Presentación del programa

La aplicación de la Inteligencia Artificial en Diseño te permitirá acceder a un proceso creativo más innovador, centrado en el usuario. ¿A qué esperas para matricularte?” 

##IMAGE##

La sinergia entre la Inteligencia Artificial y el Diseño ha generado una auténtica revolución en la concepción y desarrollo de proyectos en este ámbito. Un punto clave a tener en cuenta es la mejora sustancial del proceso creativo: los algoritmos de IA exploran vastos conjuntos de datos para descubrir patrones y tendencias, brindando perspectivas invaluables que impulsan la toma de decisiones en el ámbito del Diseño. 

En este contexto, TECH presenta este Maestría en Inteligencia Artificial en Diseño, el cual fusiona a la perfección las nuevas tecnologías con la creación de productos creativos, brindando a los diseñadores una perspectiva única y completa. Además de impartir conocimientos técnicos, este programa abordará la ética y la sostenibilidad, asegurando que los egresados estén preparados para enfrentar los desafíos contemporáneos en un campo en constante evolución. 

De igual forma, la amplitud de temas a tratar refleja la diversidad de aplicaciones de la IA en distintas disciplinas, desde la generación automatizada de contenido hasta las estrategias para reducir residuos en el proceso de Diseño. De hecho, el énfasis en la ética y el impacto ambiental está diseñado para capacitar a profesionales conscientes y competentes. Finalmente, se abarcará el análisis de datos para la toma de decisiones en Diseño, la implementación de sistemas de IA para personalizar productos y experiencias, así como la exploración de técnicas avanzadas de visualización y generación de contenido creativo. 

De esta forma, TECH ha diseñado una titulación académica rigurosa, respaldada por el innovador método Relearning. Este enfoque educativo consiste en reiterar los conceptos clave para garantizar una comprensión profunda de los contenidos. La accesibilidad también es clave, ya que basta con disponer de un dispositivo electrónico conectado a Internet para acceder al material en cualquier momento y en cualquier lugar. 

Adicionalmente, el alumnado podrá acceder a una serie exclusiva de 10 Masterclasses complementarias, diseñadas por un célebre experto de gran fama internacional, especialista en Inteligencia Artificial y Aprendizaje Automático. 

¡Especialízate de la mano de TECH! Tendrás la oportunidad de participar en 10 Masterclasses únicas y adicionales, impartidas por un reconocido docente de prestigio internacional en Inteligencia Artificial y Aprendizaje Automático” 

Este Maestría en Inteligencia Artificial en Diseño contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:  

  • El desarrollo de casos prácticos presentados por expertos en Inteligencia Artificial en Diseño
  • Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información técnica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
  • Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
  • Su especial hincapié en metodologías innovadoras 
  • Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
  • La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Explorarás la intersección compleja entre la ética, el entorno y las nuevas tecnologías en profundidad mediante este exclusivo Maestría, impartido completamente en línea”

El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.  

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.  

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos. 

Desde la automatización de la creación visual, hasta el análisis predictivo de tendencias y la colaboración potenciada por la Inteligencia Artificial, te sumergirás en un campo dinámico”

##IMAGE##

Aprovecha la vasta biblioteca de recursos multimedia de TECH y analiza la fusión de los asistentes virtuales y el análisis de las emociones del usuario” 

Plan de estudios

Lo que hace excepcional a este Maestría es su enfoque revolucionario y completo en la intersección entre Diseño e Inteligencia Artificial. La incorporación de asignaturas como "Diseño computacional y IA" y "Interacción Diseño-Usuario y IA" permitirá a los diseñadores abordar desafíos contemporáneos, desde la creación automática de contenido multimedia hasta la adaptación contextual en las interacciones con los usuarios. Además, la fusión innovadora de habilidades técnicas, como la optimización de la estructura de microchips, con consideraciones éticas y ecológicas, como la minimización de residuos, convierte a este programa en una propuesta integral.

##IMAGE##

Sumérgete en una capacitación que integra la creatividad con un enfoque profundo en ética y sostenibilidad, aplicando la Inteligencia Artificial en el ámbito del Diseño” 

Módulo 1. Fundamentos de la Inteligencia Artificial 

1.1. Historia de la Inteligencia artificial 

1.1.1. ¿Cuándo se empieza a hablar de Inteligencia Artificial?  
1.1.2. Referentes en el cine 
1.1.3. Importancia de la inteligencia artificial 
1.1.4. Tecnologías que habilitan y dan soporte a la Inteligencia Artificial 

1.2. La Inteligencia Artificial en juegos 

1.2.1. Teoría de Juegos 
1.2.2. Minimax y poda Alfa-Beta 
1.2.3. Simulación: Monte Carlo 

1.3. Redes de neuronas 

1.3.1. Fundamentos biológicos 
1.3.2. Modelo computacional 
1.3.3. Redes de neuronas supervisadas y no supervisadas 
1.3.4. Perceptrón simple 
1.3.5. Perceptrón multicapa 

1.4. Algoritmos genéticos 

1.4.1. Historia 
1.4.2. Base biológica 
1.4.3. Codificación de problemas 
1.4.4. Generación de la población inicial 
1.4.5. Algoritmo principal y operadores genéticos 
1.4.6. Evaluación de individuos: Fitness

1.5. Tesauros, vocabularios, taxonomías 

1.5.1. Vocabularios 
1.5.2. Taxonomías 
1.5.3. Tesauros 
1.5.4. Ontologías 
1.5.5. Representación del conocimiento: Web semántica 

1.6. Web semántica 

1.6.1. Especificaciones: RDF, RDFS y OWL 
1.6.2. Inferencia/razonamiento 
1.6.3. Linked Data 

1.7. Sistemas expertos y DSS 

1.7.1. Sistemas expertos 
1.7.2. Sistemas de soporte a la decisión 

1.8. Chatbots y asistentes virtuales  

1.8.1. Tipos de asistentes: Asistentes por voz y por texto  
1.8.2. Partes fundamentales para el desarrollo de un asistente: Intents, entidades y flujo de diálogo 
1.8.3. Integraciones: Web, Slack, Whatsapp, Facebook 
1.8.4. Herramientas de desarrollo de asistentes: Dialog Flow, Watson Assistant  

1.9. Estrategia de implantación de IA 
1.10. Futuro de la inteligencia artificial  

1.10.1. Entendemos cómo detectar emociones mediante algoritmos  
1.10.2. Creación de una personalidad: Lenguaje, expresiones y contenido  
1.10.3. Tendencias de la inteligencia artificial  
1.10.4. Reflexiones

Módulo 2. Tipos y ciclo de vida del dato 

2.1. La estadística  

2.1.1. Estadística: Estadística descriptiva, estadística inferencias  
2.1.2. Población, muestra, individuo  
2.1.3. Variables: Definición, escalas de medida  

2.2. Tipos de datos estadísticos  

2.2.1. Según tipo  

2.2.1.1. Cuantitativos: Datos continuos y datos discretos  
2.2.1.2. Cualitativos: Datos binomiales, datos nominales y datos ordinales 

2.2.2. Según su forma   

2.2.2.1. Numérico  
2.2.2.2. Texto   
2.2.2.3. Lógico  

2.2.3. Según su fuente  

2.2.3.1. Primarios  
2.2.3.2. Secundarios  

2.3. Ciclo de vida de los datos  

2.3.1. Etapas del ciclo  
2.3.2. Hitos del ciclo  
2.3.3. Principios FAIR  

2.4. Etapas iniciales del ciclo  

2.4.1. Definición de metas  
2.4.2. Determinación de recursos necesarios  
2.4.3. Diagrama de Gantt  
2.4.4. Estructura de los datos  

