

Postgraduate Diploma Design and Analysis in Educational Research

» Modality: online

» Duration: 6 months

» Certificate: TECH Technological University

» Dedication: 16h/week

» Schedule: at your own pace


» Exams: online

Website: www.techtitute.com/in/education/postgraduate-diploma/postgraduate-diploma-design-analysis-educational-research

Index

UT	02			
Introduction	Objectives			
,	D. 4	p. 8		
03	04		05	
Structure and Content	Methodology		Certificate	
p.	. 12	p. 18		p. 26

tech 06 | Introduction

This Postgraduate Diploma contains the knowledge required to train professionals in educational research. It delves into the reflection and methodological practices, emphasizing the latest developments in Educational Research.

This high-level program provides students with the knowledge and tools required for the analysis of education and its links between research and training.

Throughout this program, the students will cover all the current approaches in Design and Analysis in Educational Research in the different challenges that their profession as teachers poses.

Computer resources for research and tools for data collection will be the topics of work and study that the students will be able to integrate into their education. A high-level step that will become a process of improvement, not only on a professional level, but also on a personal level.

This challenge is one that TECH Technological University takes on as a social commitment: to help prepare highly qualified professionals and develop their personal, social and professional skills throughout the course of their studies.

Not only does it lead students through the theoretical knowledge offered, but it also shows another way of studying and learning, one which is more organic, simpler and more efficient. TECH works to keep you motivated and to help you develop a passion for learning. And it will push you to think and develop critical thinking.

High-level training, supported by advanced technological development and the teaching experience of the best professionals. These are some of its differential qualities:

This Postgraduate Diploma in Design and Analysis in Educational Research contains the most complete and up-to-date educational program on the market. The most important features of the program include:

- » The latest technology in online teaching software
- » A highly visual teaching system, supported by graphic and schematic contents that are easy to assimilate and understand
- » Practical cases presented by practising experts
- » State-of-the-art interactive video systems
- » Teaching supported by telepractice
- » Continuous updating and recycling systems
- » Autonomous learning: full compatibility with other occupations
- » Practical exercises for self-evaluation and learning verification
- » Support groups and educational synergies: questions to the expert, debate and knowledge forums
- » Communication with the teacher and individual reflection work
- Content that is accessible from any fixed or portable device with an Internet connection
- » Supplementary documentation databases are permanently available, even after the course

A program created for professionals who aspire for excellence, and that will enable you to acquire new skills and strategies easily and effectively"

A thorough and complete immersion in the strategies and approaches in Design and Analysis in Educational Research"

Our teaching staff is made up of working professionals. In this way, TECH ensure that we provide you with the up-to-date training we are aiming for. A multidisciplinary team of specialists who are trained and experienced in different environments, who will develop the theoretical knowledge in an efficient way, but, above all, will put at the service of the program the practical knowledge derived from their own experience: one of the differential qualities of this Postgraduate Diploma.

This mastery of the subject is complemented by the effectiveness of the methodological design of this Postgraduate Diploma. Developed by a multidisciplinary team of e-learning experts, it integrates the latest advances in educational technology. In this way, you will be able to study with a set of comfortable and versatile multimedia tools that will give you the operability you need for your training.

