

Профессиональная магистерская специализация

Облачные вычисления

» Формат: **онлайн**

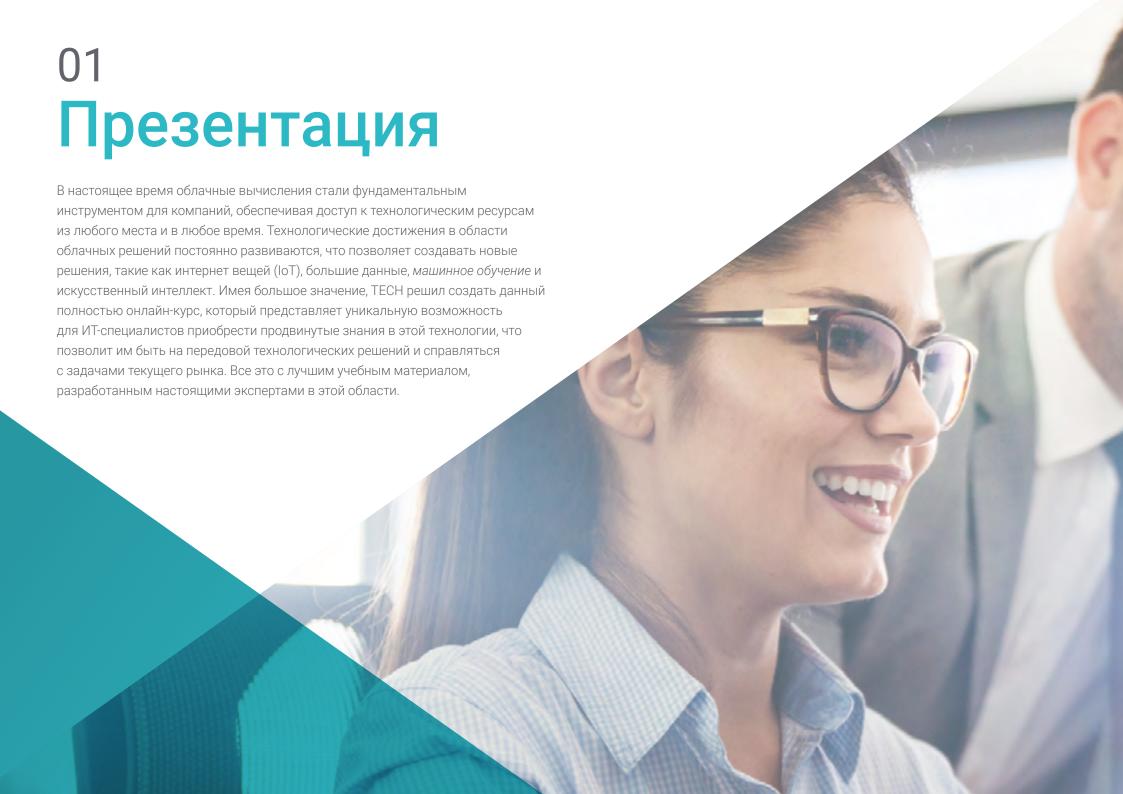
» Продолжительность: 12 месяцев

» Учебное заведение: **ТЕСН Технологический университет**

» Режим обучения: 16ч./неделя

» Расписание: **по своему усмотрению**

» Экзамены: **онлайн**


 $Be \textit{6-доступ:}\ www.techtitute.com/ru/information-technology/advanced-master-degree-advanced-master-degree-cloud-computing$

Оглавление

02 Презентация Цели стр. 4 стр. 8 03 05 Компетенции Руководство курса Структура и содержание стр. 16 стр. 20 стр. 26 06 Методология Квалификация

стр. 44

стр. 52

tech 06 | Презентация

Возможность хранения, обработки и управления данными в облаке преобразовала способ работы компаний, обеспечивая автоматизацию процессов, масштабируемость и снижение затрат. Эти преимущества стимулировали развитие облачных технологий и их применение во всех секторах и организациях, независимо от их размера.

В связи с этой реальностью профиль специалистов в области информационных технологий становится очень важным и в последние годы стал одним из самых востребованных. Такой благоприятный сценарий развития требует специалистов, специализирующихся в этой области и следящих за последними тенденциями. Таким образом, была создана Профессиональная магистерская специализация в области облачных вычислений продолжительностью 24 месяца.

Это передовая программа, которая предложит студентам интенсивный академический курс по программированию архитектур в облачных вычислениях, программированию облачных нативных приложений, а также оркестрации контейнеров с помощью Kubernetes и Docker. Эта программа также охватывает такие темы, как хранение данных в облаке Azure, интеграция облачных сервисов и трансформация IT-инфраструктуры в направлении облачных вычислений.

Кроме того, благодаря большому количеству учебных материалов, студенты смогут более легко углубиться в такие области, как безопасность, управление и кибербезопасность в облачных инфраструктурах, а также мониторинг и резервное копирование данных. Это уникальное обучение позволяет сократить длительные часы учебы и запоминания благодаря методу *Relearning*, что делает эту программу еще более привлекательной для прохождения.

Таким образом, с помощью преимущественно онлайн и полностью гибкой учебной программы, специалисты в области информационных технологий получат знания, необходимые для развития в технологической индустрии. И для того, чтобы получить доступ к содержанию этой программы в любое время дня, достаточно иметь электронное устройство с доступом в интернет. Это прекрасная возможность для качественного обучения, совместимого с повседневными обязанностями.

Данная **Профессиональная магистерская специализация в области Облачные вычисления** содержит самую полную и актуальную программу на рынке. Основными особенностями обучения являются:

- Разбор практических кейсов, представленных экспертами в области облачных вычислений
- Наглядное, схематичное и исключительно практичное содержание курса предоставляет научную и практическую информацию по тем дисциплинам, которые необходимы для осуществления профессиональной деятельности
- Практические упражнения для самооценки, контроля и улучшения успеваемости
- Особое внимание уделяется инновационным методологиям в области управления проектами облачных вычислений
- Теоретические занятия, вопросы эксперту, дискуссионные форумы по спорным темам и самостоятельная работа
- Учебные материалы курса доступны с любого стационарного или мобильного устройства с выходом в интернет

Уникальное академическое предложение, в котором система Relearning позволит вам учиться легко и сократить долгие часы учебы"

Хотите быть на передовой цифровых трансформаций? Запишитесь прямо сейчас на Профессиональную магистерскую специализацию в области облачных вычислений и научитесь создавать инновационные решения для компаний будущего"

В преподавательский состав входят профессионалы в области облачных вычислений, которые привносят в эту программу опыт своей работы, а также признанные специалисты из ведущих сообществ и престижных университетов.

Мультимедийное содержание программы, разработанное с использованием новейших образовательных технологий, позволит специалисту проходить обучение с учетом контекста и ситуации, т.е. в симулированной среде, обеспечивающей иммерсивный учебный процесс, запрограммированный на обучение в реальных ситуациях.

Структура этой программы основана на проблемно-ориентированном обучении, с помощью которого специалист должен попытаться решить различные ситуации из профессиональной практики, возникающие в течение образовательной программы. В этом специалисту будет помогать инновационная интерактивная видеосистема, созданная признанными и опытными специалистами.

Благодаря этой программе вы станете экспертом в области программирования облачных архитектур с использованием наиболее распространенных технологий, таких как Azure, AWS и Google Cloud.

Вы научитесь организовывать контейнеры с помощью Kubernetes и Docker — ключевых технологий для реализации облачных решений.

Цели Данная Профессиональная магистерская специализация в области облачных вычислений разработана, чтобы предоставить специалистам в области информационных технологий необходимые навыки и знания для успешной работы в технологической сфере. Таким образом, на протяжении этого учебного пути, студент совершенствует свои навыки в проектировании, внедрении и управлении облачными вычислениями, которые являются масштабируемыми, безопасными и прибыльными. В этом процессе студент также может полагаться на специализированных преподавателей, которые ответят на любые вопросы, возникающие у него/нее по содержанию этой программы. •••••• endheeve miss. y. *********** *********** **********

tech 10 | Цели

- Анализировать различные подходы к внедрению облачных технологий и их контекст
- Получить специализированные знания для определения подходящего облака
- Разрабатывать виртуальную машину в Azure
- Определить источники угроз при разработке приложений и лучшие практики их применения
- Оценивать различия в конкретных реализациях сервисов от различных поставщиков публичных облаков
- Определить различные технологии, применяемые для контейнеров
- Выделить ключевые аспекты при принятии стратегии внедрения Cloud-Native
- Изучить основы и оценить наиболее часто используемые в области больших данных языки программирования, необходимые для анализа и обработки данных
- Развивать экспертные знания о том, что представляют собой инфраструктуры и какие существуют мотивы для их трансформации в облако
- Получить навыки и знания, необходимые для эффективного внедрения и управления решениями laaS
- Получить специальные знания, позволяющие быстро и легко добавлять или удалять мощности хранения и обработки данных, что дает возможность адаптироваться к колебаниям спроса

- Изучить сферу применения Network DevOps, наглядно демонстрируя, что это инновационный подход к управлению сетями в ИТ-средах
- Понимать проблемы, с которыми сталкивается предприятие при управлении облачными средами, и пути их решения
- Использовать сервисы безопасности в *облачных* средах, такие как брандмауэры, SIEMS и защита от угроз, для обеспечения безопасности своих приложений и сервисов
- Выработать лучшие практики использования *облачных* сервисов и основные рекомендации при их применении
- Повысить эффективность и продуктивность работы пользователей: предоставляя пользователям возможность доступа к приложениям и данным из любого места и с любого устройства, VDI позволяет повысить эффективность и продуктивность работы пользователей
- Получить специализированные знания об инфраструктуре в качестве кода
- Определить ключевые моменты, демонстрирующие важность инвестиций в резервное копирование и мониторинг в организациях

Конкретные цели

Модуль 1. Облачные вычисления. Облачные сервисы Azure, AWS и Google Cloud

- Получить специализированные знания об облачных технологиях и их отличиях от традиционных локальных решений
- Усвоить фундаментальную специализированную облачную лексику Освоить термины, используемые различными провайдерами
- Определить основные компоненты облака и его применение
- Определить поставщиков на рынке облачных услуг, их сильные и слабые стороны, а также вклад

Модуль 2. Программирование архитектур облачных вычислений

- Получить специализированные знания по основам архитектуры
- Специализировать студента в области облачных инфраструктур
- Оценить преимущества и недостатки развертывания *on-premise* или в облаке
- Определить требования к инфраструктуре
- Определить варианты развертывания
- Подготовить студентов к внедрению облачной инфраструктуры
- Разрабатывать и определять порядок эксплуатации и сопровождения облачной архитектуры

Модуль 3. Облачное хранилище Azure

- Изучить виртуальную машину в Azure
- Установить различные типы хранилищ
- Оценивать роли в резервном копировании
- Управлять ресурсами Azure
- Анализировать различные типы служб
- Изучить различные типы безопасности
- Создавать виртуальные сети
- Познакомиться с различными сетевыми подключениями

Модуль 4. Облачные среды. Безопасность

- Определять риски развертывания инфраструктуры открытого облачного пространства
- Анализировать риски безопасности при разработке приложений
- Определять требования к безопасности
- Разрабатывать план безопасности для развертывания в облачных сервисах
- Устанавливать руководящие принципы для системы ведения журнала и мониторинга
- Предлагать действия по реагированию на инцидент

Модуль 5. Оркестрация контейнеров: Kubernetes и Docker

- Изучить основы контейнерной архитектуры и технологии
- Установить различные технологии, применяемые для контейнеров
- Определить требования к инфраструктуре
- Изучить варианты развертывания

Модуль 6. Программирование облачных нативных приложений

- Представить технологии непрерывной разработки и интеграции
- Продемонстрировать работу Kubernetes в качестве оркестрации сервисов
- Анализировать средства обеспечения наблюдаемости и безопасности в Cloud-Native
- Оценивать платформы развертывания
- Изучить основы стратегий управления данными в средах Cloud-Native
- Выявить общие приемы разработки на базе Cloud-Native

Модуль 7. Облачные вычисления. Управление данными

- Получить специализированные знания по управлению данными, стратегиям и методам их обработки
- Разрабатывать стратегии управления данными, ориентированные на людей, процессы и инструменты
- Осуществлять управление данными на всех этапах от их ввода до подготовки и использования
- Определять методы управления передачей данных
- Установить защиту данных для аутентификации, безопасности, резервного копирования и мониторов

