Updated Styling of the DOM Elements

38 | Structure and Content

14.8. Modern Web Development
14.8.1. Event-Driven Flow and Listeners
14.8.2. Modern Web Toolkits and Alignment Systems
14.8.3. Strict JavaScript Mode
14.8.4. More about Functions
14.8.5. Asynchronous Promises and Functions
14.8.6. Closures
14.8.7. Functional Programming
14.8.8. POO in JavaScript

14.9. Web Usability
14.9.1. Introduction to Usability
14.9.2. Definition of Usability
14.9.3. Importance of User-Centered Web Design
14.9.4. Differences Between Accessibility and Usability
14.9.5. Advantages and Problems in Combining Accessibility and Usability
14.9.6. Advantages and Difficulties in the Implementation of Usable Websites
14.9.7. Usability Methods
14.9.8. User Requirements Analysis
14.9.9. Conceptual Design Principles. User-Oriented Prototyping
14.9.10. Guidelines for the Creation of Usable Web Sites
 14.9.10.1. Usability Guidelines of Jakob Nielsen
 14.9.10.2. Usability Guidelines of Bruce Tognazzini

 14.9.11. Usability Evaluation
14.10. Web Accessibility

14.10.1. Introduction
14.10.2. Definition of Web-Accessibility

14.10.3. Types of Disabilities
 14.10.3.1. Temporary or Permanent Disabilities
 14.10.3.2. Visual Impairment
 14.10.3.3. Hearing Impairment
 14.10.3.4. Motor Impairment
 14.10.3.5. Neurological or Cognitive Disabilities
 14.10.3.6. Difficulties Arising from Aging
 14.10.3.7. Limitations Arising from the Environment
 14.10.3.8. Barriers Preventing Access to the Web
14.10.4. Technical Aids and Support Products to Overcome Barriers
 14.10.4.1. Aids for the Blind
 14.10.4.2. Aids for Persons with Low Vision
 14.10.4.3. Aids for People with Color Blindness
 14.10.4.4. Aids for the Hearing Impaired
 14.10.4.5. Aids for the Motor Impaired
 14.10.4.6. Aids for the and Neurological Impaired
14.10.5. Advantages and Difficulties in the Implementation of Web Accessibility
14.10.6. Web Accessibility Regulations and Standards
14.10.7. Web Accessibility Regulatory Bodies
14.10.8. Comparison of Standards and Regulations
14.10.9. Guidelines for Compliance with Regulations and Standards
 14.10.9.1. Description of the Main Guidelines (Images, links, videos, etc.)
 14.10.9.2. Guidelines for Accessible Navigation
 14.10.9.2.1. Perceptibility
 14.10.9.2.2. Operability
 14.10.9.2.3. Comprehensibility
 14.10.9.2.4. Robustness
14.10.10. Description of the Web Accessibility Compliance Process
14.10.11. Compliance Levels
14.10.12. Compliance Criteria
14.10.13. Compliance Requirements
14.10.14. Web Site Accessibility Evaluation Methodology

Structure and Content | 39

Module 15. Web Server Computing
15.1. Introduction to Server-Side Programming: PHP

15.1.1. Server-Side Programming Basics
15.1.2. Basic PHP Syntax
15.1.3. HTML Content Generation with PHP
15.1.4. Development and Testing Environments: XAMPP

15.2. Advanced PHP
15.2.1. Control Structures with PHP
15.2.2. PHP Functions
15.2.3. Array Handling in PHP
15.2.4. String Handling with PHP
15.2.5. Object Orientation in PHP

15.3. Data Models
15.3.1. Concept of Data. Life Cycle of Data
15.3.2. Types of Data
 15.3.2.1. Basic
 15.3.2.2. Records
 15.3.2.3. Dynamics

15.4. Relational Model
15.4.1. Description
15.4.2. Entities and Types of Entities
15.4.3. Data Elements. Attributes
15.4.4. Relationships: Types, Subtypes, Cardinality
15.4.5. Keys Types of Keys
15.4.6. Normalization. Normal Shapes