2.5. Recolección de datos  

2.5.1. Metodología de recolección  
2.5.2. Herramientas de recolección  
2.5.3. Canales de recolección  

2.6. Limpieza del dato  

2.6.1. Fases de la limpieza de datos  
2.6.2. Calidad del dato  
2.6.3. Manipulación de datos (con R)  

2.7. Análisis de datos, interpretación y valoración de resultados  

2.7.1. Medidas estadísticas  
2.7.2. Índices de relación  
2.7.3. Minería de datos  

2.8. Almacén del dato (Datawarehouse 

2.8.1. Elementos que lo integran  
2.8.2. Diseño  
2.8.3. Aspectos a considerar  

2.9. Disponibilidad del dato  

2.9.1. Acceso  
2.9.2. Utilidad  
2.9.3. Seguridad  

2.10. Aspectos Normativos 

2.10.1. Ley de protección de datos  
2.10.2. Buenas prácticas  
2.10.3. Otros aspectos normativos 

Módulo 3. El dato en la Inteligencia Artificial 

3.1. Ciencia de datos 

3.1.1. La ciencia de datos 
3.1.2. Herramientas avanzadas para el científico de datos 

3.2. Datos, información y conocimiento 

3.2.1. Datos, información y conocimiento  
3.2.2. Tipos de datos 
3.2.3. Fuentes de datos 

3.3. De los datos a la información  

3.3.1. Análisis de Datos 
3.3.2. Tipos de análisis 
3.3.3. Extracción de información de un Dataset 

3.4. Extracción de información mediante visualización 

3.4.1. La visualización como herramienta de análisis 
3.4.2. Métodos de visualización  
3.4.3. Visualización de un conjunto de datos

3.5. Calidad de los datos 

3.5.1. Datos de calidad 
3.5.2. Limpieza de datos  
3.5.3. Preprocesamiento básico de datos 

3.6. Dataset 

3.6.1. Enriquecimiento del Dataset 
3.6.2. La maldición de la dimensionalidad 
3.6.3. Modificación de nuestro conjunto de datos 

3.7. Desbalanceo  

3.7.1. Desbalanceo de clases 
3.7.2. Técnicas de mitigación del desbalanceo 
3.7.3. Balanceo de un Dataset 

3.8. Modelos no supervisados  

3.8.1. Modelo no supervisado 
3.8.2. Métodos 
3.8.3. Clasificación con modelos no supervisados 

3.9. Modelos supervisados 

3.9.1. Modelo supervisado 
3.9.2. Métodos 
3.9.3. Clasificación con modelos supervisados 

3.10. Herramientas y buenas prácticas 

3.10.1. Buenas prácticas para un científico de datos 
3.10.2. El mejor modelo  
3.10.3. Herramientas útiles

Módulo 4. Minería de datos. Selección, preprocesamiento y transformación 

4.1. La inferencia estadística 

4.1.1. Estadística descriptiva vs Inferencia estadística 
4.1.2. Procedimientos paramétricos 
4.1.3. Procedimientos no paramétricos 

4.2. Análisis exploratorio 

4.2.1. Análisis descriptivo  
4.2.2. Visualización 
4.2.3. Preparación de datos 

4.3. Preparación de datos 

4.3.1. Integración y limpieza de datos  
4.3.2. Normalización de datos 
4.3.3. Transformando atributos  

4.4. Los valores perdidos 

4.4.1. Tratamiento de valores perdidos 
4.4.2. Métodos de imputación de máxima verosimilitud 
4.4.3. Imputación de valores perdidos usando aprendizaje automático 

4.5. El ruido en los datos  

4.5.1. Clases de ruido y atributos 
4.5.2. Filtrado de ruido  
4.5.3. El efecto del ruido 

4.6. La maldición de la dimensionalidad 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Reducción de datos multidimensionales 

4.7. De atributos continuos a discretos 

4.7.1. Datos continuos versus discretos 
4.7.2. Proceso de discretización 

4.8. Los datos  

4.8.1. Selección de datos  
4.8.2. Perspectivas y criterios de selección 
4.8.3. Métodos de selección  

4.9. Selección de instancias 

4.9.1. Métodos para la selección de instancias 
4.9.2. Selección de prototipos 
4.9.3. Métodos avanzados para la selección de instancias 

4.10. Preprocesamiento de datos en entornos Big Data 

Módulo 5. Algoritmia y complejidad en Inteligencia Artificial 

5.1. Introducción a las estrategias de diseño de algoritmos 

5.1.1. Recursividad 
5.1.2. Divide y conquista 
5.1.3. Otras estrategias 

5.2. Eficiencia y análisis de los algoritmos 

5.2.1. Medidas de eficiencia 
5.2.2. Medir el tamaño de la entrada 
5.2.3. Medir el tiempo de ejecución 
5.2.4. Caso peor, mejor y medio 
5.2.5. Notación asintónica 
5.2.6. Criterios de análisis matemático de algoritmos no recursivos 
5.2.7. Análisis matemático de algoritmos recursivos 
5.2.8. Análisis empírico de algoritmos 

5.3. Algoritmos de ordenación 

5.3.1. Concepto de ordenación 
5.3.2. Ordenación de la burbuja 
5.3.3. Ordenación por selección 
5.3.4. Ordenación por inserción 
5.3.5. Ordenación por mezcla (Merge_Sort) 
5.3.6. Ordenación rápida (Quick_Sort) 

5.4. Algoritmos con árboles 

5.4.1. Concepto de árbol 
5.4.2. Árboles binarios 
5.4.3. Recorridos de árbol 
5.4.4. Representar expresiones 
5.4.5. Árboles binarios ordenados 
5.4.6. Árboles binarios balanceados 

5.5. Algoritmos con Heaps 

5.5.1. Los Heaps 
5.5.2. El algoritmo Heapsort 
5.5.3. Las colas de prioridad 

5.6. Algoritmos con grafos 

5.6.1. Representación 
5.6.2. Recorrido en anchura 
5.6.3. Recorrido en profundidad 
5.6.4. Ordenación topológica 

5.7. Algoritmos Greedy 

5.7.1. La estrategia Greedy 
5.7.2. Elementos de la estrategia Greedy 
5.7.3. Cambio de monedas 
5.7.4. Problema del viajante 
5.7.5. Problema de la mochila 

5.8. Búsqueda de caminos mínimos 

5.8.1. El problema del camino mínimo 
5.8.2. Arcos negativos y ciclos 
5.8.3. Algoritmo de Dijkstra 

5.9. Algoritmos Greedy sobre grafos 

5.9.1. El árbol de recubrimiento mínimo 
5.9.2. El algoritmo de Prim 
5.9.3. El algoritmo de Kruskal 
5.9.4. Análisis de complejidad 

5.10. Backtracking 

5.10.1. El Backtracking 
5.10.2. Técnicas alternativas 

Módulo 6. Sistemas inteligentes 

6.1. Teoría de agentes 

6.1.1. Historia del concepto 
6.1.2. Definición de agente 
6.1.3. Agentes en Inteligencia Artificial 
6.1.4. Agentes en ingeniería de software 

6.2. Arquitecturas de agentes 

6.2.1. El proceso de razonamiento de un agente 
6.2.2. Agentes reactivos 
6.2.3. Agentes deductivos 
6.2.4. Agentes híbridos 
6.2.5. Comparativa 

6.3. Información y conocimiento 

6.3.1. Distinción entre datos, información y conocimiento 
6.3.2. Evaluación de la calidad de los datos 
6.3.3. Métodos de captura de datos 
6.3.4. Métodos de adquisición de información 
6.3.5. Métodos de adquisición de conocimiento 

6.4. Representación del conocimiento 

6.4.1. La importancia de la representación del conocimiento 
6.4.2. Definición de representación del conocimiento a través de sus roles 
6.4.3. Características de una representación del conocimiento 

6.5. Ontologías 

6.5.1. Introducción a los metadatos 
6.5.2. Concepto filosófico de ontología 
6.5.3. Concepto informático de ontología 
6.5.4. Ontologías de dominio y ontologías de nivel superior 
6.5.5. ¿Cómo construir una ontología? 