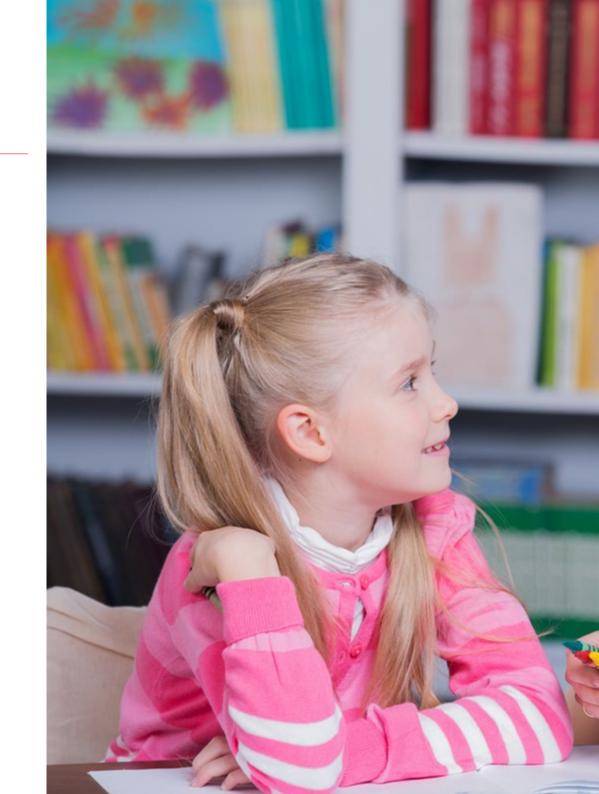
The design of this program is based on Problem-Based Learning: an approach that conceives learning as a highly practical process. To achieve this remotely, we will use telepractice: with the help of an innovative interactive video system and Learning from an Expert you will be able to acquire the knowledge as if you were facing the scenario you are learning at that moment. A concept that will make it possible to integrate and fix learning in a more realistic and permanent way.

Achieve professional success with this high-level training.

The basic processes of cognitive development in relation to learning and school development, in an intensive and comprehensive training.

02 Objectives

tech 10 | Objectives



General Objectives

- » Qualify professionals for the exercise of Design and Analysis in Educational Research
- » Learn how to carry out specific programs to improve school performance
- » Access to the forms and processes of Design and Analysis in Educational Research in the school environment.
- » Analyze and integrate the knowledge necessary to foster student's school and social development

Our objective is very simple: to offer you quality training, with the best teaching system available today, so that you can achieve excellence in your profession"

Specificobjectives

Module 1. Experimental Research: Design as a Model

- » Know and be able to apply experimental scientific methodology in research.
- » Know how to carry out an experimental investigation, following the phases and the approach of the same one.
- » Differentiate the different experimental designs and be able to apply them correctly.
- » Experimental rigor
- » Apply the correct statistical analysis for each type of design.
- » Analyze and contrast the data obtained in the empirical setting correctly.

Module 2. Techniques and Instruments for Data Collection in Qualitative Research

- » Know the techniques for categorizing, analyzing and summarizing qualitative information
- » Know the quality of the instruments
- » Identify and properly use the instruments used to collect information.
- » Adequately record the information obtained through the observation technique
- » Know the ethics of qualitative information

Module 3. Data Collection Techniques and Instruments and Measurement

- » Learn basic psychometric concepts
- » Knowing the research process
- » Acquire skills for the collection of information using quantitative techniques.
- » Acquire knowledge for the process of elaboration of instruments.
- » Learning to analyze the reliability and validity of an instrument
- » Handling and interpreting psychometric test scores

tech 14 | Structure and Content

Module 1. Experimental Research: Design as a Model

- 1.1. Experimental Method
 - 1.1.1. Introduction
 - 1.1.2. Approaches or Paradigms from Educational Research
 - 1.1.3. Concept of Experimental Research
 - 1.1.4. Types of Research
 - 1.1.5. Research Approach
 - 1.1.6. Quality of Research: Kirlenger Principle (Max-Min-Con)
 - 1.1.7. Experimental Validity of an Investigation
- 1.2. Experimental Design in Research
 - 1.2.1. Introduction
 - 1.2.2. Types of Experimental Designs: Pre-experimental, Experimental and Quasi-experimental.
 - 1.2.3. Experimental Control
 - 1.2.3.1. Controlling Variables
 - 1.2.3.2. Control Techniques
 - 1.2.4. Experimental Design: Between-group and within-Subject Design
 - 1.2.5. Data Analysis: Statistical Techniques
- 1.3. Experimental Design with Different Groups of Subjects
 - 1.3.1. Introduction
 - 1.3.2. Approaches or Paradigms from Educational Research
 - 1.3.3. Concept of Experimental Research
 - 1.3.4. Types of Research
 - 1.3.5. Research Approach
 - 1.3.6. Quality of a Research, Kerlinger's Principle (Max-Min-Con)
 - 1.3.7. The Validity of an Investigation
- 1.4. Experimental Design with the Same Subjects
 - 1.4.1. Introduction
 - 1.4.2. Student's T-test with the Same Subjects
 - 1.4.3. Non-parametric Contrasts for Two Related Samples Wilcoxon Test
 - 1.4.4. Non-parametric Contrasts for Two Related Samples