15.5. Construction of the Logical Data Model
15.5.1. Specification of Tables
15.5.2. Definition of Columns
15.5.3. Key Specification
15.5.4. Conversion to Normal Shapes. Dependency

15.6. The Physical Data Model. Data Files
15.6.1. Description of Data Files
15.6.2. Types of Files
15.6.3. Access Modes
15.6.4. File Organization

15.7. Database Access from PHP
15.7.1. Introduction to MariaDB
15.7.2. Working with a MariaDB Database: the SQL Language
15.7.3. Accessing the MariaDB Database from PHP
15.7.4. Introduction to MySql
15.7.5. Working with a MySql Database: The SQL Language
15.7.6. Accessing MySql Database from PHP

15.8. Client Interaction from PHP
15.8.1. PHP Forms
15.8.2. Cookies
15.8.3. Session Management

15.9. Web Application Architecture
15.9.1. The Model-View-Controller Pattern
15.9.2. Controller
15.9.3. Models
15.9.4. View

15.10. Introduction to Web Services
15.10.1. Introduction to XML
15.10.2. Service-Oriented Architecture (SOA): Web Services
15.10.3. Creation of SOAP and REST Web Services
15.10.4. The SOAP Protocol
15.10.5. The REST Protocol

40 | Structure and Content

Module 16. Safety Management
16.1. Information Security

16.1.1. Introduction
16.1.2. Information Security Involves Confidentiality, Integrity and Availability
16.1.3. Safety is an Economic Issue
16.1.4. Safety is a Process
16.1.5. Classification of Information
16.1.6. Information Security Involves Risk Management
16.1.7. Security is Articulated with Security Controls
16.1.8. Security is both Physical and Logical
16.1.9. Safety Involves People

16.2. The Information Security Professional
16.2.1. Introduction
16.2.2. Information Security as a Profession
16.2.3. ISC2 Certifications
16.2.4. The ISO 27001 Standard
16.2.5. Best Security Practices in IT Service Management
16.2.6. Information Security Maturity Models
16.2.7. Other Certifications, Standards and Professional Resources

16.3. Access Control
16.3.1. Introduction
16.3.2. Access Control Requirements
16.3.3. Authentication Mechanisms
16.3.4. Authorization Methods
16.3.5. Access Accounting and Auditing
16.3.6. Triple A Technologies

16.4. Information Security Programs, Processes and Policies
16.4.1. Introduction
16.4.2. Security Management Programs
16.4.3. Risk Management
16.4.4. Design of Security Policies

16.5. Business Continuity Plans
16.5.1. Introduction to BCPs
16.5.2. Phase I and II
16.5.3. Phase III and IV
16.5.4. Maintenance of the BCP

16.6. Procedures for the Correct Protection of the Company
16.6.1. DMZ Networks
16.6.2. Intrusion Detection Systems
16.6.3. Access Control Lists
16.6.4. Learning from the Attacker: Honeypot

16.7. Security Architecture Prevention
16.7.1. Overview. Activities and Layer Model
16.7.2. Perimeter Defence (Firewalls, WAFs, WAFs, IPS, etc.)
16.7.3. Endpoint Defence (Equipment, Servers and Services)

16.8. Security Architecture Detection
16.8.1. Overview Detection and Monitoring
16.8.2. Logs, Encrypted Traffic Breaking, Recording and Siems
16.8.3. Alerts and Intelligence

16.9. Security Architecture Reaction
16.9.1. Reaction Products, Services and Resources
16.9.2. Incident Management
16.9.3. CERTS and CSIRTs

16.10. Security Architecture Recuperation
16.10.1. Resilience, Concepts, Business Requirements and Regulations
16.10.2. IT Resilience Solutions
16.10.3. Crisis Management and Governance