6.6. Lenguajes para ontologías y software para la creación de ontologías 

6.6.1. Tripletas RDF, Turtle y N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introducción a las diferentes herramientas para la creación de ontologías 
6.6.6. Instalación y uso de Protégé 

6.7. La web semántica 

6.7.1. El estado actual y futuro de la web semántica 
6.7.2. Aplicaciones de la web semántica

6.8. Otros modelos de representación del conocimiento 

6.8.1. Vocabularios 
6.8.2. Visión global 
6.8.3. Taxonomías 
6.8.4. Tesauros 
6.8.5. Folksonomías 
6.8.6. Comparativa 
6.8.7. Mapas mentales 

6.9. Evaluación e integración de representaciones del conocimiento 

6.9.1. Lógica de orden cero 
6.9.2. Lógica de primer orden 
6.9.3. Lógica descriptiva 
6.9.4. Relación entre diferentes tipos de lógica 
6.9.5. Prolog: Programación basada en lógica de primer orden 

6.10. Razonadores semánticos, sistemas basados en conocimiento y Sistemas Expertos 

6.10.1. Concepto de razonador 
6.10.2. Aplicaciones de un razonador 
6.10.3. Sistemas basados en el conocimiento 
6.10.4. MYCIN, historia de los Sistemas Expertos 
6.10.5. Elementos y Arquitectura de Sistemas Expertos 
6.10.6. Creación de Sistemas Expertos

Módulo 7. Aprendizaje automático y minería de datos 

7.1. Introducción a los procesos de descubrimiento del conocimiento y conceptos básicos de aprendizaje automático 

7.1.1. Conceptos clave de los procesos de descubrimiento del conocimiento 
7.1.2. Perspectiva histórica de los procesos de descubrimiento del conocimiento 
7.1.3. Etapas de los procesos de descubrimiento del conocimiento 
7.1.4. Técnicas utilizadas en los procesos de descubrimiento del conocimiento 
7.1.5. Características de los buenos modelos de aprendizaje automático 
7.1.6. Tipos de información de aprendizaje automático 
7.1.7. Conceptos básicos de aprendizaje 
7.1.8. Conceptos básicos de aprendizaje no supervisado 

7.2. Exploración y preprocesamiento de datos 

7.2.1. Tratamiento de datos 
7.2.2. Tratamiento de datos en el flujo de análisis de datos 
7.2.3. Tipos de datos 
7.2.4. Transformaciones de datos 
7.2.5. Visualización y exploración de variables continuas 
7.2.6. Visualización y exploración de variables categóricas 
7.2.7. Medidas de correlación 
7.2.8. Representaciones gráficas más habituales 
7.2.9. Introducción al análisis multivariante y a la reducción de dimensiones 

7.3. Árboles de decisión 

7.3.1. Algoritmo ID 
7.3.2. Algoritmo C 
7.3.3. Sobreentrenamiento y poda 
7.3.4. Análisis de resultados 

7.4. Evaluación de clasificadores 

7.4.1. Matrices de confusión 
7.4.2. Matrices de evaluación numérica 
7.4.3. Estadístico de Kappa 
7.4.4. La curva ROC 

7.5. Reglas de clasificación 

7.5.1. Medidas de evaluación de reglas 
7.5.2. Introducción a la representación gráfica 
7.5.3. Algoritmo de recubrimiento secuencial 

7.6. Redes neuronales 

7.6.1. Conceptos básicos 
7.6.2. Redes de neuronas simples 
7.6.3. Algoritmo de Backpropagation 
7.6.4. Introducción a las redes neuronales recurrentes 

7.7. Métodos bayesianos 

7.7.1. Conceptos básicos de probabilidad 
7.7.2. Teorema de Bayes 
7.7.3. Naive Bayes 
7.7.4. Introducción a las redes bayesianas 

7.8. Modelos de regresión y de respuesta continua 

7.8.1. Regresión lineal simple 
7.8.2. Regresión lineal múltiple 
7.8.3. Regresión logística 
7.8.4. Árboles de regresión 
7.8.5. Introducción a las máquinas de soporte vectorial (SVM) 
7.8.6. Medidas de bondad de ajuste 

7.9. Clustering 

7.9.1. Conceptos básicos 
7.9.2. Clustering jerárquico 
7.9.3. Métodos probabilistas 
7.9.4. Algoritmo EM 
7.9.5. Método B-Cubed 
7.9.6. Métodos implícitos 

7.10 Minería de textos y procesamiento de lenguaje natural (NLP)

7.10.1. Conceptos básicos 
7.10.2. Creación del corpus 
7.10.3. Análisis descriptivo 
7.10.4. Introducción al análisis de sentimientos 

Módulo 8. Las redes neuronales, base de Deep Learning 

8.1. Aprendizaje profundo 

8.1.1. Tipos de aprendizaje profundo 
8.1.2. Aplicaciones del aprendizaje profundo 
8.1.3. Ventajas y desventajas del aprendizaje profundo 

8.2. Operaciones 

8.2.1. Suma 
8.2.2. Producto 
8.2.3. Traslado 

8.3. Capas 

8.3.1. Capa de entrada 
8.3.2. Capa oculta 
8.3.3. Capa de salida 

8.4. Unión de capas y operaciones 

8.4.1. Diseño de arquitecturas 
8.4.2. Conexión entre capas 
8.4.3. Propagación hacia adelante 

8.5. Construcción de la primera red neuronal 

8.5.1. Diseño de la red 
8.5.2. Establecer los pesos 
8.5.3. Entrenamiento de la red 

8.6. Entrenador y optimizador 

8.6.1. Selección del optimizador 
8.6.2. Establecimiento de una función de pérdida 
8.6.3. Establecimiento de una métrica 

8.7. Aplicación de los Principios de las Redes Neuronales 

8.7.1. Funciones de activación 
8.7.2. Propagación hacia atrás 
8.7.3. Ajuste de los parámetros 

8.8. De las neuronas biológicas a las artificiales 

8.8.1. Funcionamiento de una neurona biológica 
8.8.2. Transferencia de conocimiento a las neuronas artificiales 
8.8.3. Establecer relaciones entre ambas 