Friedman Test

- 1.5. One-factor, Completely Randomized Experimental Design
 - 1.5.1. Introduction
 - 1.5.2. The General Linear Model
 - 1.5.3. Anova Models
 - 1.5.4. One-factor, Fixed-effects, Completely Randomized Anova (A-FE-CR)
 - 1.5.4.1. The Model
 - 1.5.4.2. The Assumptions
 - 1.5.4.3. The Contrast Statistic
 - 1.5.5. Measures of Effect Size
 - 1.5.6. Multiple Comparisons Between Measurements
 - 1.5.6.1. What are Multiple Comparisons?
 - 1.5.6.2. A Priori Planned Comparisons
 - 1.5.6.3. A Posteriori Planned Comparisons
- 1.6. One-factor Experimental Design with Repeated Measures
 - 1.6.1. Introduction
 - 1.6.2. One-factor, Fixed-effects, Completely Randomized Anova (A-FE-CR)
 - 1.6.3. Measures of Effect Size
 - 1.6.4. Multiple Comparisons
 - 1.6.4.1. Orthogonal Planned Comparisons: Planned F Tests
- 1.7. Completely Randomized Two-Factor Experimental Design
 - 1.7.1. Introduction
 - 1.7.2. Two-factor, Fixed-effect, Completely Randomized ANOVA (ABEF-CA)
 - 1.7.3. Measures of Effect Size
 - 1.7.4. Multiple Comparisons
- 1.8. One-factor Experimental Design with Repeated Measures
 - 1.8.1. Introduction
 - 1.8.2. Two-factor, Fixed-effects Anova with Repeated Measures on the Two Factors
 - 1.8.3. Multiple Comparisons
 - 1.8.4. Two-factor, Fixed-effects, Anova with Repeated Measures on a Single Factor
 - 1.8.5. Multiple Comparisons

Structure and Content | 15 tech

1.9. Block Experimental Des	sian
-----------------------------	------

- 1.9.1. Introduction
- 1.9.2. Characteristics of Block Designs
- 1.9.3. Additional Variables to the Factor: Blocking Factor
- 1.9.4. One-factor Blocking Design: Completely Randomized Blocking
- 1.9.5. Two-factor Blocking Design: Latin Square Blocking

1.10. Experimental Design with Covariate Variables

- 1.10.1. Introduction
- 1.10.2. ANCOVA design
 - 1.10.2.1. Covariate Variables to Reduce the Error Term
 - 1.10.2.2. Covariate Variables to Control Extraneous Variables
- 1.10.3. Why Include a Covariate Variable in the Design?
- 1.10.4. Blocking and ANCOVA
- 1.11. Single Case Experimental Design (N=1)
 - 1.11.1. Introduction
 - 1.11.2. Basic Structure of Single-case Designs
 - 1.11.2.1. Elaboration of Multiple Items
 - 1.11.2.2. Difficulty Index; Discrimination Index: Validity Index
 - 1.11.2.3. Analysis of Distractor Items
 - 1.11.3. Treatment Study in Single Case Design
 - 1.11.3.1. Visual Data Analysis
 - 1.11.4. Basic Model: A-B
 - 1.11.5. A-B-A Design
 - 1.11.6. Criteria Change Design
 - 1.11.7. Multiple Baseline Design

Module 2. Techniques and Instruments for Data Collection in Qualitative Research

2.1. Introduction

- 2.1.2. Research Methodology qualitative
- 2.1.3. Qualitative Research Techniques
- 2.1.4. Phases of Qualitative Research