Structure and Content | 41

17.5. Secure Coding Applications I
17.5.1. Introduction
17.5.2. Secure Coding Practices
17.5.3. Manipulation and Validation of Inputs
17.5.4. Memory Overflow
17.5.5. References

17.6. Secure Coding Applications II
17.6.1. Introduction
17.6.2. Integers Overflows, Truncation Errors and Problems with Type Conversions

between Integers
17.6.3. Errors and Exceptions
17.6.4. Privacy and Confidentiality
17.6.5. Privileged Programs
17.6.6. References

17.7. Development and Cloud Security
17.7.1. Safety in Development; Methodology and Practice
17.7.2. PaaS, IaaS, CaaS and SaaS Models
17.7.3. Security in the Cloud and for Cloud Services

17.8. Encryption
17.8.1. Fundamentals of Cryptology
17.8.2. Symmetric and Asymmetric Encryption
17.8.3. Encryption at Rest and in Transit

17.9. Security Automation and Orchestration (SOAR)
17.9.1. Complexity of Manual Processing: Need to Automate Tasks
17.9.2. Products and Services
17.9.3. SOAR Architecture

17.10. Telework Safety
17.10.1. Need and Scenarios
17.10.2. Products and Services
17.10.3. Telework Safety

Module 17. Software Security
17.1. Software Security Problems

17.1.1. Introduction to the Problem of Software Security
17.1.2. Vulnerabilities and their Classification
17.1.3. Secure Software Properties
17.1.4. References

17.2. Software Safety Design Principles
17.2.1. Introduction
17.2.2. Software Safety Design Principles
17.2.3. Types of S-SDLC
17.2.4. Software Safety in S-SDLC Phases
17.2.5. Methodologies and Standards
17.2.6. References

17.3. Software Lifecycle Safety in the Requirements and Design Phases
17.3.1. Introduction
17.3.2. Attack Modeling
17.3.3. Cases of Abuse
17.3.4. Safety Requirements Engineering
17.3.5. Risk Analysis Architectural
17.3.6. Design Patterns
17.3.7. References

17.4. Software Lifecycle Safety in the Coding, Testing and Operation Phases
17.4.1. Introduction
17.4.2. Risk-Based Safety Testing
17.4.3. Code Review
17.4.4. Penetration Test
17.4.5. Security Operations
17.4.6. External Review
17.4.7. References

Module 18. Web Server Administration
18.1. Introduction to Web Servers

18.1.1. What is a Web Server?
18.1.2. Architecture and Operation of a Web Server
18.1.3. Resources and Contents on a Web Server
18.1.4. Application Servers
18.1.5. Proxy Servers
18.1.6. Main Web Servers on the Market
18.1.7. Web Server Usage Statistics
18.1.8. Web Server Security
18.1.9. Load Balancing on Web Servers
18.1.10. References

18.2. HTTP Protocol Handling
18.2.1. Operation and Structure
18.2.2. Request Methods
18.2.3. Status Codes
18.2.4. Headers
18.2.5. Content Coding Code Pages
 Performing HTTP Requests on the Internet Using a Proxy, Livehttpheadersor

similar Method, Analyzing the Protocol Used
18.3. Description of Distributed Multi-Server Architectures

18.3.1. 3-Layer Model
18.3.2. Fault Tolerance
18.3.3. Load Sharing
18.3.4. Session State Stores
18.3.5. Cache Stores

18.4. Internet Information Services (IIS)
18.4.1. What is IIS?
18.4.2. History and Evolution of IIS
18.4.3. Main Advantages and Features of IIS7 and Later Versions
18.4.4. IIS7 Architecture and Later Versions

18.5. IIS Installation, Administration and Configuration
18.5.1. Preamble
18.5.2. Internet Information Services (IIS) Installation
18.5.3. IIS Administration Tools
18.5.4. Web Site Creation, Configuration and Administration
18.5.5. Installation and Management of IIS Extensions