8.9. Implementación de MLP (Perceptrón Multicapa) con Keras 

8.9.1. Definición de la estructura de la red 
8.9.2. Compilación del modelo 
8.9.3. Entrenamiento del modelo 

8.10. Hiperparámetros de Fine tuning de Redes Neuronales 

8.10.1. Selección de la función de activación 
8.10.2. Establecer el Learning rate 
8.10. 3. Ajuste de los pesos 

Módulo 9. Entrenamiento de redes neuronales profundas 

9.1. Problemas de Gradientes 

9.1.1. Técnicas de optimización de gradiente 
9.1.2. Gradientes Estocásticos 
9.1.3. Técnicas de inicialización de pesos 

9.2. Reutilización de capas preentrenadas 

9.2.1. Entrenamiento de transferencia de aprendizaje 
9.2.2. Extracción de características 
9.2.3. Aprendizaje profundo 

9.3. Optimizadores 

9.3.1. Optimizadores de descenso de gradiente estocástico 
9.3.2. Optimizadores Adam y RMSprop 
9.3.3. Optimizadores de momento 

9.4. Programación de la tasa de aprendizaje 

9.4.1. Control de tasa de aprendizaje automático 
9.4.2. Ciclos de aprendizaje 
9.4.3. Términos de suavizado 

9.5. Sobreajuste 

9.5.1. Validación cruzada 
9.5.2. Regularización 
9.5.3. Métricas de evaluación 

9.6. Directrices prácticas 

9.6.1. Diseño de modelos 
9.6.2. Selección de métricas y parámetros de evaluación 
9.6.3. Pruebas de hipótesis 

9.7. Transfer Learning 

9.7.1. Entrenamiento de transferencia de aprendizaje 
9.7.2. Extracción de características 
9.7.3. Aprendizaje profundo 

9.8. Data Augmentation 

9.8.1. Transformaciones de imagen 
9.8.2. Generación de datos sintéticos 
9.8.3. Transformación de texto 

9.9. Aplicación Práctica de Transfer Learning 

9.9.1. Entrenamiento de transferencia de aprendizaje 
9.9.2. Extracción de características 
9.9.3. Aprendizaje profundo 

9.10. Regularización 

9.10.1. L y L 
9.10.2. Reglarización por máxima entropía 
9.10.3. Dropout 

Módulo 10. Personalización de Modelos y entrenamiento con TensorFlow 

10.1. TensorFlow 

10.1.1. Uso de la biblioteca TensorFlow 
10.1.2. Entrenamiento de modelos con TensorFlow 
10.1.3. Operaciones con gráficos en TensorFlow 

10.2. TensorFlow y NumPy 

10.2.1. Entorno computacional NumPy para TensorFlow 
10.2.2. Utilización de los arrays NumPy con TensorFlow 
10.2.3. Operaciones NumPy para los gráficos de TensorFlow 

10.3. Personalización de modelos y algoritmos de entrenamiento 

10.3.1. Construcción de modelos personalizados con TensorFlow 
10.3.2. Gestión de parámetros de entrenamiento
10.3.3. Utilización de técnicas de optimización para el entrenamiento 

10.4. Funciones y gráficos de TensorFlow 

10.4.1. Funciones con TensorFlow 
10.4.2. Utilización de gráficos para el entrenamiento de modelos 
10.4.3. Optimización de gráficos con operaciones de TensorFlow 

10.5. Carga y preprocesamiento de datos con TensorFlow 

10.5.1. Carga de conjuntos de datos con TensorFlow 
10.5.2. Preprocesamiento de datos con TensorFlow 
10.5.3. Utilización de herramientas de TensorFlow para la manipulación de datos 

10.6. La API tfdata 

10.6.1. Utilización de la API tfdata para el procesamiento de datos 
10.6.2. Construcción de flujos de datos con tfdata 
10.6.3. Uso de la API tfdata para el entrenamiento de modelos 

10.7. El formato TFRecord 

10.7.1. Utilización de la API TFRecord para la serialización de datos 
10.7.2. Carga de archivos TFRecord con TensorFlow 
10.7.3. Utilización de archivos TFRecord para el entrenamiento de modelos 

10.8. Capas de preprocesamiento de Keras 

10.8.1. Utilización de la API de preprocesamiento de Keras 
10.8.2. Construcción de pipelined de preprocesamiento con Keras 
10.8.3. Uso de la API de preprocesamiento de Keras para el entrenamiento de modelos 

10.9. El proyecto TensorFlow Datasets 

10.9.1. Utilización de TensorFlow Datasets para la carga de datos 
10.9.2. Preprocesamiento de datos con TensorFlow Datasets 
10.9.3. Uso de TensorFlow Datasets para el entrenamiento de modelos 

10.10. Construcción de una Aplicación de Deep Learning con TensorFlow 

10.10.1. Aplicación práctica 
10.10.2. Construcción de una aplicación de Deep Learning con TensorFlow 
10.10.3. Entrenamiento de un modelo con TensorFlow 
10.10.4. Utilización de la aplicación para la predicción de resultados 

Módulo 11. Deep Computer Vision con Redes Neuronales Convolucionales 

11.1. La Arquitectura Visual Cortex 

11.1.1. Funciones de la corteza visual 
11.1.2. Teorías de la visión computacional 
11.1.3. Modelos de procesamiento de imágenes 

11.2. Capas convolucionales 

11.2.1 Reutilización de pesos en la convolución 
11.2.2. Convolución D 
11.2.3. Funciones de activación 

11.3. Capas de agrupación e implementación de capas de agrupación con Keras 

11.3.1. Pooling y Striding 
11.3.2. Flattening 
11.3.3. Tipos de Pooling 

11.4. Arquitecturas CNN 

11.4.1. Arquitectura VGG 
11.4.2. Arquitectura AlexNet 
11.4.3. Arquitectura ResNet 

11.5. Implementación de una CNN ResNet usando Keras 

11.5.1. Inicialización de pesos 
11.5.2. Definición de la capa de entrada 
11.5.3. Definición de la salida 

11.6. Uso de modelos preentrenados de Keras 

11.6.1. Características de los modelos preentrenados 
11.6.2. Usos de los modelos preentrenados 
11.6.3. Ventajas de los modelos preentrenados 

11.7. Modelos preentrenados para el aprendizaje por transferencia 

11.7.1. El aprendizaje por transferencia 
11.7.2. Proceso de aprendizaje por transferencia 
11.7.3. Ventajas del aprendizaje por transferencia 

11.8. Clasificación y localización en Deep Computer Vision 

11.8.1. Clasificación de imágenes 
11.8.2. Localización de objetos en imágenes 
11.8.3. Detección de objetos 

11.9. Detección de objetos y seguimiento de objetos 

11.9.1. Métodos de detección de objetos 
11.9.2. Algoritmos de seguimiento de objetos 
11.9.3. Técnicas de rastreo y localización 

11.10. Segmentación semántica 

11.10.1. Aprendizaje profundo para segmentación semántica 
11.10.2. Detección de bordes 
11.10.2. Métodos de segmentación basados en reglas 

Módulo 12. Procesamiento del lenguaje natural (NLP) con Redes Naturales Recurrentes (RNN) y atención 

12.1. Generación de texto utilizando RNN 

12.1.1. Entrenamiento de una RNN para generación de texto 
12.1.2. Generación de lenguaje natural con RNN 
12.1.3. Aplicaciones de generación de texto con RNN 

12.2. Creación del conjunto de datos de entrenamiento 

12.2.1. Preparación de los datos para el entrenamiento de una RNN 
12.2.2. Almacenamiento del conjunto de datos de entrenamiento 
12.2.3. Limpieza y transformación de los datos 
12.2.4. Análisis de Sentimiento 