Модуль 8. Облачные вычисления в реальном времени. Потоковое вещание

- Анализировать процесс сбора, структурирования, обработки, анализа и интерпретации потоковых данных
- Разработать принципы обработки *потоковых* данных, современный контекст и текущие сценарии использования в национальной структуре
- Разработать ключевые основы статистики, *машинного обучения*, интеллектуального анализа данных и предиктивного моделирования для понимания процессов анализа и обработки данных
- Анализировать основные языки программирования для работы с большими данными
- Изучить основы потоковой обработки данных Apache Spark, Kafka Stream и Flink Stream

Модуль 9. Интеграция облаков с веб-сервисами. Технологии и протоколы

- Оценивать прогресс веб-технологий и архитектур для определения сложности системы и, исходя из этого, предлагать программное решение
- Разрабатывать распределенные проекты в области облачных вычислений с использованием веб-сервисов и различных требований к функциональности и безопасности
- Анализировать различные технологии реализации веб-сервисов, определяя ту, которая наилучшим образом соответствует сценарию задачи
- Оценить корректность реализации веб-сервиса на стороне сервера путем запуска запросов от различных типов веб-клиентов

Модуль 10. Облачные вычисления. Управление проектами и верификация продукции

- Знать сценарии и области применения в управлении жизненным циклом
- Управлять проектами как процессом и определять организационную модель
- Определять риски и затраты, применяя agile-методологии на этапе концептуализации или в ходе выполнения проекта
- Вести и управлять проектами с использованием agile-методологий и качеством Cloud-проектов, применяя различные методологии

Модуль 11. Трансформация ИТ-инфраструктур. Облачные вычисления

- Перечислить существующие типы облачных вычислений
- Проанализировать факторы, определяющие внедрение облачных вычислений
- Определить типы, модели и элементы, из которых состоят облачные вычисления
- Указать принципы работы облачных инфраструктур и соответствующие аспекты
- Проанализировать существующие экосистемы и их основы для успешной трансформации
- Сделать обзор различных поставщиков и их возможностей по поддержке внедрения облачных вычислений
- Сделать обзор стратегии автоматизации и безопасности
- Создать первую среду для управления инфраструктурой в рамках культуры DevOps или DevSecOps
- Осознать будущее и эволюцию инфраструктур, проанализировать задачи, технологии и проблемы в области безопасности и соответствия нормативным требованиям

Модуль 12. Инфраструктура как услуга (laaS)

- Изучить уровни абстракции в облачных вычислениях и их взаимосвязь между собой
- Понять, как эффективно управлять уровнями абстракции облачных вычислений
- Анализировать основные решения при построении облачной архитектуры
- Оценить, как цифровая трансформация и *облачные* вычисления могут способствовать успеху бизнеса
- Изучить подход *DevOps* и то, как он может повысить эффективность и результативность разработки и доставки программного обеспечения
- Определить, какие существуют различные ресурсы облачных вычислений и как их можно эффективно использовать

Модуль 13. Хранение и базы данных в облачных инфраструктурах

- Определить особенности и преимущества облачных хранилищ, различные варианты облачных хранилищ (общедоступные, частные, гибридные) и выбор подходящего
- Сформировать специальные знания об облачных базах данных, преимуществах и недостатках облачных баз данных, различных вариантах облачных баз данных (реляционных, нереляционных) и о том, как выбрать подходящий вариант базы данных
- Изучить проектирование и архитектуру облачных баз данных и хранилищ: принципы проектирования облачных баз данных и хранилищ, архитектуры облачных баз данных и хранилищ и общие модели проектирования
- Управлять облачными хранилищами и базами данных: как создавать, управлять и контролировать облачные хранилища и базы данных, как создавать резервные копии и восстанавливать данные в случае их потери
- Анализировать вопросы безопасности и конфиденциальности в облаке: как защитить хранимые данные и базы данных в облаке, правила и нормы конфиденциальности и безопасности в облаке
- Составить примеры использования облачных хранилищ и баз данных: примеры использования облачных хранилищ и баз данных в различных областях применения, управления большими данными, анализа данных в реальном времени и интеграции данных из различных источников
- Решить проблемы масштабируемости и производительности в облаке и оптимизировать их в облачных приложениях

Модуль 14. Network DevOps и сетевые архитектуры в облачных инфра структурах

- Разработать концепции и принципы Network DevOps и их применение в облачных средах
- Определить требования, необходимые для реализации Network DevOps в облачных средах
- Использовать соответствующие инструменты и программное обеспечение для Network DevOps
- Определить, как внутренние сетевые сервисы, такие как VPC и подсети, реализуются и управляются в *облачных* средах
- Составить перечень пограничных сетевых сервисов, доступных в облачных средах, и определить, как они используются для соединения облачных и локальных сетей
- Понимать важность использования DNS в облачных средах и способы реализации гибридных и многопользовательских сетевых подключений
- Развертывать и управлять службами доставки контента в *облачных* средах, такими как CDN и WAF
- Изучить важные аспекты безопасности в *облачных* сетях и способы реализации мер безопасности в этих средах
- Осуществлять мониторинг и аудит сетей в *облачных* средах для обеспечения доступности и безопасности

Модуль 15. Управление в облачных инфраструктурах

- Анализировать ключевые концепции соответствия и их важность в контексте облачных вычислений
- Определить основные проблемы, с которыми сталкивается CISO при управлении *облачными* средами, и способы их решения
- Определить основные аспекты конфиденциальности в контексте облачных вычислений и способы обеспечения соответствия применимым нормативным требованиям
- Изучить соответствующие нормативные документы и сертификаты в облачной среде
- Изучить принципы выставления счета-фактуры в облаке и оптимизировать использование ресурсов
- Подробно изучить использование служб управления и контроля в AWS и Azure для оптимизации использования ресурсов и обеспечения соответствия требованиям безопасности

Модуль 16. Кибербезопасность в облачных инфраструктурах

- Получить специальные знания о специфических рисках и угрозах в облачных средах
- Анализировать системы безопасности и применять их для защиты своей инфраструктуры
- Разрабатывать модели угроз и защищать от них свои приложения и сервисы
- Оценивать инструменты кибербезопасности на уровне кода и использовать их для обнаружения и предотвращения уязвимостей в приложениях и сервисах
- Выполнять интеграцию средств контроля кибербезопасности в процессы
- Освоить ZAP Proxy для аудита облачных сред
- Выполнять автоматическое сканирование уязвимостей для обнаружения и предотвращения уязвимостей в приложениях и сервисах
- Изучать различные типы *брандмауэров* и настраивать их для защиты инфраструктуры и сервисов
- Применять защиту транспортного уровня с помощью SSL/TLS и сертификатов
- Оценивать SIEM-системы и их использование для мониторинга и оптимизации безопасности облачной среды

Модуль 17. Внедрение сервисов в облачных инфраструктурах

- Перечислить различные вычислительные сервисы каждого из основных облачных провайдеров
- Понять преимущества взаимодействия между сервисами
- Получить необходимые навыки для развертывания нашего приложения в облаке и придания ему дополнительных возможностей за счет включения новых сервисов
- Определить, как сделать наше приложение устойчивым к внешним воздействиям благодаря автоматической эскалации

Модуль 18. Virtual Desktop Infrastructure (VDI)

- Обеспечить доступ к критическим приложениям для удаленных пользователей: VDI может использоваться для предоставления пользователям доступа к критическим приложениям из любого места и с любого устройства, что может повысить производительность и эффективность работы удаленных пользователей
- Облегчить совместную работу и коммуникацию: VDI позволяет пользователям совместно использовать приложения и данные в режиме реального времени, что может улучшить коммуникацию и совместную работу
- Снизить затраты на аппаратное и программное обеспечение: VDI может использоваться для снижения затрат на аппаратное и программное обеспечение за счет отсутствия необходимости устанавливать и поддерживать приложения и операционные системы на каждом устройстве в отдельности
- Повысить безопасность и конфиденциальность данных: VDI может использоваться для повышения безопасности и конфиденциальности данных за счет хранения информации на централизованном сервере и ее защиты с помощью мер по обеспечению безопасности хранения и пользователей
- Облегчить обновление и сопровождение: VDI может использоваться для облегчения обновления и сопровождения операционной системы и приложений за счет централизации виртуального рабочего стола на сервере

Модуль 19. Функционирование инфраструктуры как кода (IAC)

- Перечислить основные инструменты для управления инфраструктурой как кодом и их основные достоинства
- Определить различные подходы, предлагаемые инфраструктурой как кодом, в зависимости от способа определения ресурсов
- Эффективно развертывать и управлять тестовыми и производственными средами с помощью инфраструктуры как кода
- Использовать методы версионирования и контроля изменений для инфраструктуры как кода

Модуль 20. Мониторинг и *резервное копирование* в *облачных* инфраструктурах

- Определить, как создать стратегию резервного копирования и стратегию мониторинга
- Установить наиболее востребованные сервисы и особенности использования каждого из них
- Определить типы резервного копирования и их использование
- Определить надежную стратегию резервного копирования, отвечающую бизнес-целям
- Разработать план обеспечения непрерывности бизнеса
- Определить типы мониторинга и назначение каждого из них
- Выработать проактивный подход к инцидентам путем создания масштабируемой стратегии мониторинга
- Применить различные стратегии к реальным ситуациям
- Указать точки улучшения, чтобы развивать среды одновременно с развитием бизнеса

Вы научитесь управлять проектами и проверять продукты в облаке — необходимые навыки для профессионального успеха в этой области"

Общие профессиональные навыки

- Анализировать процесс трансформации, который переживают компании, внедрившие методологию DevOps
- Изучить основы методологии DevOps с целью их применения для управления процессом внедрения и разработки цифровых продуктов
- Освоить различные существующие методики бизнес-анализа для правильной разработки фазы планирования
- Овладеть существующими методиками верификации и валидации для обеспечения качества разработанного продукта
- Установить различия между технологиями виртуализации, *облачных* вычислений и контейнерных технологий для оптимального использования каждой из них
- Изучить основы, на которых базируются облачные сервисы, для целесообразного использования этих инструментов в компании
- Знать поставщиков и характеристики услуг, предлагаемых в рамках облачных вычислений, чтобы выбрать те из них, которые в наибольшей степени соответствуют потребностям компании
- Владеть технологиями, позволяющими создать культуру DevSecOps, объединяющую команды разработчиков, системщиков и специалистов по безопасности для достижения общих целей
- Обладать навыками и знаниями, необходимыми для эффективного внедрения и управления решениями laaS

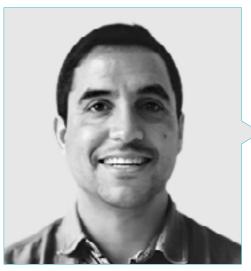
- Определять необходимые возможности, способствующие межкомандному и межведомственному взаимодействию
- Применять методы обеспечения безопасности и мониторинга в облачных сетях
- Решать задачи, стоящие перед предприятием в области управления облачными средами
- Контролировать и оптимизировать безопасность приложений и сервисов в облачных средах с помощью средств мониторинга и аудита
- Интегрировать облачные сервисы
- Использовать средства совместной работы и управления жизненным циклом инфраструктуры в качестве кода
- Освоить различные инструменты и сервисы, предлагаемые облаком, для их эффективного развертывания

Данная программа даст вам инструменты, необходимые для того, чтобы стать лидером в сфере технологий"

Профессиональные навыки

- Определить основные методы обработки данных
- Расширить знания о различных инструментах и их использовании в области управления проектами
- Получить специализированные знания о качестве услуг и о том, как достичь надлежащего качества с помощью своего продукта
- Обосновать конкретное использование сервисной архитектуры для решения проблемы в конкретных рамках
- Определить слабые места и угрозы в системе, чтобы предложить технологическое решение, поддерживающее безопасность системы
- Изучить различные сервисы, предоставляемые *облачными* провайдерами, и обосновать их использование в конкретном проекте
- Изучить использование контейнеров и разработку с использованием микросервисов
- Определить *облачные* сервисы, которые необходимо развернуть для реализации плана обеспечения безопасности, и операции, необходимые для работы механизмов предотвращения