18.6. Advanced Security in IIS
18.6.1. Preamble
18.6.2. Authentication, Authorization, and Access Control in IIS
18.6.3. Configuring a Secure Website on IIS with SSL
18.6.4. Security Policies Implemented in IIS 18.x

18.7. Introduction to Apache
18.7.1. What is Apache?
18.7.2. Main Advantages of Apache
18.7.3. Main Features of Apache
18.7.4. Architecture

18.8. Apache Installation and Configuration
18.8.1. Initial Installation of Apache
18.8.2. Apache Configuration

18.9. Installation and Configuration of the Different Apache Modules
18.9.1. Apache Module Installation
18.9.2. Types of Modules
18.9.3. Secure Apache Configuration

18.10. Advanced Security
18.10.1. Authentication, Authorization and Access Control
18.10.2. Authentication Methods
18.10.3. Secure Apache Configuration with SSL

42 | Structure and Content

Module 19. Security Audit
19.1. Introduction to Information Systems in the Company

19.1.1. Introduction to Information Systems in the Company and the Role of IT Auditing
19.1.2. Definitions of "IT Audit" and "IT Internal Control"
19.1.3. Functions and Objectives of IT Auditing
19.1.4. Differences between Internal Control and IT Auditing

19.2. Internal Controls of Information Systems
19.2.1. Functional Flowchart of a Data Processing Center
19.2.2. Classification of Information Systems Controls
19.2.3. The Golden Rule

19.3. The Process and Phases of the Information Systems Audit
19.3.1. Risk Assessment and Other IT Auditing Methodologies
19.3.2. Execution of an Information Systems Audit. Phases of the Audit
19.3.3. Fundamental Skills of the Auditor of an IT System

19.4. Technical Audit of Security in Systems and Networks
19.4.1. Technical Security Audits. Intrusion Test. Previous Concepts
19.4.2. Security Audits in Systems. Support Tools
19.4.3. Security Audits in Networks. Support Tools

19.5. Technical Audit of Security on the Internet and in Mobile Devices
19.5.1. Internet Security Audit. Support Tools
19.5.2. Mobile Devices Security Audit. Support Tools
19.5.3. Annex 1. Structure of an Executive Report and Technical Report
19.5.4. Annex 2. Tools Inventory
19.5.5. Annex 3. Methods

19.6. Information Security Management System
19.6.1. Security of IS: Properties and Influential Factors
19.6.2. Business Risks and Risk Management: Implementing Controls

19.6.3. Information Security Management System (ISMS): Concept and Critical Success
Factors

19.6.4. ISMS-PDCA Model
19.6.5. ISMS ISO-IEC 27001: Organizational Context
19.6.6. Context of the Organization
19.6.7. Leadership
19.6.8. Plan
19.6.9. Support
19.6.10. Operation
19.6.11. Performance Evaluation
19.6.12. Improvement
19.6.13. Annex to ISO 27001/ISO-IEC 27002: Objectives and Controls
19.6.14. ISMS Audit

19.7. Carrying Out the Audit
19.7.1. Procedures
19.7.2. Techniques

19.8. Traceability
19.8.1. Methods
19.8.2. Analysis

19.9. Copyright
19.9.1. Techniques
19.9.2. Results

19.10. Reports and Presenting Proof
19.10.1. Types of Reports
19.10.2. Analysis of Data
19.10.3. Presenting Proof

Structure and Content | 43

Module 20. Online Application Security
20.1. Vulnerabilities and Security Issues in Online Applications

20.1.1. Introduction to Online Application Security
20.1.2. Security Vulnerabilities in the Design of Web Applications
20.1.3. Security Vulnerabilities in the Implementation of Web Applications
20.1.4. Security Vulnerabilities in the Deployment of Web Applications
20.1.5. Official Lists of Security Vulnerabilities

20.2. Policies and Standards for Online Application Security
20.2.1. Pillars for the Security of Online Applications
20.2.2. Security Policy
20.2.3. Information Security Management System
20.2.4. Secure Software Development Life Cycle
20.2.5. Standards for Application Security