tech 16 | Structure and Content

2.2.	ation			
	2.2.1.	Introduction		
	2.2.2.	Observation Categories		
	2.2.3.	Types of Observation: Ethnographic, Participant, and Non-Participant		
	2.2.4.	What, How and When to Observe?		
	2.2.5.	Ethical Considerations of Observation		
	2.2.6.	Content Analysis		
2.3.	Interview Techniques			
	2.3.1.	Introduction		
	2.3.2.	Interview Concept		
	2.3.3.	Interview Characteristics		
	2.3.4.	The Purpose of the Interview		
	2.3.5.	Types of Interviews		
	2.3.6.	Advantages and Disadvantages of the Interview		
2.4.	Discussion Group and Focus Group Techniques			
	2.4.1.	Introduction		
	2.4.2.	Discussion Groups		
	2.4.3.	Objectives that Can Be Considered: Advantages and Disadvantages		
	2.4.4.	Issues for Discussion		
2.5.	SWOTa	nd Delphi Technique		
	2.5.1.	Introduction		
	2.5.2.	Characteristics of Both Techniques		
	2.5.3.	SWOT Technique		
	2.5.4.	The Delphi Technique		
		2.5.4.1. Preliminary Tasks Before Starting a Delphi		
2.6.	Life History Method			
	2.6.1.	Introduction		
	2.6.2.	Life History		
	2.6.3.	Method Characteristics		
	2.6.4.	Types		
	2.6.5.	Phases		

2.7.	ld Diary Method				
	2.7.1.	Introduction			
	2.7.2.	Concept of Field Diary			
	2.7.3.	Field Diary Characteristics			
	2.7.4.	Structure of the Field Diary			
2.8.	Discourse and Image Analysis Technique				
	2.8.1.	Introduction			
	2.8.2.	Features			
	2.8.3.	Discourse Analysis Concept			
	2.8.4.	Discourse Analysis Types			
	2.8.5.	Levels of Discourse			
	2.8.6.	Image Analysis			
2.9.	The Case Study Method				
	2.9.1.	Introduction			
	2.9.2.	Concept of Case Studies			
	2.9.3.	Types of Cases Study			
	2.9.4.	Design of the Cases Study			
2.10.	Classifi	cation and Analysis of Qualitative Dat			
	2.10.1.	Introduction			
	2.10.2.	Categorization of Data			
	2.10.3.	Data Coding			
	2.10.4.	Theorizing Data			
	2.10.5.	Data Triangulation			

Module 3. Data Collection Techniques and Instruments and Measurement

2.10.7. Writing Analytical Reflections. Memoing

3.1. Measurement in Research

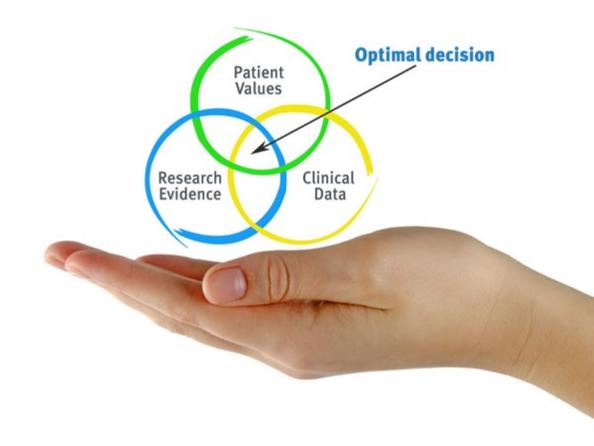
3.1.1. Introduction

2.10.6. Exposure of Data

- 3.1.2. What do we Want to Measure?
- 3.1.3. Subject Measurement Process
- 3.1.4. Psychometry