- Уметь определять типы, модели и элементы, из которых состоят облачные вычисления
- Эффективно управлять различными вычислительными ресурсами, доступными в облаке
- Понимать способы защиты хранимых данных и баз данных в облаке
- Внедрять и управлять внутренними сетевыми службами в *облачных* средах, такими как VPC и подсети
- Оптимизировать использование ресурсов и обеспечить соответствие требованиям безопасности
- Выполнять интеграцию средств контроля кибербезопасности в процессы
- Развертывать *облачные* приложения и предоставлять им дополнительные возможности, внедряя новые сервисы
- Понимать все преимущества и особенности эксплуатации VDI
- Использовать методы версионирования и контроля изменений для инфраструктуры как кода
- Разработать план обеспечения непрерывности бизнеса



Руководство

Г-н Брессель Гутьеррес-Амбросси, Гильермо

- Специалист в области администрирования компьютерных систем и сетей
- Администратор систем хранения данных и SAN в компании Experis IT (BBVA)
- Сетевой администратор в бизнес-школе IE
- Степень бакалавра в области компьютерных систем и сетевого администрирования в ASIR
- Курс "Ethical Hacking" на OpenWebinar
- Курс " Powershel" на OpenWebinar

Г-н Касадо Сарментеро, Иван

- Руководитель отдела DevOps в компании TRAK
- Директор по информационным технологиям в Madison Experience Marketing
- Pуководитель отдела инфраструктуры и телекоммуникаций в Madison Experience Marketing
- Руководитель отдела эксплуатации и поддержки в Madison Experience Marketing
- Администратор ИТ-систем в Madison Experience Marketing
- Степень магистра в области лидерства и управления коллективом в Торговой палате Вальядолида
- Программа обучения на уровне высшего образования по разработке компьютерных приложений в IES Galilec

Преподаватели

Г-н Гомес Родригес, Антонио

- Главный инженер по облачным решениям Oracle
- Соорганизатор встречи разработчиков в Малаге
- Специалист-консультант для Sopra Group и Everis
- Руководитель группы в компании System Dynamics
- Разработчик ПО в компании SGO Software
- Степень магистра в области электронного бизнеса в бизнес-школе Ла-Салье
- Последипломное образование в области информационных технологий и систем, Каталонский технологический институт
- Степень бакалавра в области высшей телекоммуникационной инженерии в Политехнического университета Каталонии

Г-н Берналь де ла Варга, Ерай

- Архитектор больших данных в Bankia
- Инженер по большим данным в компании Hewlett-Packard
- Доцент в магистратуре по большим данным в Университете Деусто
- Степень бакалавра в области компьютерных наук Мадридского политехнического университета.
- Эксперт по большим данным в U-TAD

Д-р Родригес Камачо, Кристина

- Консультант по Apis и разработчик микросервисов в компании Inetum
- Степень бакалавра в области биомедицинской инженерии Университета Малаги
- Степень магистра в области *блокчейна* и больших данных в Мадридском университете Комплутенсе
- Эксперт по Devops & Cloud в Университете UNIR

Г-н Торрес Паломино, Серхио

- Компьютерный инженер, эксперт в области блокчейна
- Ведущий специалист по блокчейну в Telefónica
- Архитектор блокчейна в Signeblock
- Разработчик блокчейна в Blocknitive
- Писатель и пропагандист в O'Really Media Books
- Преподаватель в последипломном образовании и на курсах, связанных с блокчейном
- Степень бакалавра в области компьютерной инженерии в Университете Сан-Пабло СЕU
- Степень магистра в области архитектуры больших данных
- Степень магистра в области больших данных и бизнес-аналитики

Г-н Родригес Гарсия, Дарио

- Архитектор программного обеспечения в NEA F3 MASTER
- Разработчик Full-Stack в NEA F3 MASTER
- Степень бакалавра в области компьютерной программной инженерии в Университете Овьедо
- Степень магистра в области веб-инженерии в Университете Овьедо
- Преподаватель программ по веб-инженерии
- Преподаватель курсов на платформе электронного обучения Udemy

Д-р Могель Маркес, Мигель

- Компьютерный инженер.
- Консультант в области веб-инженерии, проектирования и разработки вебприложений, программных архитектур и новых технологических тенденций
- Степень доктора в области компьютерных технологий Университета Эстремадуры
- Степень магистра в области компьютерных технологий Университета Эстремадуры
- Степень бакалавра в области компьютерной инженерии Университета Эстремадуры

tech 24 | Руководство курса

Д-р Гарсия Санс-Кальседо, Хусто

- Специалист-инженер по здравоохранению
- Директор по инженерным вопросам и техническому обслуживанию в Службе здравоохранения Эстремадуры
- Степень доктора в области промышленной инженерии Университета Эстремадуры
- Промышленный инженер в Университете Эстремадуры
- Эксперт по навыкам управления командами и тренер преподавателей
- Программа высшего менеджмента в учреждениях здравоохранения в IESE Business School

Д-р Санчес-Барросо Морено, Гонсало

- Инженер-механик
- Консультант по проектам промышленных исследований и экспериментальных разработок
- Степень доктора в области промышленной инженерии Университета Эстремадуры
- Степень магистра в области машиностроения в Университете Эстремадуры
- Степень магистра в области промышленной инженерии в Университете Эстремадуры
- Специализация по управлению инновационными проектами
- Сертифицированный специалист по управлению проектами (уровень D) Международной ассоциации управления проектами (IPMA)

Д-р Гонсалес Домингес, Хайме

- Консультант по проектам промышленных исследований и экспериментальных разработок
- Степень доктора в области моделирования и экспериментирования в науке и технике
- Инженер-технолог и инженер-механик в Университете Эстремадуры
- Специализация по управлению инновационными проектами
- Сертифицированный специалист по управлению проектами (уровень D) Международной ассоциации управления проектами (IPMA)

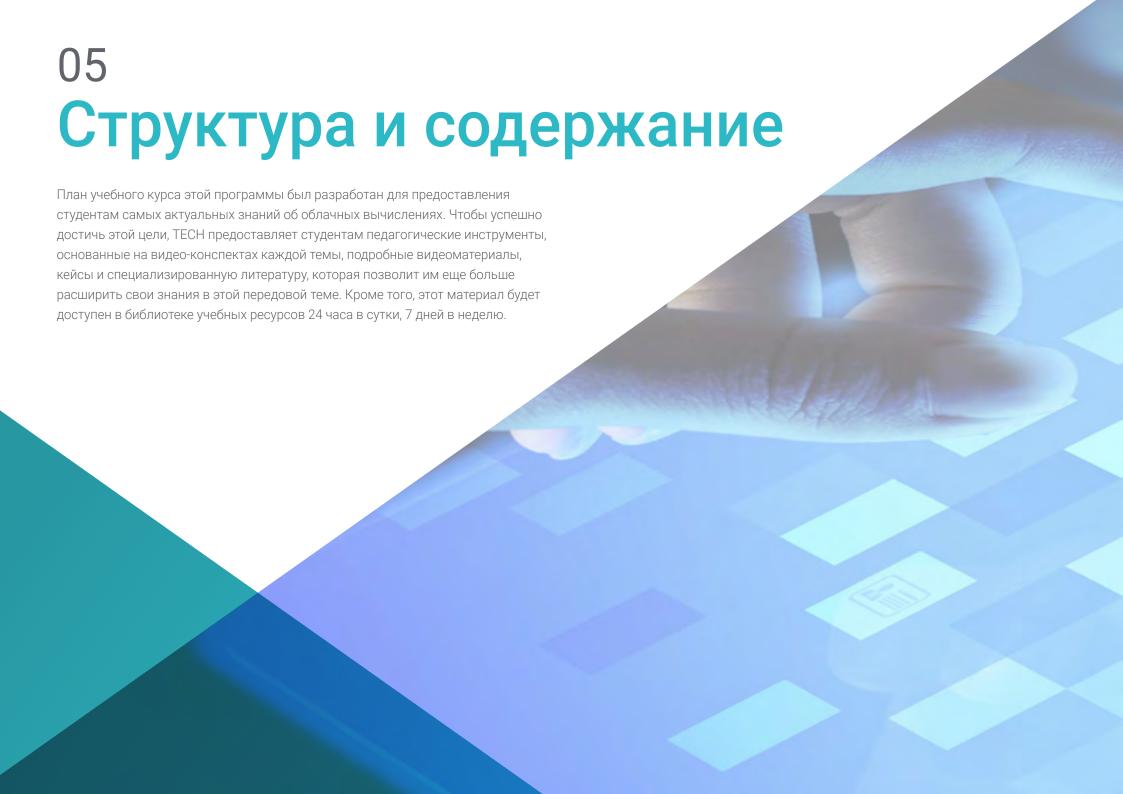
Г-н Сарсуэло Рубио, Гильермо

- Менеджер по надежности сайта в Madison Experience Marketing
- Инженер DevOps в компании Drivies
- Релиз-инженер в Aubay Isalia
- ◆ QA-тестер в Axpe Consulting
- Программист-аналитик Python в Telefonica I+D
- Сертифицированный архитектор решений AWS (B2)
- MongoDB for DBAs (MongoDB University)
- Инженер по телекоммуникациям в Университете Вальядолида

Г-н Надаль Мартин, Асер

- Инженер по обеспечению надежности сайта в TELECYL S.A.
- Системный администратор в Altia Consultores S.A.
- Высшее инженерное образование в области компьютерных наук в UNED
- Курс в области дизайна веб-страниц в CIFESAL
- Основы эксплуатации решения IP-телефонии в JCYL
- Продвинутый курс GIT в GESDECO

Г-н Пастриан Гарсия, Хосе Мануэль


- Инженер по информационной безопасности в компании MADISON Experience Marketing
- Стажер по кибербезопасности в Главном Фонде университета Вальядолида
- Сотрудник в компании Boss Technical Lighting S.L.
- Степень бакалавра в области физики в Университете Вальядолида


Г-н Фуэнте Алонсо, Рубен

- Руководитель центра операций безопасности в компании Madison Experience Marketing
- Партнер-основатель и президент Ассоциации информатики Паленсии Kernel Panic
- Администратор сетевой и системной безопасности в компании Entelgy Innotec Security
- Специалист по связи и безопасности 2-го уровня в CODERE
- Администратор сети PartyLans в нескольких ассоциациях
- Продвинутый университетский курс по кибербезопасности в Университете имени короля Хуана Карлоса.
- CCNA R&S и CCNA Security в Сетевой академии Cisco.
- Проектирование сетей TCP/IP в IBM
- Высшее специальное образование по администрированию компьютерных систем в CIFP Паленсия

Г-н Веласко Портела, Оскар

- Инженер по обеспечению надежности сайта в Telecyl S.A.
- Инженер по поддержке пользователей в Telecyl S.A.
- Компьютерный мониторинг в Ассоциации ветеранов Каньо Аргалес
- Степень бакалавра в области администрирования сетевых операционных систем в IES Galileo
- Степень бакалавра в области 3D-анимации
- Сертификация в области обеспечения кибербезопасности на рабочем месте
- CNNA R&S: Введение в Networks
- CNNA R&S: Маршрутизация и коммутация

tech 28 | Структура и содержание

Модуль 1. Облачные вычисления. Облачные сервисы Azure, AWS и Google Cloud

- 1.1. Облако. Услуги и облачные технологии
 - 1.1.1. Услуги и облачные технологии
 - 1.1.2. Облачная терминология
 - 1.1.3. Эталонные облачные провайдеры
- 1 2 Облачные вычисления
 - 1.2.1. Облачные вычисления
 - 1.2.2. Экосистема облачных вычислений
 - 1.2.3. Типология облачных вычислений
- 1.3. Модели облачных сервисов
 - 1.3.1. laaS. Инфраструктура как услуга
 - 1.3.2. SaaS. Программное обеспечение как услуга
 - 1.3.3. PaaS. Платформа как услуга
- 1.4. Технологии облачных вычислений
 - 1.4.1. Система виртуализации
 - 1.4.2. Сервис-ориентированная архитектура (SOA)
 - 1.4.3. GRID-вычисления
- 1.5. Архитектура облачных вычислений
 - 1.5.1. Архитектура облачных вычислений
 - 1.5.2. Типологии сетей облачных вычислений
 - 1.5.3. Безопасность в облачных вычислений
- 1.6. Публичное облако
 - 1.6.1. Публичное облако
 - 1.6.2. Архитектура и стоимость публичного облака
 - 1.6.3. Публичное облако. Типология
- 1.7. Частное облако
 - 1.7.1. Частное облако
 - 1.7.2. Архитектура и затраты
 - 1.7.3. Частное облако. Типология