20.3. Security in the Design of Web Applications
20.3.1. Introduction to Web Application Security
20.3.2. Security in the Design of Web Applications

20.4. Testing the Online Safety and Security of Web Applications
20.4.1. Web Application Security Testing and Analysis
20.4.2. Web Application Deployment and Production Security

20.5. Web Services Security
20.5.1. Introduction to Web Services Security
20.5.2. Web Services Security Functions and Technologies

20.6. Testing the Online Safety and Security of Web Services
20.6.1. Evaluation of Web Services Security
20.6.2. Online Protection. Firewalls and Gateways XML

44 | Structure and Content

20.7. Ethical Hacking, malware and Forensic
20.7.1. Ethical Hacking
20.7.2. Malware Analysis
20.7.3. Forensic Analysis

20.8. Best Practices to Ensure Application Security
20.8.1. Handbook of Best Practices in the Development of Online Applications
20.8.2. Handbook of Good Practices in the Implementation of Online Applications

20.9. Common Errors that Undermine Application Security
20.9.1. Common Errors in Development
20.9.2. Common Errors in Hosting
20.9.3. Common Production Errors

Structure and Content | 45

By accessing this Advanced Master’s
Degree, you will not only be taking a
decisive step to broaden your knowledge
of computer engineering specialized in
software, but also towards a prosperous
and successful professional projection"

Methodology
This academic program offers students a different way of learning. Our methodology
uses a cyclical learning approach: Relearning.

This teaching system is used, for example, in the most prestigious medical schools in
the world, and major publications such as the New England Journal of Medicine have
considered it to be one of the most effective.

06

Discover Relearning, a system that abandons
conventional linear learning, to take you through
cyclical teaching systems: a way of learning that
has proven to be extremely effective, especially
in subjects that require memorization"

Methodology | 47

48 | Methodology

Case Study to contextualize all content

You will have access to a learning
system based on repetition, with
natural and progressive teaching

throughout the entire syllabus.

Our program offers a revolutionary approach to developing skills and
knowledge. Our goal is to strengthen skills in a changing, competitive, and
highly demanding environment.

At TECH, you will experience a learning
methodology that is shaking the
foundations of traditional universities
around the world"

Methodology | 49

The student will learn to solve
complex situations in real business
environments through collaborative
activities and real cases.

This TECH program is an intensive educational program, created from scratch,
which presents the most demanding challenges and decisions in this field,

both nationally and internationally. This methodology promotes personal and
professional growth, representing a significant step towards success. The case

method, a technique that lays the foundation for this content, ensures that the
most current economic, social and professional reality is taken into account.

The case method has been the most widely used learning system among the world's
leading Information Technology schools for as long as they have existed. The case

method was developed in 1912 so that law students would not only learn the law
based on theoretical content. It consisted of presenting students with real-life, complex
situations for them to make informed decisions and value judgments on how to resolve

them. In 1924, Harvard adopted it as a standard teaching method.

What should a professional do in a given situation? This is the question that you are
presented with in the case method, an action-oriented learning method. Throughout the

course, students will be presented with multiple real cases. They will have to combine
all their knowledge and research, and argue and defend their ideas and decisions.

Our program prepares you to face new
challenges in uncertain environments
and achieve success in your career”

A learning method that is different and innovative

50 | Methodology

TECH effectively combines the Case Study methodology with a 100%
online learning system based on repetition, which combines different
teaching elements in each lesson.

We enhance the Case Study with the best 100% online teaching
method: Relearning.

At TECH you will learn using a cutting-edge methodology designed
to train the executives of the future. This method, at the forefront of
international teaching, is called Relearning.

Our university is the only one in the world authorized to employ this
successful method. In 2019, we managed to improve our students'
overall satisfaction levels (teaching quality, quality of materials, course
structure, objectives...) based on the best online university indicators.