12.3. Clasificación de opiniones con RNN 

12.3.1. Detección de temas en los comentarios 
12.3.2. Análisis de sentimiento con algoritmos de aprendizaje profundo 

12.4. Red de codificador-decodificador para la traducción automática neuronal 

12.4.1. Entrenamiento de una RNN para la traducción automática 
12.4.2. Uso de una red encoder-decoder para la traducción automática 
12.4.3. Mejora de la precisión de la traducción automática con RNN 

12.5. Mecanismos de atención 

12.5.1. Aplicación de mecanismos de atención en RNN 
12.5.2. Uso de mecanismos de atención para mejorar la precisión de los modelos 
12.5.3. Ventajas de los mecanismos de atención en las redes neuronales 

12.6. Modelos Transformers 

12.6.1. Uso de los modelos Transformers para procesamiento de lenguaje natural 
12.6.2. Aplicación de los modelos Transformers para visión 
12.6.3. Ventajas de los modelos Transformers 

12.7. Transformers para visión 

12.7.1. Uso de los modelos Transformers para visión 
12.7.2. Preprocesamiento de los datos de imagen 
12.7.3. Entrenamiento de un modelo Transformers para visión 

12.8. Librería de Transformers de Hugging Face 

12.8.1. Uso de la librería de Transformers de Hugging Face 
12.8.2. Aplicación de la librería de Transformers de Hugging Face 
12.8.3. Ventajas de la librería de Transformers de Hugging Face 

12.9. Otras Librerías de Transformers. Comparativa 

12.9.1. Comparación entre las distintas librerías de Transformers 
12.9.2. Uso de las demás librerías de Transformers 
12.9.3. Ventajas de las demás librerías de Transformers 

12.10. Desarrollo de una Aplicación de NLP con RNN y Atención. Aplicación práctica 

12.10.1. Desarrollo de una aplicación de procesamiento de lenguaje natural con RNN y atención 
12.10.2. Uso de RNN, mecanismos de atención y modelos Transformers en la aplicación 
12.10.3. Evaluación de la aplicación práctica 

Módulo 13. Autoencoders, GANs y modelos de difusión 

13.1. Representaciones de datos eficientes 

13.1.1. Reducción de dimensionalidad 
13.1.2. Aprendizaje profundo 
13.1.3. Representaciones compactas 

13.2. Realización de PCA con un codificador automático lineal incompleto 

13.2.1. Proceso de entrenamiento 
13.2.2. Implementación en Python 
13.2.3. Utilización de datos de prueba 

13.3. Codificadores automáticos apilados 

13.3.1. Redes neuronales profundas 
13.3.2. Construcción de arquitecturas de codificación 
13.3.3. Uso de la regularización 

13.4. Autocodificadores convolucionales 

13.4.1. Diseño de modelos convolucionales 
13.4.2. Entrenamiento de modelos convolucionales 
13.4.3. Evaluación de los resultados 

13.5. Eliminación de ruido de codificadores automáticos 

13.5.1. Aplicación de filtros 
13.5.2. Diseño de modelos de codificación 
13.5.3. Uso de técnicas de regularización 

13.6. Codificadores automáticos dispersos 

13.6.1. Incrementar la eficiencia de la codificación 
13.6.2. Minimizando el número de parámetros 
13.6.3. Utilización de técnicas de regularización 

13.7. Codificadores automáticos variacionales 

13.7.1. Utilización de optimización variacional 
13.7.2. Aprendizaje profundo no supervisado 
13.7.3. Representaciones latentes profundas 

13.8. Generación de imágenes MNIST de moda 

13.8.1. Reconocimiento de patrones 
13.8.2. Generación de imágenes 
13.8.3. Entrenamiento de redes neuronales profundas

13.9. Redes adversarias generativas y modelos de difusión 

13.9.1. Generación de contenido a partir de imágenes 
13.9.2. Modelado de distribuciones de datos 
13.9.3. Uso de redes adversarias 

13.10 Implementación de los Modelos 

13.10.1. Aplicación Práctica 
13.10.2. Implementación de los modelos 
13.10.3. Uso de datos reales 
13.10.4. Evaluación de los resultados 

Módulo 14. Computación bioinspirada  

14.1. Introducción a la computación bioinspirada 

14.1.1. Introducción a la computación bioinspirada

14.2. Algoritmos de adaptación social

14.2.1. Computación bioinspirada basada en colonia de hormigas 
14.2.2. Variantes de los algoritmos de colonias de hormigas 
14.2.3. Computación basada en nubes de partículas 

14.3. Algoritmos genéticos 

14.3.1. Estructura general 
14.3.2. Implementaciones de los principales operadores 

14.4. Estrategias de exploración-explotación del espacio para algoritmos genéticos 

14.4.1. Algoritmo CHC 
14.4.2. Problemas multimodales 

14.5. Modelos de computación evolutiva (I) 

14.5.1. Estrategias evolutivas 
14.5.2. Programación evolutiva 
14.5.3. Algoritmos basados en evolución diferencial 

14.6. Modelos de computación evolutiva (II) 

14.6.1. Modelos de evolución basados en estimación de distribuciones (EDA) 
14.6.2. Programación genética 

14.7. Programación evolutiva aplicada a problemas de aprendizaje 

14.7.1. Aprendizaje basado en reglas 
14.7.2. Métodos evolutivos en problemas de selección de instancias 

14.8. Problemas multiobjetivo 

14.8.1. Concepto de dominancia 
14.8.2. Aplicación de algoritmos evolutivos a problemas multiobjetivo 

14.9. Redes neuronales (I) 

14.9.1. Introducción a las redes neuronales 
14.9.2. Ejemplo práctico con redes neuronales 

14.10. Redes neuronales (II) 

14.10.1. Casos de uso de las redes neuronales en la investigación médica 
14.10.2. Casos de uso de las redes neuronales en la economía 
14.10.3. Casos de uso de las redes neuronales en la visión artificial 

Módulo 15. Inteligencia Artificial: Estrategias y aplicaciones  

15.1. Servicios financieros 

15.1.1. Las implicaciones de la Inteligencia Artificial (IA) en los servicios financieros.  Oportunidades y desafíos  
15.1.2. Casos de uso  
15.1.3. Riesgos potenciales relacionados con el uso de IA 
15.1.4. Potenciales desarrollos/usos futuros de la IA 

15.2. Implicaciones de la Inteligencia Artificial en el servicio sanitari 

15.2.1. Implicaciones de la IA en el sector sanitario. Oportunidades y desafíos  
15.2.2. Casos de uso 

15.3. Riesgos Relacionados con el uso de la IA en el servicio sanitario 

15.3.1. Riesgos potenciales relacionados con el uso de IA 
15.3.2. Potenciales desarrollos/usos futuros de la IA  

15.4. Retail  

15.4.1. Implicaciones de la IA en Retail. Oportunidades y desafíos  
15.4.2. Casos de uso  
15.4.3. Riesgos potenciales relacionados con el uso de IA  
15.4.4. Potenciales desarrollos/usos futuros de la IA 

15.5. Industria   

15.5.1. Implicaciones de la IA en la Industria. Oportunidades y desafíos 
15.5.2. Casos de uso 

15.6. Riesgos potenciales relacionados con el uso de IA en la Industria   

15.6.1. Casos de uso 
15.6.2. Riesgos potenciales relacionados con el uso de IA 
15.6.3. Potenciales desarrollos/usos futuros de la IA  