- 1.8. Гибридное облако
 - 1.8.1. Гибридное облако
 - 1.8.2. Архитектура и затраты
 - 1.8.3. Гибридное облако. Типология
- 1.9. Облачные провайдеры
 - 1.9.1. Amazon Web Services
 - 1.9.2. Azure
 - 1.9.3. Google
- 1.10. Безопасность в облаке
 - 1.10.1. Инфраструктурная безопасность
 - 1.10.2. Безопасность операционных систем и сетей
 - 1.10.3. Снижение рисков облачных вычислений

Модуль 2. Программирование архитектур облачных вычислений

- 2.1. Облачная архитектура для университетской сети. Выбор облачного провайдера. Практический пример
 - 2.1.1. Подход к созданию облачной архитектуры для университетской сети в соответствии с облачным провайдером
 - 2.1.2. Компоненты облачной архитектуры
 - 2.1.3. Анализ облачных решений в соответствии с предложенной архитектурой
- 2.2. Экономическая оценка проекта по созданию университетской сети. Финансирование
 - 2.2.1. Выбор облачного провайдера
 - 2.2.2. Экономическая оценка на основе компонентов
 - 2.2.3. Финансирование проекта
- 2.3. Оценка человеческих ресурсов проекта. Состав команды программного обеспечения
 - 2.3.1. Состав команды разработчиков программного обеспечения
 - 2.3.2. Роли в команде разработчиков. Типология
 - 2.3.3. Оценка экономической эффективности проекта
- 2.4. График реализации и проектная документация
 - 2.4.1. Agile-график проекта
 - 2.4.2. Документация по обоснованию целесообразности проекта
 - 2.4.3. Документация, которая должна быть предоставлена для выполнения проекта

- 2.5. Юридические последствия проекта
 - 2.5.1. Юридические последствия проекта
 - 2.5.2. Политика защиты данных 2.5.2.1. GDPR. Общее положение о защите данных
 - 2.5.3. Ответственность компании-интегратора
- 2.6. Проектирование и создание сети блокчейн в облаке для предлагаемой архитектуры
 - 2.6.1. Блокчейн Hyperledger Fabric
 - 2.6.2. Основы Hyperledger Fabric
 - 2.6.3. Проектирование международной университетской сети Hyperledger Fabric
- 2.7. Предлагаемый подход к расширению архитектуры
 - 2.7.1. Создание предлагаемой архитектуры с использованием блокчейна
 - 2.7.2. Расширение предлагаемой архитектуры
 - 2.7.3. Конфигурация архитектуры высокой доступности
- 2.8. Администрирование предлагаемой облачной архитектуры
 - 2.8.1. Добавление нового участника в первоначально предложенную архитектуру
 - 2.8.2. Администрирование облачной архитектуры
 - 2.8.3. Управление логикой проекта смарт-контрактами
- 2.9. Администрирование и управление конкретными компонентами предлагаемой облачной архитектуры
 - 2.9.1. Управление сетевыми сертификатами
 - 2.9.2. Управление безопасностью различных компонентов: CouchDB
 - 2.9.3. Управление узлами сети блокчейн
- 2.10. Модификация начальной базовой установки при создании сети блокчейн
 - 2.10.1. Добавление узла в сеть блокчейн
 - 2.10.2. Добавление дополнительного хранилища данных
 - 2.10.3. Управление смарт-контрактами
 - 2.10.4. Добавление нового университета к существующей сети

Модуль 3. Облачное хранилище Azure

- 3.1. Установка MV в Azure
 - 3.1.1. Команды создания
 - 3.1.2. Команды визуализации
 - 3.1.3. Команды модификации
- 3.2. Blobs в Azure
 - 3.2.1. Типы Blob
 - 3.2.2. Контейнер
 - 3.2.3. Azcopy
 - 3.2.4. Обратимое подавление blobs
- 3.3. Управляемые диски и хранилища в Azure
 - 3.3.1. Управляемый диск
 - 3.3.2. Безопасность
 - 3.3.3. Холодное хранение
 - 3.3.4. Репликация
 - 3.3.4.1. Локальное резервирование
 - 3.3.4.2. Резервирование в области
 - 3.3.4.3. Георезервирование
- 3.4. Таблицы, очереди, файлы в Azure
 - 3.4.1. Таблицы
 - 3.4.2. Очереди
 - 3.4.3. Файлы
- 3.5. Шифрование и безопасность в Azure
 - 3.5.1. Шифрование службы хранилища (SSE)
 - 3.5.2. Коды доступа
 - 3.5.2.1. Общая подпись доступа
 - 3.5.2.2. Политики доступа на уровне контейнера
 - 3.5.2.3. Подпись доступа на уровне blob
 - 3.5.3. Аутентификация Azure AD
- 3.6. Виртуальная сеть в Azure
 - 3.6.1. Подсети и сопряжение
 - 3.6.2. Vnet to Vnet
 - 3.6.3. Частное соединение
 - 3.6.4. Высокая доступность

tech 30 | Структура и содержание

- 3.7. Типы соединений в Azure
 - 3.7.1. Шлюз приложений Azure
 - 3.7.2. Межсайтовый VPN
 - 3 7 3 Point-to-Site VPN
 - 3.7.4. ExpressRoute
- 3.8. Ресурсы в Azure
 - 3.8.1. Блокировка ресурсов
 - 3.8.2. Перемещение ресурсов
 - 3.8.3. Удаление ресурсов
- 3.9. Резервное копирование в Azure
 - 3.9.1. Службы восстановления
 - 3.9.2. Агент резервного копирования Azure
 - 3.9.3. Azure Backup Server
- 3.10. Разработка решений
 - 3.10.1. Сжатие, дедупликация, репликация
 - 3.10.2. Службы восстановления
 - 3.10.3. План аварийного восстановления

Модуль 4. Облачные среды. Безопасность

- 4.1. Облачные среды. Безопасность
 - 4.1.1. Облачные среды, безопасность
 - 4.1.1.1. Безопасность в облаке
 - 4.1.1.2. Позиция безопасности
- 4.2. Модель управления общей безопасностью в облаке
 - 4.2.1. Элементы безопасности, управляемые провайдером
 - 4.2.2. Элементы, управляемые клиентом
 - 4.2.3. Стратегия безопасности
- 4.3. Механизмы предотвращения облачных вычислений
 - 4.3.1. Системы управления аутентификацией
 - 4.3.2. Система управления авторизацией. Политики доступа
 - 4.3.3. Системы управления ключами

- 4.4. Безопасность данных в облачной инфраструктуре
 - 4.4.1. Защита систем хранения данных
 - 4.4.1.1. Block
 - 4.4.1.2. Объектное хранилище
 - 4.4.1.3. Файловые системы
 - 4.4.2. Защита систем баз данных
 - 4.4.3. Защита транзитных данных
- 4.5. Защита облачной инфраструктуры
 - 4.5.1. Проектирование и внедрение безопасных сетей
 - 4.5.2. Безопасность вычислительных ресурсов
 - 4.5.3. Инструменты и ресурсы для защиты инфраструктуры
- 4.6. Риски и уязвимости приложений
 - 4.6.1. Риски, связанные с разработкой приложений
 - 4.6.2. Критические риски безопасности
 - 4.6.3. Уязвимости при разработке программного обеспечения
- 4.7. Защита приложений от атак
 - 4.7.1. Проектирование при разработке приложений
 - 4.7.2. Обеспечение безопасности путем верификации и тестирования
 - 4.7.3. Практика безопасного программирования
- 4.8. Безопасность в DevOps средах
 - 4.8.1. Безопасность в виртуализированных и контейнерных средах
 - 4.8.2. Безопасность при разработке и эксплуатации (DevSecOps)
 - 4.8.3. Лучшие практики обеспечения безопасности в производственных средах с контейнерами
- 4.9. Безопасность в публичных облаках
 - 4.9.1. AWS
 - 4.9.2. Azure
 - 4.9.3. Oracle Cloud
- 4.10. Нормы безопасности, управление и соответствие требованиям
 - 4.10.1. Соблюдение норм безопасности
 - 4.10.2. Управление рисками
 - 4.10.3. Процессы в организациях

Модуль 5. Оркестрация контейнеров: Kubernetes и Docker

- 5.1. Основа для создания архитектур приложений
 - 5.1.1. Существующие модели приложений
 - 5.1.2. Платформы исполнения приложений
 - 5.1.3. Контейнерные технологии
- 5.2. Apхитектура Docker
 - 5.2.1. Архитектура Docker
 - 5.2.2. Установка архитектуры Docker
 - 5.2.3. Команды. Локальный проект
- 5.3. Архитектура Docker. Управление хранилищем
 - 5.3.1. Управление образами и реестрами
 - 5.3.2. Сети в Docker
 - 5.3.3. Управление хранилищем
- 5.4. Расширенная архитектура Docker
 - 5.4.1. Docker Compose
 - 5.4.2. Docker в организации
 - 5.4.3. Пример внедрения Docker
- 5.5. Архитектура Kubernetes
 - 5.5.1. Архитектура Kubernetes
 - 5.5.2. Элементы развертывания Kubernetes
 - 5.5.3. Дистрибутивы и управляемые решения
 - 5.5.4. Установка и окружение
- 5.6. Архитектуры Kubernetes: Разработка с использованием Kubernetes
 - 5.6.1. Инструменты для разработки К8s
 - 5.6.2. Императивный vs декларативный режим
 - 5.6.3. Развертывание и экспонирование приложений
- 5.7. Kubernetes в корпоративных средах
 - 5.7.1. Постоянство данных
 - 5.7.2. Высокая доступность, масштабирование и сетевое взаимодействие
 - 5.7.3. Безопасность в Kubernetes
 - 5.7.4. Управление и мониторинг Kubernetes

- 5.8. Дистрибутивы K8s
 - 5.8.1. Сравнение сред развертывания
 - 5.8.2. Развертывание на GKE, AKS, EKS или OKE
 - 5.8.3. Развертывание *On Premise*
- 5.9. Rancher и Openshift
 - 5.9.1. Rancher
 - 5.9.2. Openshift
 - 5.9.3. Оpenshift: конфигурирование и развертывание приложений
- 5.10. Архитектуры Kubernetes и Containers. Обновленные данные
 - 5.10.1. Открытая модель приложений
 - 5.10.2. Инструменты для управления развертыванием в средах Kubernetes
 - 5.10.3. Ссылки на другие проекты и направления

Модуль 6. Программирование облачных нативных приложений

- 6.1. Облачные нативные технологии
 - 6.1.1. Облачные нативные технологии
 - 6.1.2. Основа облачных вычислений
 - 6.1.3. Средства облачной нативной разработки
- б.2. Архитектура облачных нативных приложений
 - 6.2.1. Дизайн облачных нативных приложений
 - 6.2.2. Компоненты облачной нативной архитектуры
 - 6.2.3. Модернизация устаревших приложений
- 6.3. Контейнеризация
 - 6.3.1. Контейнерно-ориентированная разработка
 - 6.3.2. Разработка с использованием микросервисов
 - 6.3.3. Инструменты для коллективной работы
- 6.4. DevOps и непрерывная интеграция и развертывание
 - 6.4.1. Непрерывная интеграция и развертывание: CI/CD
 - 6.4.2. Экосистема инструментов для CI/CD
 - 6.4.3. Создание среды CI/CD
- 6.5. Наблюдаемость и анализ платформы
 - 6.5.1. Наблюдаемость облачных нативных приложений
 - 6.5.2. Средства мониторинга, протоколирования и трассировки
 - 6.5.3. Реализация среды наблюдения и анализа

tech 32 | Структура и содержание

- б.б. Управление данными в облачных нативных приложениях
 - 6.6.1. Базы данных в облачных нативных приложениях
 - 6.6.2. Паттерны в управлении данными
 - 6.6.3. Технологии реализации паттернов в управлении данными
- 6.7. Коммуникации в облачных нативных приложениях
 - 6.7.1. Синхронные и асинхронные коммуникации
 - 6.7.2. Технологии для паттернов синхронных коммуникаций
 - 6.7.3. Технологии для паттернов асинхронных коммуникаций
- 6.8. Устойчивость, безопасность и производительность в облачных нативных приложениях
 - 6.8.1. Устойчивость приложений
 - 6.8.2. Безопасная разработка в облачных нативных приложениях
 - 6.8.3. Производительность и масштабируемость приложений
- 6.9. Бессерверные
 - 6.9.1. Бессерверные в облачных нативных приложениях
 - 6.9.2. Бессерверные платформы
 - б.9.3. Варианты использования бессерверной разработки
- 6.10. Платформы развертывания
 - 6.10.1. Облачные нативные среды разработки
 - 6.10.2. Платформы оркестрации. Сравнение
 - 6.10.3. Автоматизация инфраструктуры