Relearning Methodology

In 2019, we obtained the best learning
results of all online universities in the world.

Methodology | 51

In our program, learning is not a linear process, but rather a spiral (learn,
unlearn, forget, and re-learn). Therefore, we combine each of these elements

concentrically. This methodology has trained more than 650,000 university
graduates with unprecedented success in fields as diverse as biochemistry,

genetics, surgery, international law, management skills, sports science,
philosophy, law, engineering, journalism, history, and financial markets and

instruments. All this in a highly demanding environment, where the students
have a strong socio-economic profile and an average age of 43.5 years.

From the latest scientific evidence in the field of neuroscience, not only do we know
how to organize information, ideas, images and memories, but we know that the

place and context where we have learned something is fundamental for us to be able
to remember it and store it in the hippocampus, to retain it in our long-term memory.

In this way, and in what is called neurocognitive context-dependent e-learning, the
different elements in our program are connected to the context where the individual

carries out their professional activity.

Relearning will allow you to learn with less effort and
better performance, involving you more in your training,

developing a critical mindset, defending arguments, and
contrasting opinions: a direct equation for success.

52 | Methodology

30%

10%

8%
3%

Study Material

All teaching material is produced by the specialists who teach the course, specifically
for the course, so that the teaching content is highly specific and precise.

These contents are then applied to the audiovisual format, to create the TECH online
working method. All this, with the latest techniques that offer high quality pieces in each
and every one of the materials that are made available to the student.

Additional Reading

Recent articles, consensus documents and international guidelines, among others.
In TECH's virtual library, students will have access to everything they need to complete
their course.

Practising Skills and Abilities

They will carry out activities to develop specific skills and abilities in each subject area.
Exercises and activities to acquire and develop the skills and abilities that a specialist
needs to develop in the context of the globalization that we are experiencing.

Classes

There is scientific evidence suggesting that observing third-party experts can be useful.

Learning from an Expert strengthens knowledge and memory, and generates
confidence in future difficult decisions.

This program offers the best educational material, prepared with professionals in mind:

Methodology | 53

4%

25%

3%

20%

Testing & Retesting

We periodically evaluate and re-evaluate students’ knowledge throughout the
program, through assessment and self-assessment activities and exercises, so that

they can see how they are achieving their goals.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia
lessons that include audio, videos, images, diagrams, and concept maps in order to

reinforce knowledge.

This exclusive educational system for presenting multimedia content was awarded
by Microsoft as a "European Success Story".

Case Studies

Students will complete a selection of the best case studies chosen specifically
for this program. Cases that are presented, analyzed, and supervised by the best

specialists in the world.

Certificate
07

The Advanced Master's Degree in Software Engineering and Quality guarantees
students, in addition to the most rigorous and up-to-date education, access to
an Advanced Master's Degree issued by TECH Technological University.

Certificate | 55

Successfully complete this program and
receive your university qualification without
having to travel or fill out laborious paperwork"

This Advanced Master's Degree in Software Engineering and Quality contains the
most complete and up-to-date program on the market.

After the student has passed the assessments, they will receive their corresponding
Advanced Master’s Degree issued by TECH Technological University via tracked
delivery*.

The certificate issued by TECH Technological University will reflect the qualification
obtained in the Advanced Master’s Degree, and meets the requirements commonly
demanded by labor exchanges, competitive examinations, and professional career
evaluation committees.

Title: Advanced Master's Degree in Software Engineering and Quality

Official Nº of Hours: 3,000 h.

56 | Certificate

*Apostille Convention. In the event that the student wishes to have their paper certificate issued with an apostille, TECH EDUCATION will make the necessary arrangements to obtain it, at an additional cost.

Advanced Master's
Degree
Software Engineering
and Quality

 » Modality: online
 » Duration: 2 years
 » Certificate: TECH Technological University
 » Dedication: 16h/week
 » Schedule: at your own pace
 » Exams: online

Advanced Master's Degree
Software Engineering and Quality