15.7. Administración Pública  

15.7.1. Implicaciones de la IA en la Administración Pública. Oportunidades y desafíos 
15.7.2. Casos de uso  
15.7.3. Riesgos potenciales relacionados con el uso de IA  
15.7.4. Potenciales desarrollos/usos futuros de la IA  

15.8. Educación  

15.8.1. Implicaciones de la IA en la educación. Oportunidades y desafíos 
15.8.2. Casos de uso  
15.8.3. Riesgos potenciales relacionados con el uso de IA  
15.8.4. Potenciales desarrollos/usos futuros de la IA 

15.9. Silvicultura y agricultura  

15.9.1. Implicaciones de la IA en la silvicultura y la agricultura. Oportunidades y desafíos  
15.9.2. Casos de uso 
15.9.3. Riesgos potenciales relacionados con el uso de IA 
15.9.4. Potenciales desarrollos/usos futuros de la IA  

15.10 Recursos Humanos  

15.10.1. Implicaciones de la IA en los Recursos Humanos. Oportunidades y desafíos 
15.10.2. Casos de uso  
15.10.3. Riesgos potenciales relacionados con el uso de IA  
15.10.4. Potenciales desarrollos/usos futuros de la IA 

Módulo 16. Aplicaciones Prácticas de la Inteligencia Artificial en Diseño 

16.1. Generación automática de imágenes en diseño gráfico con Wall-e, Adobe Firefly y Stable Difussion 

16.1.1. Conceptos fundamentales de generación de imágenes 
16.1.2. Herramientas y frameworks para generación gráfica automática 
16.1.3. Impacto social y cultural del diseño generativo 
16.1.4. Tendencias actuales en el campo y futuros desarrollos y aplicaciones 

16.2. Personalización dinámica de interfaces de usuario mediante IA 

16.2.1. Principios de personalización en UI/UX
16.2.2. Algoritmos de recomendación en personalización de interfaces 
16.2.3. Experiencia del usuario y retroalimentación continua 
16.2.4. Implementación práctica en aplicaciones reales 

16.3. Diseño generativo: Aplicaciones en industria y arte 

16.3.1. Fundamentos del diseño generativo 
16.3.2. Diseño generativo en la industria 
16.3.3. Diseño generativo en el arte contemporáneo 
16.3.4. Desafíos y futuros avances en diseño generativo 

16.4. Creación automática de Layouts editoriales con algoritmos 

16.4.1. Principios de Layout editorial automático 
16.4.2. Algoritmos de distribución de contenido 
16.4.3. Optimización de espacios y proporciones en diseño editorial 
16.4.4. Automatización del proceso de revisión y ajuste 

16.5. Generación procedimental de contenido en videojuegos con PCG 

16.5.1. Introducción a la generación procedimental en videojuegos
16.5.2. Algoritmos para la creación automática de niveles y ambientes 
16.5.3. Narrativa procedimental y ramificación en videojuegos 
16.5.4. Impacto de la generación procedimental en la experiencia del jugador 

16.6. Reconocimiento de patrones en logotipos con Machine Learning mediante Cogniac 

16.6.1. Fundamentos de reconocimiento de patrones en diseño gráfico 
16.6.2. Implementación de modelos de Machine Learning para identificación de logotipos 
16.6.3. Aplicaciones prácticas en el diseño gráfico 
16.6.4. Consideraciones legales y éticas en el reconocimiento de logotipos 

16.7. Optimización de colores y composiciones con IA 

16.7.1. Psicología del color y composición visual 
16.7.2. Algoritmos de optimización de colores en diseño gráfico con Adobe Color Wheel y Coolors 
16.7.3. Composición automática de elementos visuales mediante Framer, Canva y RunwayML 
16.7.4. Evaluación del impacto de la optimización automática en la percepción del usuario 

16.8. Análisis predictivo de tendencias visuales en diseño 

16.8.1. Recopilación de datos y tendencias actuales 
16.8.2. Modelos de Machine Learning para predicción de tendencias 
16.8.3. Implementación de estrategias proactivas en diseño 
16.8.4. Principios en el uso de datos y predicciones en diseño 

16.9. Colaboración asistida por IA en equipos de diseño 

16.9.1. Colaboración humano-IA en proyectos de diseño 
16.9.2. Plataformas y herramientas para colaboración asistida por IA (Adobe Creative Cloud y Sketch2React) 
16.9.3. Mejores prácticas en integración de tecnologías asistidas por IA 
16.9.4. Perspectivas futuras en colaboración humano-IA en diseño 

16.10. Estrategias para la incorporación exitosa de IA en el diseño 

16.10.1. Identificación de necesidades de diseño resolubles por IA 
16.10.2. Evaluación de plataformas y herramientas disponibles 
16.10.3. Integración efectiva en proyectos de diseño 
16.10.4. Optimización continua y adaptabilidad

Módulo 17. Interacción Diseño-Usuario e IA 

17.1. Sugerencias contextuales de diseño basadas en comportamiento 

17.1.1. Entendiendo el comportamiento del usuario en el diseño 
17.1.2. Sistemas de sugerencias contextuales basadas en IA 
17.1.3. Estrategias para garantizar la transparencia y el consentimiento del usuario 
17.1.4. Tendencias y posibles mejoras en la personalización basada en el comportamiento 

17.2. Análisis predictivo de interacciones de usuarios 

17.2.1. Importancia del análisis predictivo en interacciones usuario-diseño 
17.2.2. Modelos de Machine Learning para predicción de comportamiento del usuario 
17.2.3. Integración de análisis predictivo en el diseño de interfaces de usuario 
17.2.4. Desafíos y dilemas en el análisis predictivo 

17.3. Diseño adaptativo a diferentes dispositivos con IA 

17.3.1. Principios de diseño adaptativo a dispositivos 
17.3.2. Algoritmos de adaptación de contenido 
17.3.3. Optimización de interfaz para experiencias móviles y de escritorio 
17.3.4. Desarrollos futuros en diseño adaptativo con tecnologías emergentes 

17.4. Generación automática de personajes y enemigos en videojuegos 

17.4.1. Necesidad de generación automática en el desarrollo de videojuegos 
17.4.2. Algoritmos de generación de personajes y enemigos 
17.4.3. Personalización y adaptabilidad en personajes generados automáticamente 
17.4.4. Experiencias de desarrollo: Desafíos y lecciones aprendidas 

17.5. Mejora de la IA en personajes del juego 

17.5.1. Importancia de la inteligencia artificial en personajes de videojuegos 
17.5.2. Algoritmos para mejorar el comportamiento de personajes
17.5.3. Adaptación continua y aprendizaje de la IA en juegos 
17.5.4. Desafíos técnicos y creativos en la mejora de la IA de personajes 

17.6. Diseño personalizado en la industria: Desafíos y oportunidades 

17.6.1. Transformación del diseño industrial con personalización 
17.6.2. Tecnologías habilitadoras para el diseño personalizado 
17.6.3. Desafíos en la implementación de diseño personalizado a escala 
17.6.4. Oportunidades de innovación y diferenciación competitiva 

17.7. Diseño para sostenibilidad mediante IA 

17.7.1. Análisis del ciclo de vida y trazabilidad con inteligencia artificial 
17.7.2. Optimización de materiales reciclables 
17.7.3. Mejora de procesos sostenibles 
17.7.4. Desarrollo de estrategias y proyectos prácticos 