Модуль 7. Облачные вычисления. Управление данными

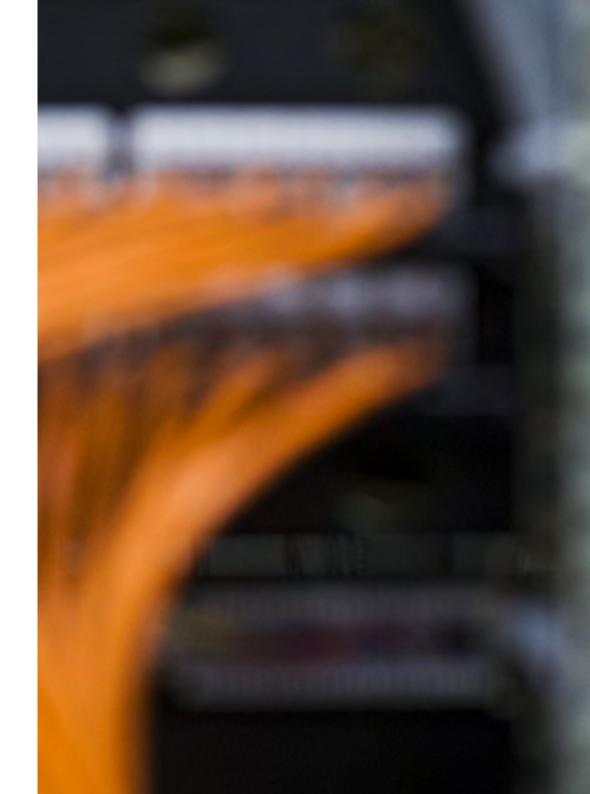
- 7.1. Управление данными
 - 7.1.1. Управление данными
 - 7.1.2. Этика при работе с данными
- 7.2. Управление данными
 - 7.2.1. Классификация. Контроль доступа
 - 7.2.2. Регламент обработки данных
 - 7.2.3. Управление данными. Значение
- 7.3. Управление данными. Инструменты
 - 7.3.1. Линия
 - 7.3.2. Метаданные
 - 7.3.3. Каталог данных. Бизнес-глоссарий

- 7.4. Пользователи и процессы в управлении данными
 - 7.4.1. Пользователи
 - 7.4.1.1. Роли и обязанности
 - 7.4.2. Процессы
 - 7.4.2.1. Обогащение данных
- 7.5. Жизненный цикл корпоративных данных
 - 7.5.1. Создание данных
 - 7.5.2. Обработка данных
 - 7.5.3. Хранилище данных
 - 7.5.4. Использование данных
 - 7.5.5. Уничтожение данных
- 7.6. Качество данных
 - 7.6.1. Качество данных в управлении данными
 - 7.6.2. Качество данных в аналитике
 - 7.6.3. Методы обеспечения качества данных
- 7.7. Управление данными в транзите
 - 7.7.1. Управление данными в транзите 7.7.1.1. Линия
 - Четвертое измерение
- 7.8. Защита данных
 - 7.8.1. Уровни доступа
 - 7.8.2. Классификация
 - 7.8.3. Комплаенс. Нормативные документы
- 7.9. Мониторинг и измерение эффективности управления данными
 - 7.9.1. Мониторинг и измерение эффективности управления данными
 - 7.9.2. Мониторинг линий
 - 7.9.3. Мониторинг качества данных
- 7.10. Средства управления данными
 - 7.10.1. Talend
 - 7.10.2. Collibra
 - 7.10.3. Информатика

Модуль 8. Облачные вычисления в реальном времени.

Потоковое вещание

- 8.1. Обработка и структурирование потоковой информации
 - 8.1.1. Процесс сбора, структурирования, обработки, анализа и интерпретации данных
 - 8.1.2. Методы обработки потоковых данных
 - 8.1.3. Потоковая обработка
 - 8.1.4. Варианты использования потоковой обработки
- 8.2. Статистика для понимания потока данных стриминга
 - 8.2.1. Описательная статистика
 - 8.2.2. Расчет вероятностей
 - 8 2 3 Заключение
- 8.3. Программирование на языке Python
 - 8.3.1. Типология, условия, функции и циклы
 - 8.3.2. Numpy, Matplotlib, DataFrames, файлы CSV и форматы JSON
 - 8.3.3. Последовательности: списки, циклы, файлы и словари
 - 8.3.4. Взаимозаменяемость, исключения и функции высшего порядка
- 8.4. Программирование на языке R
 - 8.4.1. Программирование на языке R
 - 8.4.2. Векторы и коэффициенты
 - 8.4.3. Матрицы и массивы
 - 8.4.4. Списки и рамки данных
 - 8.4.5. Функции
- 8.5. База данных SQL для потоковой обработки данных
 - 8.5.1. База данных SQL
 - 8.5.2. Модель сущность-связь
 - 8.5.3. Реляционная модель
 - 8.5.4. SOL
- 8.6. NoSQL-базы данных для потоковой обработки данных
 - 8.6.1. База данных NoSQL
 - 8.6.2. MongoDB
 - 8.6.3. Архитектура MongoDB
 - 8.6.4. Операции CRUD
 - 8.6.5. Поиск, проекции, агрегирование индексов и курсоры
 - 8.6.6. Модель данных


- 3.7. Добыча данных и прогнозное моделирование
 - 8.7.1. Многомерный анализ
 - 8.7.2. Методы снижения размерности
 - 8.7.3. Кластерный анализ
 - 8.7.4. Серии
- 8.8. Машинное обучение для обработки потоковых данных
 - 8.8.1. Машинное обучение и расширенное прогнозное моделирование
 - 8.8.2. Нейронные сети
 - 8.8.3. Глубокое обучение (Deep Learning)
 - 8.8.4. Бэггинг и случайный лес
 - 8.8.5. Градиентный бустинг
 - 8.8.6. SVM
 - 8.8.7. Методы сборки.
- 8.9. Технологии потоковой обработки данных
 - 8.9.1. Потоковая обработка в Spark
 - 8.9.2. Потоки Kafka
 - 8.9.3. *Потоковая* обработка Flink
- 8.10. Потоковая обработка Apache Spark
 - 8.10.1. Потоковая обработка Apache Spark
 - 8.10.2. Компоненты Spark
 - 8.10.3. Архитектура Spark
 - 8.10.4. RDD
 - 8.10.5. SPARK SOL
 - 8.10.6. Рабочие места, этапы и задачи

Модуль 9. Интеграция облаков с веб-сервисами. Технологии и протоколы

- 9.1. Веб-стандарты и протоколы
 - 9.1.1. Веб и Веб 2.0
 - 9.1.2. Архитектура клиент-сервер
 - 9.1.3. Коммуникационные протоколы и стандарты
- 9.2. Веб-сервисы
 - 9.2.1. Веб-сервисы
 - 9.2.2. Коммуникационные уровни и механизмы
 - 9.2.3. Архитектуры сервисов

tech 34 | Структура и содержание

- 9.3. Сервис-ориентированные архитектуры
 - 9.3.1. Сервис-ориентированная архитектура (SOA)
 - 9.3.2. Дизайн веб-сервисов
 - 9.3.3. SOAP и REST
- 9.4. SOAP. Сервис-ориентированная архитектура
 - 9.4.1. Структура и передача сообщений
 - 9.4.2. Язык описания веб-сервисов (WSDL)
 - 9.4.3. Реализация клиента и сервера SOAP
- 9.5. Архитектуры REST
 - 9.5.1. Архитектуры REST и RESTful веб-сервисы
 - 9.5.2. Глаголы НТТР: семантика и назначение
 - 9.5.3. Swagger
 - 9.5.4. Реализация клиента и сервера REST
- 9.6. Архитектуры на основе микросервисов
 - 9.6.1. Монолитная архитектура vs. использование микросервисов
 - 9.6.2. Архитектуры на основе микросервисов
 - 9.6.3. Коммуникационные потоки при использовании микросервисов
- 9.7. Вызов АРІ на стороне клиента
 - 9.7.1. Типологии веб-клиентов
 - 9.7.2. Средства разработки для обработки веб-сервисов
 - 9.7.3. Совместное использование ресурсов разных источников (CORS)
- 9.8. Безопасность вызовов АРІ
 - 9.8.1. Безопасность веб-сервисов
 - 9.8.2. Аутентификация и авторизация
 - 9.8.3. Методы аутентификации в зависимости от уровня безопасности
- 9.9. Интеграция приложений с облачными провайдерами
 - 9.9.1. Провайдеры облачных вычислений
 - 9.9.2. Платформенные сервисы
 - 9.9.3. Сервисы, ориентированные на реализацию/потребление веб-сервисов
- 9.10. Реализация ботов и ассистентов
 - 9.10.1. Использование ботов
 - 9.10.2. Использование веб-сервисов в ботах
 - 9.10.3. Реализация чат-ботов и веб-ассистентов

Структура и содержание | 35 тесл

Модуль 10. Облачные вычисления. Управление проектами и верификация продукции

- 10.1. Каскадные методики
 - 10.1.1. Классификация методик
 - 10.1.2. Каскадная модель. Водопад
 - 10.1.3. Сильные и слабые стороны
 - 10.1.4. Сравнение моделей. Каскадная модель vs. Agile
- 10.2. Agile-методология
 - 10.2.1. Agile-методология
 - 10.2.2. Agile-манифест
 - 10.2.3. Использование Agile
- 10.3. Методология Scrum
 - 10.3.1. Методология Scrum 10.3.1.1. Использование Scrum
 - 10.3.2. События Scrum
 - 10.3.3. Артефакты Scrum
 - 10.3.4. Руководство по Scrum
- 10.4. Agile Inception Desk
 - 10.4.1. Agile Inception Desk
 - 10.4.2. Этапы работы в Inception Desk
- 10.5. Техника составления карт влияний
 - 10.5.1. Карта влияний
 - 10.5.2. Использование карты влияний
 - 10.5.3. Структура составления карт влияний
- 10.6. Истории пользователей
 - 10.6.1. Истории пользователей
 - 10.6.2. Написание пользовательских историй
 - 10.6.3. Иерархия пользовательских историй
 - 10.6.4. User Story Mapping

tech 36 | Структура и содержание

10.7.	Ручное тестирование	
	10.7.1.	Ручное тестирование
	10.7.2.	Валидация и верификация. Различия
	10.7.3.	Ручное тестирование. Типология
	10.7.4.	UAT. Приемочное тестирование пользователя
	10.7.5.	UAT и альфа- и бета-тестирование
	10.7.6.	Качество программного обеспечения
10.8.	Автоматизированное тестирование	
	10.8.1.	Автоматизированное тестирование
	10.8.2.	Ручное тестирование vs. Автоматизированное
	10.8.3.	Влияние автоматизированного тестирования
	10.8.4.	Результат применения автоматизации
	10.8.5.	Колесо качества
10.9.	Функциональное и нефункциональное тестирование	
	10.9.1.	Функциональное и нефункциональное тестирование
	10.9.2.	Функциональное тестирование
		10.9.2.1. Модульные тесты
		10.9.2.2. Интеграционное тестирование
		10.9.2.3. Регрессионные тесты
		10.9.2.4. Дымовые тесты
		10.9.2.5. Обезьянье тестирование
		10.9.2.6. Санитарное тестирование
	10.9.3.	Нефункциональное тестирование
		10.9.3.1. Нагрузочное тестирование
		10.9.3.2. Тестирование производительности
		10.9.3.3. Тестирование на безопасность
		10.9.3.4. Тестирование конфигурации
		10.9.3.5. Нагрузочное тестирование

- 10.10. Методы и средства верификации
 - 10.10.1. Тепловая карта
 - 10.10.2. Ай-трекинг
 - 10.10.3. Карты прокрутки
 - 10.10.4. Карты движения
 - 10.10.5. Карты конфетти
 - 10.10.6. А/В-тестирование
 - 10.10.7. Сине-зеленый метод развертывания
 - 10.10.8. Метод Canary Release
 - 10.10.9. Выбор инструментов
 - 10.10.10. Аналитические инструменты