Structure and Content | 17 tech

3.2.	Collect	ion of Information using Quantitative Techniques: Observation and Surveys	3.6.	Analysi	s of Test Items
	3.2.1.	Introduction		3.6.1.	Introduction
	3.2.2.	Observation		3.6.2.	Classical Test Theory (Spearman, 1904)
		3.2.2.1. Theoretical Framework and Categories of Observation		3.6.3.	Test Reliability
	3.2.3.	The Survey		3.6.4.	The Concept of Validity
		3.2.3.1. Material for Conducting a Survey		3.6.5.	Evidence of Validity
		3.2.3.2. Survey Research Design	3.7.	Reliabil	ity of the Instrument
3.3.	Collect	ion of Information with Quantitative Techniques: the tests		3.7.1.	Introduction
	3.3.1.	Introduction		3.7.2.	Definition of Reliability
	3.3.2.	Test Concept		3.7.3.	Reliability by Test-Retest or Repeatability Method
	3.3.3.	Item Generation Process		3.7.4.	Reliability by the Alternate or Parallel Shape Method
	3.3.4.	Testing by Area: Performance; Intelligence and Aptitude; Personality,		3.7.5.	Reliability Through Internal Consistency Coefficients
	Attitud	es and Interests			3.7.5.1. Kunder-Richardson Coefficient
3.4.	Collect	ion of Information with Quantitative Techniques: Scaling Methods			3.7.5.2. Cronbach's Alpha Coefficient
	3.4.1.	Introduction	3.8.	Validity	of the Instrument
	3.4.2.	Concept of Attitude Scales		3.8.1.	Introduction
	3.4.3.	Thurstone Method		3.8.2.	Definition of Validity
		3.4.3.1. Method of Paired Comparisons		3.8.3.	Validity of the Instruments
	3.4.4.	Likert Scale			3.8.3.1. Immediate Validity
	3.4.5.	Guttman Scale			3.8.3.2. Content Validity
3.5.	Test Co	onstruction Process			3.8.3.3. Construct Validity
	3.5.1.	Introduction			3.8.3.4. Contrast Validity
	3.5.2.	Item Scaling Process		3.8.4.	Validity Strategies
		3.5.2.1. Item Generation Process	3.9.	Item Ar	nalysis
		3.5.2.2. Information Gathering Process		3.9.1.	Introduction
		3.5.2.3. Scaling Process in the Strict Sense		3.9.2.	Item Analysis
	3.5.3.	Scale Evaluation Process		3.9.3.	Difficulty and Validity Indexes
		3.5.3.1. Item Analysis		3.9.4.	Correction of Random Effects
		3.5.3.2. Scale Dimension	3.10.	Interpre	etation of Test Scores
		3.5.3.3. Scale Reliability		3.10.1.	Introduction
		3.5.3.4. Scale Validity		3.10.2.	Interpretation of Scores
	3.5.4.	Subjects' Scores on the Scale		3.10.3.	Normative Test Scales
				3.10.4.	Typical Derived Baremos
				3 10 5	Interpretations Referring to the Criterion



tech 20 | Methodology

At TECH Education School we use the Case Method

In a given situation, what should a professional do? Throughout the program students will be presented with multiple simulated cases based on real situations, where they will have to investigate, establish hypotheses and, finally, resolve the situation. There is an abundance of scientific evidence on the effectiveness of the method.

With TECH, educators can experience a learning methodology that is shaking the foundations of traditional universities around the world.

It is a technique that develops critical skills and prepares educators to make decisions, defend their arguments, and contrast opinions.

Did you know that this method was developed in 1912, at Harvard, for law students? The case method consisted of presenting students with real-life, complex situations for them to make decisions and justify their decisions on how to solve them. In 1924, Harvard adopted it as a standard teaching method"

The effectiveness of the method is justified by four fundamental achievements:

- Educators who follow this method not only grasp concepts, but also develop their mental capacity, by evaluating real situations and applying their knowledge.
- 2. The learning process is solidly focused on practical skills that allow educators to better integrate the knowledge into daily practice.
- **3.** Ideas and concepts are understood more efficiently, given that the example situations are based on real-life teaching.
- **4.** Students like to feel that the effort they put into their studies is worthwhile. This then translates into a greater interest in learning and more time dedicated to working on the course.

tech 22 | Methodology

Relearning Methodology

At TECH we enhance the case method with the best 100% online teaching methodology available: Relearning.

Our University is the first in the world to combine case studies with a 100% online learning system based on repetition, combining a minimum of 8 different elements in each lesson, which represent a real revolution with respect to simply studying and analyzing cases.

Educators will learn through real cases and by solving complex situations in simulated learning environments. These simulations are developed using state-of-the-art software to facilitate immersive learning.

Methodology | 23 tech

At the forefront of world teaching, the Relearning method has managed to improve the overall satisfaction levels of professionals who complete their studies, with respect to the quality indicators of the best online university (Columbia University).

With this methodology we have trained more than 85,000 educators with unprecedented success in all specialties. All this in a highly demanding environment, where the students have a strong socio-economic profile and an average age of 43.5 years.