17.8. Integración de asistentes virtuales en interfaces de diseño con Adobe Sensei, Figma y AutoCAD 

17.8.1. Papel de los asistentes virtuales en el diseño interactivo 
17.8.2. Desarrollo de asistentes virtuales especializados en diseño 
17.8.3. Interacción natural con asistentes virtuales en proyectos de diseño 
17.8.4. Desafíos de implementación y mejoras continuas 

17.9. Análisis continuo de la experiencia del usuario para mejoras 

17.9.1. Ciclo de mejora continua en diseño de interacción 
17.9.2. Herramientas y métricas para el análisis continuo 
17.9.3. Iteración y adaptación en experiencia del usuario 
17.9.4. Garantía de la privacidad y transparencia en el manejo de datos sensibles 

17.10. Aplicación de técnicas de IA para la mejora de la usabilidad 

17.10.1. Intersección de IA y usabilidad 
17.10.2. Análisis de sentimientos y experiencia del usuario (UX) 
17.10.3. Personalización dinámica de interfaz 
17.10.4. Optimización de flujo de trabajo y navegación 

Módulo 18. Innovación en procesos de Diseño e IA 

18.1. Optimización de procesos de fabricación con simulaciones IA 

18.1.1. Introducción a la optimización de procesos de fabricación 
18.1.2. Simulaciones IA para la optimización de producción 
18.1.3. Desafíos técnicos y operativos en la implementación de simulaciones IA 
18.1.4. Perspectivas futuras: Avances en la optimización de procesos con IA 

18.2. Creación de prototipos virtuales: Desafíos y beneficios 

18.2.1. Importancia de la creación de prototipos virtuales en el diseño 
18.2.2. Herramientas y tecnologías para la creación de prototipos virtuales 
18.2.3. Desafíos en la creación de prototipos virtuales y estrategias de superación 
18.2.4. Impacto en la innovación y agilidad del diseño 

18.3. Diseño generativo: Aplicaciones en la industria y la creación artística 

18.3.1. Arquitectura y planificación urbana 
18.3.2. Diseño de moda y textiles 
18.3.3. Diseño de materiales y texturas 
18.3.4. Automatización en diseño gráfico 

18.4. Análisis de materiales y rendimiento mediante inteligencia artificial 

18.4.1. Importancia del análisis de materiales y rendimiento en el diseño 
18.4.2. Algoritmos de inteligencia artificial para análisis de materiales 
18.4.3. Impacto en la eficiencia y sostenibilidad del diseño 
18.4.4. Desafíos en la implementación y futuras aplicaciones 

18.5. Personalización masiva en la producción industrial 

18.5.1. Transformación de la producción mediante la personalización masiva 
18.5.2. Tecnologías facilitadoras de la personalización masiva 
18.5.3. Desafíos logísticos y de escala en la personalización masiva 
18.5.4. Impacto económico y oportunidades de innovación 

18.6. Herramientas de diseño asistido por inteligencia artificial (Deep Dream Generator, Fotor y Snappa) 

18.6.1. Diseño asistido por generación gan (redes generativas adversarias) 
18.6.2. Generación colectiva de ideas 
18.6.3. Generación contextualmente consciente 
18.6.4. Exploración de dimensiones creativas no lineales 

18.7. Diseño colaborativo humano-robot en proyectos innovadores 

18.7.1. Integración de robots en proyectos de diseño innovadores 
18.7.2. Herramientas y plataformas para colaboración humano-robot (ROS, OpenAI Gym y Azure Robotics) 
18.7.3. Desafíos en la integración de robots en proyectos creativos 
18.7.4. Perspectivas futuras en diseño colaborativo con tecnologías emergentes 

18.8. Mantenimiento predictivo de productos: Enfoque IA 

18.8.1. Importancia del mantenimiento predictivo en la prolongación de la vida útil de productos 
18.8.2. Modelos de Machine Learning para mantenimiento predictivo 
18.8.3. Implementación práctica en diversas industrias 
18.8.4. Evaluación de la precisión y la eficacia de estos modelos en entornos industriales 

18.9. Generación automática de tipografías y estilos visuales 

18.9.1. Fundamentos de la generación automática en diseño de tipografías 
18.9.2. Aplicaciones prácticas en diseño gráfico y comunicación visual 
18.9.3. Diseño colaborativo asistido por IA en la creación de tipografías 
18.9.4. Exploración de estilos y tendencias automáticas 

18.10. Integración de IoT para monitorizar productos en tiempo real 

18.10.1. Transformación con la integración de IoT en el diseño de productos 
18.10.2. Sensores y dispositivos IoT para monitorización en tiempo real
18.10.3. Análisis de datos y toma de decisiones basada en IoT  
18.10.4. Desafíos en la implementación y futuras aplicaciones de IoT en diseño 

Módulo 19. Tecnologías aplicadas al Diseño e IA  

19.1. Integración de asistentes virtuales en interfaces de diseño con Dialogflow, Microsoft Bot Framework y Rasa 

19.1.1. Papel de los asistentes virtuales en el diseño interactivo
19.1.2. Desarrollo de asistentes virtuales especializados en diseño 
19.1.3. Interacción natural con asistentes virtuales en proyectos de diseño 
19.1.4. Desafíos de implementación y mejoras continuas 

19.2. Detección y corrección automática de errores visuales con IA 

19.2.1. Importancia de la detección y corrección automática de errores visuales 
19.2.2. Algoritmos y modelos para detección de errores visuales 
19.2.3. Herramientas de corrección automática en diseño visual 
19.2.4. Desafíos en la detección y corrección automática y estrategias de superación 

19.3. Herramientas de IA para la evaluación de usabilidad de diseños de interfaces (EyeQuant, Lookback y Mouseflow) 

19.3.1. Análisis de datos de interacción con modelos de aprendizaje automático 
19.3.2. Generación de informes automatizados y recomendaciones 
19.3.3. Simulaciones de usuarios virtuales para pruebas de usabilidad mediante Botpress, Botium y Rasa 
19.3.4. Interfaz conversacional para retroalimentación de usuarios 

19.4. Optimización de flujos de trabajo editoriales con algoritmos con Chat GPT, Bing, WriteSonic y Jasper 

19.4.1. Importancia de la optimización de flujos de trabajo editoriales 
19.4.2. Algoritmos para la automatización y optimización editorial 
19.4.3. Herramientas y tecnologías para la optimización editorial 
19.4.4. Desafíos en la implementación y mejoras continuas en flujos de trabajo editoriales 

19.5. Simulaciones realistas en el diseño de videojuegos con TextureLab y Leonardo 

19.5.1. Importancia de simulaciones realistas en la industria de videojuegos 
19.5.2. Modelado y simulación de elementos realistas en videojuegos 
19.5.3. Tecnologías y herramientas para simulaciones realistas en videojuegos 
19.5.4. Desafíos técnicos y creativos en simulaciones realistas de videojuegos 

19.6. Generación automática de contenido multimedia en diseño editorial 

19.6.1. Transformación con la generación automática de contenido multimedia 
19.6.2. Algoritmos y modelos para la generación automática de contenido multimedia
19.6.3. Aplicaciones prácticas en proyectos editoriales 
19.6.4. Desafíos y futuras tendencias en la generación automática de contenido multimedia 