Модуль 11. Трансформация ИТ-инфраструктур. *Облачные* вычисления

- 11.1. Облачные вычисления. Внедрение облачных вычислений
 - 11.1.1. Вычисления
 - 11.1.2. Внедрение облачных вычислений
 - 11.1.3. Типы облачных вычислений
- 11.2. Внедрение облачных вычислений. Факторы внедрения
 - 11.2.1. Факторы внедрения облачной инфраструктуры
 - 11.2.2. Использование и услуги
 - 11.2.3. Развитие
- 11.3. Инфраструктуры облачных вычислений
 - 11.3.1. Инфраструктуры облачных вычислений
 - 11.3.2. Типы инфраструктур (laaS, PaaS, SaaS)
 - 11.3.3. Модель реализации (частная, публичная, гибридная)
 - 11.3.4. Элементы (оборудование, хранилище, сеть)
- 11.4. Инфраструктуры облачных вычислений: Как это работает
 - 11.4.1. Виртуализация
 - 11.4.2. Автоматизация
 - 11.4.3. Управление

- 11.5. Экосистема облачных вычислений
 - 11.5.1. Наблюдаемость и анализ
 - 11.5.2. Обеспечение
 - 11.5.3. Оркестрация и управление
 - 11.5.4. Облачные платформы
- 11.6. Управление сервисами в облачных инфраструктурах
 - 11.6.1. Ориентация услуг
 - 11.6.2. Стандарт и экосистема
 - 11.6.3. Виды услуг
- 11.7. Автоматизация управления облачной инфраструктурой
 - 11.7.1. Экосистема
 - 11.7.2. Культура DevOps
 - 11.7.3. Инфраструктура как код (Terraform, Ansible, Github, Jenkins)
- 11.8. Безопасность в облачных инфраструктурах
 - 11.8.1. Экосистема
 - 11.8.2. Культура DevSecOps
 - 11.8.3. Инструменты
- 11.9. Подготовка среды управления облачной инфраструктурой
 - 11.9.1. Инструменты
 - 11.9.2. Подготовка среды
 - 11.9.3. Первые шаги
- 11.10. Облачные инфраструктуры. Будущее и эволюция
 - 11.10.1. Облачные инфраструктуры. Задачи
 - 11.10.2. Эволюция облачных инфраструктур
 - 11.10.3. Проблемы безопасности и соответствия нормативным требованиям

Модуль 12. Инфраструктура как услуга (laaS)

- 12.1. Уровни абстракции облачных вычислений и управление ими
 - 12.1.1. Абстракция. Основные понятия
 - 12.1.2. Модели обслуживания
 - 12.1.3. Управление облачными услугами. Преимущества
- 12.2. Построение архитектуры. Основные решения
 - 12.2.1. HDDC и SDDC. Гиперконкуренция
 - 12.2.2. Рынок
 - 12.2.3. Модель работы и профессиональные профили. Изменения 12.2.3.1. Фигура облачного брокера
- 12.3. Цифровая трансформация и облачные инфраструктуры
 - 12.3.1. Демонстрация работы в облаке
 - 12.3.2. Роль браузера как инструмента
 - 12.3.3. Новая концепция устройств
 - 12.3.4. Расширенные архитектуры и роль генерального директора
- 12.4. Agile-управление в *облачных* инфраструктурах
 - 12.4.1. Жизненный цикл новых услуг и конкурентоспособность
 - 12.4.2. Методологии разработки приложений и микросервисов
 - 12.4.3. Взаимосвязь между разработкой и ИТ-операциями 12.4.3.1. Использование *облачных* технологий в качестве поддержки
- 12.5. Ресурсы облачных вычислений І. Управление идентификацией, хранением и доменами
 - 12.5.1. Управление идентификацией и доступом
 - 12.5.2. Безопасное хранение данных, гибкое хранение файлов и баз данных
 - 12.5.3. Управление доменами
- 12.6. Ресурсы облачных вычислений II. Сетевые ресурсы, инфраструктура и мониторинг
 - 12.6.1. Виртуальная частная сеть
 - 12.6.2. Емкость облачных вычислений
 - 12.6.3. Наблюдение
- 12.7. Ресурсы облачных вычислений III. Автоматизация
 - 12.7.1. Бессерверное выполнение кода
 - 12.7.2. Очередь сообщений
 - 12.7.3. Сервисы рабочих процессов

tech 38 | Структура и содержание

- 12.8. Ресурсы облачных вычислений IV. Прочие сервисы
 - 12.8.1. Служба уведомлений
 - 12.8.2. Сервисы потокового вещания и технологии транскодирования
 - 12.8.3. Готовое решение для публикации АРІ для внешних и внутренних потребителей
- 12.9. Ресурсы облачных вычислений V. Услуги, ориентированные на работу с данными
 - 12.9.1. Платформы для анализа данных и автоматизации ручных ИТ-задач
 - 12.9.2. Миграция данных
 - 12.9.3. Гибридное облако
- 12.10. Практическая лаборатория по услугам laaS
 - 12.10.1. Упражнение 1
 - 12.10.2. Упражнение 2
 - 12.10.3. Упражнение 3

Модуль 13. Хранение и базы данных в облачных инфраструктурах

- 13.1. Инфраструктура облачного хранения данных
 - 13.1.1. Облачное хранилище. Основы
 - 13.1.2. Преимущества облачного хранилища
 - 13.1.3. Как это работает
- 13.2. Типологии облачных хранилищ
 - 13.2.1. SaaS
 - 13.2.2. laaS
- 13.3. Варианты использования облачных хранилищ
 - 13.3.1. Анализ данных
 - 13.3.2. Резервное копирование и архивирование
 - 13.3.3. Разработка программного обеспечения
- 13.4. Безопасность облачных хранилищ
 - 13.4.1. Безопасность транспортного уровня
 - 13.4.2. Безопасность хранилища
 - 13.4.3. Шифрование хранилища
- 13.5. Анализ облачных хранилищ
 - 13.5.1. Прибыльность
 - 13.5.2. Маневренность и масштабируемость
 - 13.5.3. Администрация

- 13.6. Инфраструктура облачных баз данных
 - 13.6.1. Основы баз данных
 - 13.6.2. Анализ баз данных
 - 13.6.3. Классификация облачных баз данных
- 13.7. Типы инфраструктур облачных баз данных
 - 13.7.1. Реляционные базы данных
 - 13.7.2. Базы данных No SQL
 - 13.7.3. Базы данных информационных центров
- 13.8. Примеры использования облачной инфраструктуры баз данных
 - 13.8.1. Хранилище данных
 - 13.8.2. Анализ данных. IA .ML
 - 13.8.3. Большие данные
- 13.9. Безопасность инфраструктуры облачных баз данных
 - 13.9.1. Контроль доступа. ACL, IAM, SG
 - 13.9.2. Шифрование данных
 - 13.9.3. Аудиты
- 13.10. Миграция и резервное копирование инфраструктур облачных баз данных
 - 13.10.1. Резервное копирование баз данных
 - 13.10.2. Миграция баз данных
 - 13.10.3. Оптимизация баз данных

Модуль 14. *Network* DevOps и сетевые архитектуры в облачных инфраструктурах

- 14.1. Network DevOps (NetOps)
 - 14.1.1. Network DevOps (NetOps)
 - 14.1.2. Методология *NetOps*
 - 14.1.3. Преимущества NetOps
- 14.2. Основы Network DevOps
 - 14.2.1. Основы Networking
 - 14.2.2. Модель OSI TCP/IP, CIDR и подсети
 - 14.2.3. Основные протоколы
 - 14.2.4. Ответы НТТР

14.3. Инструменты и программное обеспечение для Network DevOps

- 14.3.1. Инструменты сетевого уровня
- 14.3.2. Инструменты прикладного уровня
- 14.3.3. DNS-средства
- 14.4. Networking в облачных средах: Внутренние сетевые службы
 - 14.4.1. Виртуальные сети
 - 14.4.2. Подсети
 - 14.4.3. Таблицы маршрутизации
 - 14.4.4. Зоны доступности
- 14.5. Networking в облачных средах: Пограничные сетевые сервисы
 - 14.5.1. Интернет-шлюз
 - 14.5.2. Шлюз NAT
 - 14.5.3. Балансировка нагрузки
- 14.6. Networking в облачных средах: DNS
 - 14.6.1. Основы DNS
 - 14.6.2. Облачные DNS-службы
 - 14.6.3. HA/LB yepes DNS
- 14.7. Подключение гибридных / многопользовательских сетей
 - 14.7.1. VPN Site to Site
 - 14.7.2. VPC Peering
 - 14.7.3. Транзитный шлюз / VPC Peering
- 14.8. Услуги сети доставки контента
 - 14.8.1. Услуги доставки контента
 - 14.8.2. AWS CLoudFront
 - 14.8.3. Другие *CDN*
- 14.9. Безопасность облачных сетей
 - 14.9.1. Принципы сетевой безопасности
 - 14.9.2. Защита третьего и четвертого уровней
 - 14.9.3. Защита седьмого уровня
- 14.10. Мониторинг и аудит сети
 - 14.10.1. Мониторинг и аудит
 - 14.10.2. Flow Logs
 - 14.10.3. Службы мониторинга: CloudWatch

Модуль 15. Управление в облачных инфраструктурах

- 15.1. Соответствие требованиям в облачных средах
 - 15.1.1. Модель совместной ответственности
 - 15.1.2. Законы, нормативные акты и контракты
 - 15.1.3. Аудиты
- 15.2. CISO в управлении облачными вычислениями
 - 15.2.1. Организационная структура. Место CISO в организации
 - 15.2.2. Взаимоотношения CISO с областями обработки данных
 - 15.2.3. Стратегия GRC в отношении теневых ИТ
- 15.3. Стандарт облачного управления
 - 15.3.1. Предварительные оценки
 - 15.3.2. Соответствие провайдера облачных услуг требованиям
 - 15.3.3. Обязанности персонала
- 15.4. Конфиденциальность в облачных средах
 - 15.4.1. Взаимоотношения между потребителями и пользователями и конфиденциальность
 - 15.4.2. Конфиденциальность в Северной и Южной Америке, Азиатско-Тихоокеанском регионе, на Ближнем Востоке и в Африке
 - 15.4.3. Конфиденциальность в европейском контексте
- 15.5. Согласования и нормативная база в облачных средах
 - 15.5.1. Американские разрешения и рамки
 - 15.5.2. Азиатские разрешения и рамки
 - 15.5.3. Европейские разрешения и рамки
- 15.6. Сертификация и аккредитация в облачных средах
 - 15.6.1. Америка и Азиатско-Тихоокеанский регион
 - 15.6.2. Европа, Ближний Восток и Африка
 - 15.6.3. Глобально
- 15.7. Законы/нормативные акты в облачных средах
 - 15.7.1. CLOUD Act, HIPAA, IRS 1075
 - 15.7.2. ITAR, Правило 17a-4(f) SEC, VPAT/Section 508
 - 15.7.3. Европейское законодательство
- 15.8. Контроль затрат и счет-фактуры в облачном управлении
 - 15.8.1. Модель платное использование Затраты
 - 15.8.2. Фигура финансового директора и профили *FinOps*
 - 15.8.3. Контроль затрат

tech 40 | Структура и содержание

- 15.9. Инструменты облачного управления
 - 15.9.1. OvalEdge
 - 15.9.2. ManageEngine ADAudit Plus
 - 15.9.3. Erwin Data Governance
- 15.10. Корпоративное управление
 - 15.10.1. Кодекс поведения
 - 15.10.2. Канал информирования о нарушениях
 - 15.10.3. Должная осмотрительность