Relearning will allow you to learn with less effort and better performance, involving you more in your specialization, developing a critical mindset, defending arguments, and contrasting opinions: a direct equation to success.

In our program, learning is not a linear process, but rather a spiral (learn, unlearn, forget, and re-learn). Therefore, we combine each of these elements concentrically.

The overall score obtained by our learning system is 8.01, according to the highest international standards.

tech 24 | Methodology

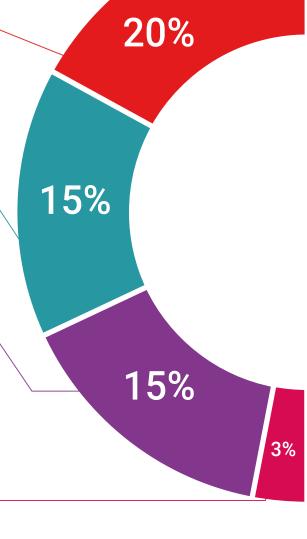
This program offers the best educational material, prepared with professionals in mind:

Study Material

All teaching material is produced by the specialist educators who teach the course, specifically for the course, so that the teaching content is really specific and precise.

These contents are then applied to the audiovisual format, to create the TECH online working method. All this, with the latest techniques that offer high quality pieces in each and every one of the materials that are made available to the student.

Educational Techniques and Procedures on Video


TECH introduces students to the latest techniques, with the latest educational advances, and to the forefront of Education. All this, first-hand, with the maximum rigor, explained and detailed for your assimilation and understanding. And best of all, you can watch them as many times as you want.

Interactive Summaries

The TECH team presents the contents attractively and dynamically in multimedia lessons that include audio, videos, images, diagrams, and concept maps in order to reinforce knowledge.

This exclusive multimedia content presentation training Exclusive system was awarded by Microsoft as a "European Success Story".

Additional Reading

Recent articles, consensus documents and international guidelines, among others. In TECH's virtual library, students will have access to everything they need to complete their course.

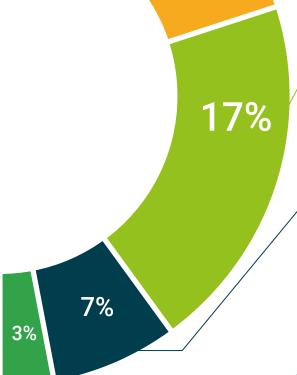
Expert-Led Case Studies and Case Analysis

Effective learning ought to be contextual. Therefore, TECH presents real cases in which the expert will guide students, focusing on and solving the different situations: a clear and direct way to achieve the highest degree of understanding.

Testing & Retesting

We periodically evaluate and re-evaluate students' knowledge throughout the program, through assessment and self-assessment activities and exercises: so that they can see how they are achieving your goals.

Classes


There is scientific evidence suggesting that observing third-party experts can be useful.

Learning from an Expert strengthens knowledge and memory, and generates confidence in future difficult decisions.

Quick Action Guides

TECH offers the most relevant contents of the course in the form of worksheets or quick action guides. A synthetic, practical, and effective way to help students progress in their learning.

20%

tech 28 | Certificate

This **Postgraduate Diploma in Design and Analysis in Educational Research** contains the most complete and up-to-date program on the market.

After the student has passed the assessments, they will receive their corresponding **Postgraduate Diploma** issued by **TECH Technological University** via tracked delivery*.

The diploma issued by **TECH Technological University** will reflect the qualification obtained in the Postgraduate Diploma, and meets the requirements commonly demanded by labor exchanges, competitive examinations, and professional career evaluation committees.

Title: **Postgraduate Diploma in Design and Analysis in Educational Research**Official N° of Hours: **450 h.**

^{*}Apostille Convention. In the event that the student wishes to have their paper diploma issued with an apostille, TECH EDUCATION will make the necessary arrangements to obtain it, at an additional cost.

technological university

Postgraduate Diploma Design and Analysis in Educational Research

- » Modality: online
- » Duration: 6 months
- » Certificate: TECH Technological University
- » Dedication: 16h/week
- » Schedule: at your own pace
- » Exams: online