Модуль 16. Кибербезопасность в облачных инфраструктурах

- 16.1. Риски в облачных средах
 - 16.1.1. Стратегии кибербезопасности
 - 16.1.2. Риск-ориентированный подход
 - 16.1.3. Категоризация рисков в облачных средах
- 16.2. Рамки безопасности в облачных средах
 - 16.2.1. Рамки и стандарты кибербезопасности
 - 16.2.2. Технические рамки кибербезопасности
 - 16.2.3. Организационные рамки кибербезопасности
- 16.3. Моделирование угроз в облачных средах
 - 16.3.1. Процесс моделирования угроз
 - 16.3.2. Этапы моделирования угроз
 - 16.3.3. STRIDE
- 16.4. Средства обеспечения кибербезопасности на уровне кода
 - 16.4.1. Классификация инструментов
 - 16.4.2. Интеграции
 - 16.4.3. Примеры использования
- 16.5. Интеграция средств контроля кибербезопасности в облачных средах
 - 16.5.1. Безопасность процессов
 - 16.5.2. Средства контроля безопасности на различных этапах
 - 16.5.3. Примеры интеграций
- 16.6. Инструмент ZAP Proxy Tool
 - 16.6.1. ZAP Proxy
 - 16.6.2. Возможности ZAP Proxy
 - 16.6.3. Автоматизация ZAP Proxy

- 16.7. Автоматизированное сканирование уязвимостей в облачных средах
 - 16.7.1. Постоянное и автоматизированное сканирование уязвимостей
 - 16.7.2. OpenVAS
 - 16.7.3. Сканирование уязвимостей в облачных средах
- 16.8. Файерволы в облачных средах
 - 16.8.1. Типы файерволов
 - 16.8.2. Важность файерволов
 - 16.8.3. Файерволы OnPremise и облачные файерволы
- 16.9. Безопасность транспортного уровня в облачных средах
 - 16.9.1. SSL/TLS и сертификаты
 - 16.9.2. Аудиты SSL
 - 16.9.3. Автоматизация сертификатов
- 16.10. SIEM в облачных средах
 - 16.10.1. SIEM как ядро безопасности
 - 16.10.2. Киберразведка
 - 16.10.3. Примеры SIEM-систем

Модуль 17. Внедрение сервисов в облачных инфраструктурах

- 17.1. Настройка облачного сервера
 - 17.1.1. Конфигурация оборудования
 - 17.1.2. Конфигурация программного обеспечения
 - 17.1.3. Конфигурация сети и системы безопасности
- 17.2. Настройка облачного сервиса
 - 17.2.1. Назначение разрешений для моего облачного сервера
 - 17.2.2. Настройка правил безопасности
 - 17.2.3. Развертывание облачного сервиса
- 17.3. Администрирование облачного сервера
 - 17.3.1. Управление единицами хранения данных
 - 17.3.2. Управление сетью
 - 17.3.3. Управление резервным копированием
- 17.4. Постоянство
 - 17.4.1. Разделение нашего облачного сервиса
 - 17.4.2. Настройка службы постоянства
 - 17.4.3. Интеграция BB.DD с нашим облачным сервисом

Структура и содержание | 41 tech

- 17.5. Автоматическая эскалация
 - 17.5.1. Генерация образа нашего сервера
 - 17.5.2. Создание группы автоматической эскалации
 - 17.5.3. Определение правил автоматической эскалации
- 17.6. Службы балансировки
 - 17.6.1. Службы балансировки
 - 17.6.2. Генерация балансировщика нагрузки
 - 17.6.3. Подключение балансировщика нагрузки к нашему облачному сервису
- 17.7. Служба доставки контента
 - 17.7.1. Служба доставки контента
 - 17.7.2. Конфигурация службы доставки контента
 - 17.7.3. Интеграция CDN с нашим облачным сервисом
- 17.8. Параметры конфигурации и тайны
 - 17.8.1. Сервисы управления параметрами конфигурации
 - 17.8.2. Службы управления тайнами
 - 17.8.3. Интеграция сервисов управления конфигурацией и тайнами с нашим облачным сервисом
- 17.9. Службы управления очередями
 - 17.9.1. Разделение нашего приложения
 - 17.9.2. Настройка управления очередью
 - 17.9.3. Интеграция очереди с нашим облачным сервисом
- 17.10. Службы уведомлений
 - 17.10.1. Сервисы уведомлений в облаке
 - 17.10.2. Настройка службы уведомлений
 - 17.10.3. Добавление уведомлений в наш облачный сервис

Модуль 18. Virtual Desktop Infrastructure (VDI)

- 18.1. Virtual Desktop Infrastructure (VDI)
 - 18.1.1. VDI. Как это работает
 - 18.1.2. Преимущества и недостатки VDI
 - 18.1.3. Общие сценарии использования VDI
- 18.2. Гибридные и облачные архитектуры VDI
 - 18.2.1. Гибридные архитектуры VDI
 - 18.2.2. Реализация облачных VDI
 - 18.2.3. Управление VDI в облаке

- 18.3. Проектирование и планирование внедрения VDI
 - 18.3.1. Выбор аппаратного и программного обеспечения
 - 18.3.2. Проектирование сетевой инфраструктуры и инфраструктуры хранения данных
 - 18.3.3. Планирование развертывания и масштабирования
- 18.4. Управление VDI
 - 18.4.1. Установка и настройка VDI
 - 18.4.2. Управление изображениями рабочих столов и приложениями
 - 18.4.3. Управление безопасностью и соответствием нормативным требованиям
 - 18.4.4. Управление доступностью и производительностью
- 18.5. Интеграция приложений и периферийных устройств в VDI
 - 18.5.1. Интеграция корпоративных приложений
 - 18.5.2. Интеграция периферийных устройств
 - 18.5.3. Интеграция VDI с решениями для видеоконференций и обмена мгновенными сообщениями
 - 18.5.4. Интеграция VDI с платформами для совместной работы в Интернете
- 18.6. Оптимизация и совершенствование VDI
 - 18.6.1. Оптимизация качества обслуживания и производительности
 - 18.6.2. Повышение эффективности и эскалации
 - 18.6.3. Улучшение качества работы конечных пользователей
- 18.7. Управление жизненным циклом VDI
 - 18.7.1. Управление жизненным циклом аппаратного и программного обеспечения
 - 18.7.2. Управление миграцией и заменой инфраструктуры
 - 18.7.3. Управление поддержкой и обслуживанием
- 18.8. Безопасность VDI: Защита инфраструктуры и пользовательских данных
 - 18.8.1. Безопасность сети VDI
 - 18.8.2. Защита данных, хранящихся в VDI
 - 18.8.3. Безопасность пользователей. Защита конфиденциальности
- 18.9. Расширенные сценарии использования VDI
 - 18.9.1. Использование VDI для обеспечения безопасного удаленного доступа
 - 18.9.2. Использование VDI для виртуализации специализированных приложений
 - 18.9.3. Использование VDI для управления мобильными устройствами
- 18.10. Тенденции и будущее VDI
 - 18.10.1. Новые технологии и тенденции в области VDI
 - 18.10.2. Прогнозы на будущее VDI
 - 18.10.3. Будущие задачи и возможности для VDI

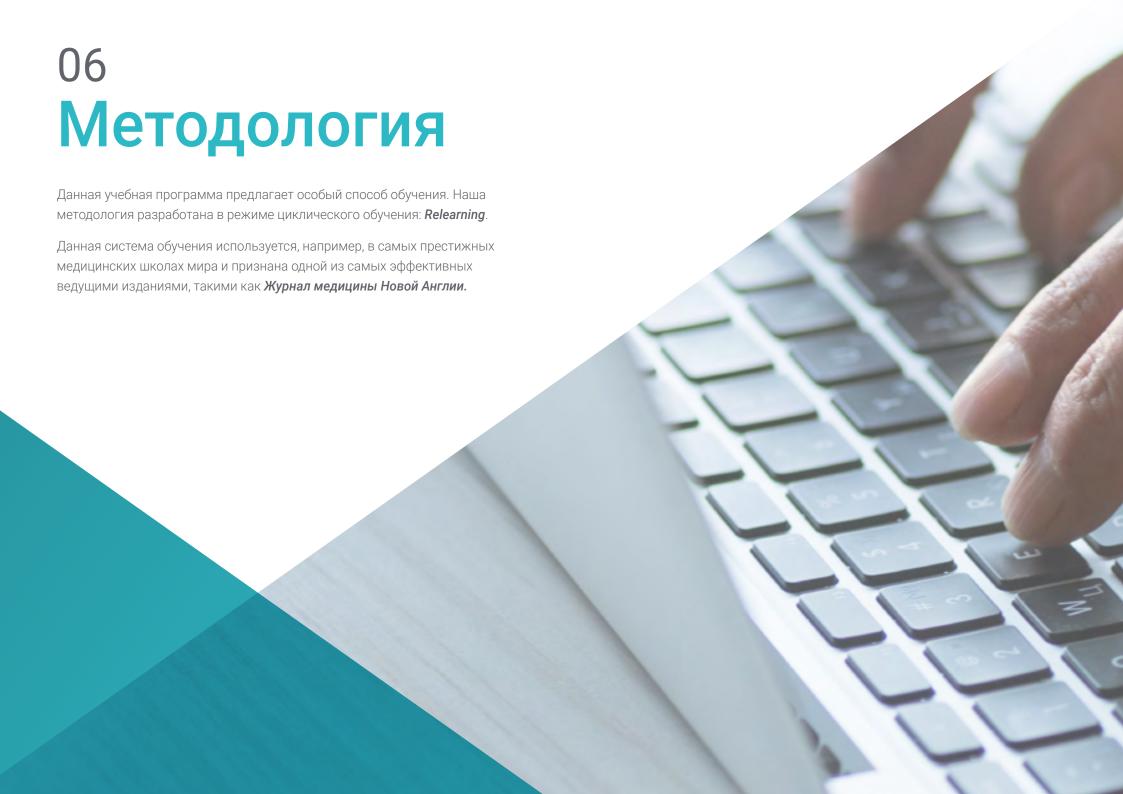
tech 42 | Структура и содержание

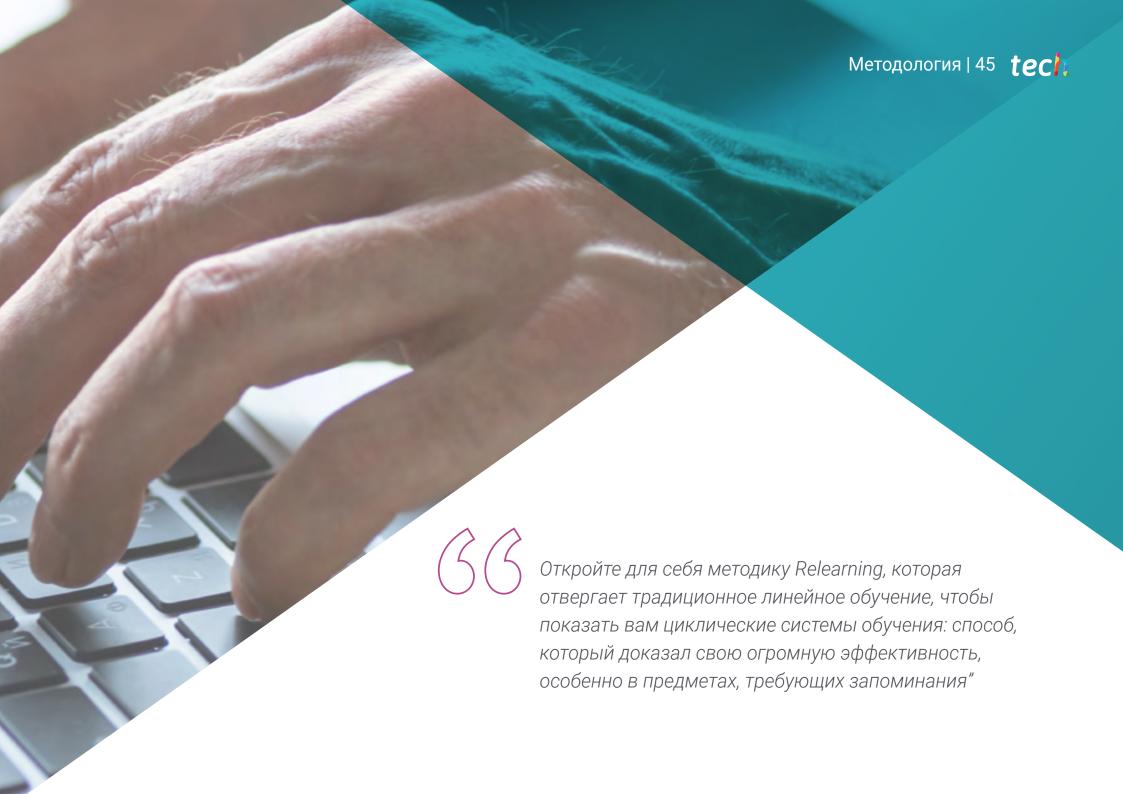
Модуль 19. Функционирование инфраструктуры как кода (IAC)

- 19.1. Инфраструктура как код, IAC
 - 19.1.1. ІаС, Инфраструктура как код
 - 19.1.2. Управление инфраструктурой. Развитие
 - 19.1.3. Преимущества IaC
- 19.2. Стратегии определения ІАС
 - 19.2.1. Анализ требований
 - 19.2.2. Определение императивов
 - 19.2.3. Декларативное определение
- 19.3. ІАС-средства
 - 19.3.1. Цели ІАС
 - 19.3.2. Собственные инструменты
 - 19.3.3. Сторонние инструменты
- 19.4. Эволюция инфраструктуры как кода
 - 19.4.1. IaC на Kubernetes
 - 19.4.2. Платформа как код
 - 19.4.3. Комплаенс как код
- 19.5. IAC в Devops
 - 19.5.1. Гибкие инфраструктуры
 - 19.5.2. Непрерывная интеграция
 - 19.5.3. Пайплайн как код
- 19.6. IAC VPC собственные инструменты
 - 19.6.1. Проектирование VPC
 - 19.6.2. Развертывание решения
 - 19.6.3. Валидация и анализ
- 19.7. ІАС Бессерверные собственные инструменты
 - 19.7.1. Проектирование бессерверного решения
 - 19.7.2. Развертывание решения
 - 19.7.3. Валидация и анализ
- 19.8. IAC VPC инструменты сторонних производителей
 - 19.8.1. Проектирование VPC
 - 19.8.2. Развертывание решения
 - 19.8.3. Валидация и анализ

- 19.9. ІАС Бессерверные инструменты сторонних производителей
 - 19.9.1. Проектирование бессерверного решения
 - 19.9.2. Развертывание решения
 - 19.9.3. Валидация и анализ
- 19.10. ІАС бенчмаркинг. Будущие тенденции
 - 19.10.1. Оценка собственных решений
 - 19.10.2. Оценка решений сторонних производителей
 - 19.10.3. Будущие направления

Модуль 20. Мониторинг и резервное копирование в облачных инфраструктурах


- 20.1. Мониторинг и резервное копирование в облачных инфраструктурах
 - 20.1.1. Преимущества облачного резервного копирования
 - 20.1.2. Типы резервного копирования
 - 20.1.3. Преимущества облачного мониторинга
 - 20.1.4. Виды мониторинга
- 20.2. Доступность и безопасность систем в облачных инфраструктурах
 - 20.2.1. Основные факторы
 - 20.2.2. Наиболее востребованные виды использования и сервисы
 - 20.2.3. Развитие
- 20.3. Типы сервисов резервного копирования в облачных инфраструктурах
 - 20.3.1. Полное резервное копирование
 - 20.3.2. Инкрементное резервное копирование
 - 20.3.3. Дифференциальное резервное копирование
 - 20.3.4. Другие типы резервного копирования
- 20.4. Стратегия, планирование и управление резервным копированием в *облачных* инфраструктурах
 - 20.4.1. Определение целей и масштаба
 - 20.4.2. Типы резервного копирования
 - 20.4.3. Передовая практика
- 20.5. План обеспечения непрерывности облачной инфраструктуры
 - 20.5.1. Стратегия плана обеспечения непрерывности
 - 20.5.2. Типы планов
 - 20.5.3. Создание плана обеспечения непрерывности


Структура и содержание | 43 тесл

- 20.6. Виды мониторинга облачной инфраструктуры
 - 20.6.1. Мониторинг производительности
 - 20.6.2. Мониторинг доступности
 - 20.6.3. Мониторинг событий
 - 20.6.4. Мониторинг журналов
 - 20.6.5. Мониторинг сетевого трафика
- 20.7. Стратегия, средства и методы мониторинга облачной инфраструктуры
 - 20.7.1. Как определить цели и область применения
 - 20.7.2. Виды мониторинга
 - 20.7.3. Передовая практика
- 20.8. Непрерывное совершенствование облачных инфраструктур
 - 20.8.1. Непрерывное совершенствование в облаке
 - 20.8.2. Ключевые показатели эффективности (КРІ) в облаке
 - 20.8.3. Разработка плана непрерывного совершенствования в облаке
- 20.9. Кейс-стади облачной инфраструктуры
 - 20.9.1. Пример резервного копирования
 - 20.9.2. Пример мониторинга
 - 20.9.3. Усвоенные знания и лучшие практики
- 20.10. Кейс-стади облачных инфраструктур
 - 20.10.1. Лаборатория 1
 - 20.10.2. Лаборатория 2
 - 20.10.3. Лаборатория 3

Программа, предлагающая практический подход на основе многочисленных примеров в области облачных инфраструктур"

tech 46 | Методология

Исследование кейсов для контекстуализации всего содержания

Наша программа предлагает революционный метод развития навыков и знаний. Наша цель - укрепить компетенции в условиях меняющейся среды, конкуренции и высоких требований.

С ТЕСН вы сможете познакомиться со способом обучения, который опровергает основы традиционных методов образования в университетах по всему миру"

Вы получите доступ к системе обучения, основанной на повторении, с естественным и прогрессивным обучением по всему учебному плану.

В ходе совместной деятельности и рассмотрения реальных кейсов студент научится разрешать сложные ситуации в реальной бизнес-среде.

Инновационный и отличный от других метод обучения

Эта программа TECH - интенсивная программа обучения, созданная с нуля, которая предлагает самые сложные задачи и решения в этой области на международном уровне. Благодаря этой методологии ускоряется личностный и профессиональный рост, делая решающий шаг на пути к успеху. Метод кейсов, составляющий основу данного содержания, обеспечивает следование самым современным экономическим, социальным и профессиональным реалиям.

Наша программа готовит вас к решению новых задач в условиях неопределенности и достижению успеха в карьере"

Кейс-метод является наиболее широко используемой системой обучения лучшими преподавателями в мире. Разработанный в 1912 году для того, чтобы студенты-юристы могли изучать право не только на основе теоретического содержания, метод кейсов заключается в том, что им представляются реальные сложные ситуации для принятия обоснованных решений и ценностных суждений о том, как их разрешить. В 1924 году он был установлен в качестве стандартного метода обучения в Гарвардском университете.

Что должен делать профессионал в определенной ситуации? Именно с этим вопросом мы сталкиваемся при использовании кейс-метода - метода обучения, ориентированного на действие. На протяжении всей курса студенты будут сталкиваться с многочисленными реальными случаями из жизни. Им придется интегрировать все свои знания, исследовать, аргументировать и защищать свои идеи и решения.

Методология Relearning

ТЕСН эффективно объединяет метод кейсов с системой 100% онлайн-обучения, основанной на повторении, которая сочетает различные дидактические элементы в каждом уроке.


Мы улучшаем метод кейсов с помощью лучшего метода 100% онлайн-обучения: *Relearning*.

В 2019 году мы достигли лучших результатов обучения среди всех онлайн-университетов в мире.

В ТЕСН вы будете учиться по передовой методике, разработанной для подготовки руководителей будущего. Этот метод, играющий ведущую роль в мировой педагогике, называется *Relearning*.

Наш университет - единственный вуз, имеющий лицензию на использование этого успешного метода. В 2019 году нам удалось повысить общий уровень удовлетворенности наших студентов (качество преподавания, качество материалов, структура курса, цели...) по отношению к показателям лучшего онлайн-университета.

Методология | 49

В нашей программе обучение не является линейным процессом, а происходит по спирали (мы учимся, разучиваемся, забываем и заново учимся). Поэтому мы дополняем каждый из этих элементов по концентрическому принципу. Благодаря этой методике более 650 000 выпускников университетов добились беспрецедентного успеха в таких разных областях, как биохимия, генетика, хирургия, международное право, управленческие навыки, спортивная наука, философия, право, инженерное дело, журналистика, история, финансовые рынки и инструменты. Наша методология преподавания разработана в среде с высокими требованиями к уровню подготовки, с университетским контингентом студентов с высоким социально-экономическим уровнем и средним возрастом 43,5 года.

Методика Relearning позволит вам учиться с меньшими усилиями и большей эффективностью, все больше вовлекая вас в процесс обучения, развивая критическое мышление, отстаивая аргументы и противопоставляя мнения, что непосредственно приведет к успеху.

Согласно последним научным данным в области нейронауки, мы не только знаем, как организовать информацию, идеи, образы и воспоминания, но и знаем, что место и контекст, в котором мы что-то узнали, имеют фундаментальное значение для нашей способности запомнить это и сохранить в гиппокампе, чтобы удержать в долгосрочной памяти.

Таким образом, в рамках так называемого нейрокогнитивного контекстнозависимого электронного обучения, различные элементы нашей программы связаны с контекстом, в котором участник развивает свою профессиональную практику. В рамках этой программы вы получаете доступ к лучшим учебным материалам, подготовленным специально для вас:

Учебный материал

Все дидактические материалы создаются преподавателями специально для студентов этого курса, чтобы они были действительно четко сформулированными и полезными.

Затем вся информация переводится в аудиовизуальный формат, создавая дистанционный рабочий метод ТЕСН. Все это осуществляется с применением новейших технологий, обеспечивающих высокое качество каждого из представленных материалов.

Мастер-классы

Существуют научные данные о пользе экспертного наблюдения третьей стороны.

Так называемый метод обучения у эксперта укрепляет знания и память, а также формирует уверенность в наших будущих сложных решениях.

Практика навыков и компетенций

Студенты будут осуществлять деятельность по развитию конкретных компетенций и навыков в каждой предметной области. Практика и динамика приобретения и развития навыков и способностей, необходимых специалисту в рамках глобализации, в которой мы живем.

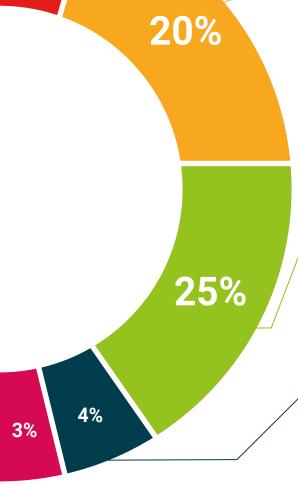
Дополнительная литература

Новейшие статьи, консенсусные документы и международные руководства включены в список литературы курса. В виртуальной библиотеке ТЕСН студент будет иметь доступ ко всем материалам, необходимым для завершения обучения.

Метод дополнится подборкой лучших кейсов, выбранных специально для этой квалификации. Кейсы представляются, анализируются и преподаются лучшими специалистами на международной арене.

Интерактивные конспекты

Мы представляем содержание в привлекательной и динамичной мультимедийной форме, которая включает аудио, видео, изображения, диаграммы и концептуальные карты для закрепления знаний.


Эта уникальная обучающая система для представления мультимедийного содержания была отмечена компанией Microsoft как "Европейская история успеха".

Тестирование и повторное тестирование

На протяжении всей программы мы периодически оцениваем и переоцениваем ваши знания с помощью оценочных и самооценочных упражнений: так вы сможете убедиться, что достигаете поставленных целей.

tech 54 | Квалификация

Данная **Профессиональная магистерская специализация в области Облачные вычисления** содержит самую полную и современную программу на рынке.

После прохождения аттестации студент получит по почте* с подтверждением получения соответствующий диплом Специализированной магистратуры, выданный ТЕСН Технологическим университетом.

Диплом, выданный **TECH Технологическим университетом**, подтверждает квалификацию, полученную в Специализированной магистратуре, и соответствует требованиям, обычно предъявляемым биржами труда, конкурсными экзаменами и комитетами по оценке карьеры.

Диплом: **Профессиональная магистерская специализация в области Облачные вычисления**

Количество учебных часов: 3000 часов

^{*}Гаагский апостиль. В случае, если студент потребует, чтобы на его диплом в бумажном формате был проставлен Гаагский апостиль, ТЕСН EDUCATION предпримет необходимые шаги для его получения за дополнительную плату.

tech технологический университет

специализация Облачные вычисления

- Формат: онлайн
- » Продолжительность: 12 месяцев
- Учебное заведение: ТЕСН Технологический университет
- Режим обучения: 16ч./неделя
- » Расписание: по своему усмотрению
- » Экзамены: онлайн