19.7. Diseño adaptativo y predictivo basado en datos del usuario 

19.7.1. Importancia del diseño adaptativo y predictivo en experiencia del usuario 
19.7.2. Recopilación y análisis de datos del usuario para diseño adaptativo 
19.7.3. Algoritmos para diseño adaptativo y predictivo 
19.7.4. Integración de diseño adaptativo en plataformas y aplicaciones 

19.8. Integración de algoritmos en la mejora de la usabilidad 

19.8.1. Segmentación y patrones de comportamiento 
19.8.2. Detección de problemas de usabilidad 
19.8.3. Adaptabilidad a cambios en las preferencias del usuario 
19.8.4. Pruebas a/b automatizadas y análisis de resultados 

19.9. Análisis continuo de la experiencia del usuario para mejoras iterativas 

19.9.1. Importancia de la retroalimentación continua en la evolución de productos y servicios 
19.9.2. Herramientas y métricas para el análisis continuo 
19.9.3. Casos de estudio que demuestran mejoras sustanciales logradas mediante este enfoque 
19.9.4. Manejo de datos sensibles 

19.10. Colaboración asistida por IA en equipos editoriales 

19.10.1. Transformación de la colaboración en equipos editoriales con asistencia de IA 
19.10.2. Herramientas y plataformas para colaboración asistida por IA (Grammarly, Yoast SEO y Quillionz)
19.10.3. Desarrollo de asistentes virtuales especializados en edición  
19.10.4. Desafíos en la implementación y futuras aplicaciones de colaboración asistida por IA 

Módulo 20. Ética y medioambiente en el Diseño e IA  

20.1. Impacto ambiental en el diseño industrial: Enfoque ético 

20.1.1. Conciencia ambiental en el diseño industrial 
20.1.2. Evaluación del ciclo de vida y diseño sostenible 
20.1.3. Desafíos éticos en decisiones de diseño con impacto ambiental 
20.1.4. Innovaciones sostenibles y futuras tendencias 

20.2. Mejora de la accesibilidad visual en diseño gráfico con responsabilidad 

20.2.1. Accesibilidad visual como prioridad ética en el diseño gráfico 
20.2.2. Herramientas y prácticas para la mejora de la accesibilidad visual (Google LightHouse y Microsoft Accessibility Insights) 
20.2.3. Desafíos éticos en la implementación de accesibilidad visual 
20.2.4. Responsabilidad profesional y futuras mejoras en accesibilidad visual 

20.3. Reducción de residuos en el proceso de diseño: Desafíos sostenibles 

20.3.1. Importancia de la reducción de residuos en diseño 
20.3.2. Estrategias para la reducción de residuos en diferentes etapas del diseño
20.3.3. Desafíos éticos en la implementación de prácticas de reducción de residuos 
20.3.4. Compromisos empresariales y certificaciones sostenibles 

20.4. Análisis de sentimientos en creación de contenido editorial: Consideraciones éticas 

20.4.1. Análisis de sentimientos y ética en contenido editorial 
20.4.2. Algoritmos de análisis de sentimientos y decisiones éticas 
20.4.3. Impacto en la opinión pública 
20.4.4. Desafíos en el análisis de sentimientos y futuras implicaciones 

20.5. Integración de reconocimiento de emociones para experiencias inmersivas  

20.5.1. Ética en la Integración de Reconocimiento de Emociones en Experiencias Inmersivas 
20.5.2. Tecnologías de Reconocimiento de Emociones 
20.5.3. Desafíos Éticos en la Creación de Experiencias Inmersivas Emocionalmente Conscientes 
20.5.4. Perspectivas Futuras y Ética en el Desarrollo de Experiencias Inmersivas 

20.6. Ética en el Diseño de videojuegos: Implicaciones y decisiones 

20.6.1. Ética y Responsabilidad en el Diseño de Videojuegos 
20.6.2. Inclusión y Diversidad en Videojuegos: Decisiones Éticas 
20.6.3. Microtransacciones y Monetización Ética en Videojuegos 
20.6.4. Desafíos Éticos en el Desarrollo de Narrativas y Personajes en Videojuegos 

20.7. Diseño responsable: Consideraciones éticas y ambientales en la industria 

20.7.1. Enfoque Ético en el Diseño Responsable 
20.7.2. Herramientas y Métodos para el Diseño Responsable 
20.7.3. Desafíos Éticos y Ambientales en la Industria del Diseño 
20.7.4. Compromisos Empresariales y Certificaciones de Diseño Responsable 

20.8. Ética en la integración de IA en interfaces de usuario 

20.8.1. Exploración de cómo la inteligencia artificial en las interfaces de usuario plantea desafíos éticos 
20.8.2. Transparencia y Explicabilidad en Sistemas de IA en Interfaz de Usuario 
20.8.3. Desafíos Éticos en la Recopilación y Uso de Datos en Interfaz de Usuario 
20.8.4. Perspectivas Futuras en Ética de la IA en Interfaces de Usuario 

20.9. Sostenibilidad en la innovación de procesos de Diseño 

20.9.1. Reconocimiento de la importancia de la sostenibilidad en la innovación de procesos de diseño 
20.9.2. Desarrollo de Procesos Sostenibles y Toma de Decisiones Éticas 
20.9.3. Desafíos Éticos en la Adopción de Tecnologías Innovadoras 
20.9.4. Compromisos Empresariales y Certificaciones de Sostenibilidad en Procesos de Diseño 

20.10. Aspectos éticos en la aplicación de tecnologías en el Diseño 

20.10.1. Decisiones Éticas en la Selección y Aplicación de Tecnologías de Diseño 
20.10.2. Ética en el Diseño de Experiencias de Usuario con Tecnologías Avanzadas 
20.10.3. Intersecciones de ética y tecnologías en el diseño 
20.10.4. Tendencias emergentes y el papel de la ética en la dirección futura del diseño con tecnologías avanzadas

##IMAGE##

Sumérgete en un programa integral y avanzado, único en crear profesionales altamente cualificados en la aplicación de la Inteligencia Artificial en Diseño” 

Máster en Inteligencia Artificial en Diseño

Bienvenido al futuro del diseño con el Máster en Inteligencia Artificial de TECH Global University. En un mundo cada vez más digitalizado, la incorporación de la inteligencia artificial en las industrias creativas se presenta como un factor determinante para la innovación y la eficiencia. Este posgrado, ofrecido a través de clases online de vanguardia, está ideado para dotarte de las habilidades y conocimientos necesarios para destacar en el sector del diseño. El programa, cuidadosamente estructurado por expertos en la materia, se enfoca en proporcionar tanto conocimientos teóricos como habilidades prácticas a través de proyectos reales y casos de estudio. La flexibilidad es una característica fundamental de esta oferta educativa. Nuestras clases online te permitirán acceder al contenido desde cualquier lugar, adaptándose a tu agenda y compromisos profesionales. Con la posibilidad de aprender a tu propio ritmo, este programa se adapta a tu vida, brindándote la oportunidad de avanzar en tu carrera sin interrupciones.

Estudia la inteligencia artificial con el mejor posgrado

El contenido del programa aborda a fondo los aspectos cruciales de la inteligencia artificial aplicada al diseño. Desde algoritmos avanzados hasta técnicas de aprendizaje automático y procesamiento de lenguaje natural, adquirirás conocimientos que te permitirán liderar proyectos de diseño de manera efectiva y eficiente. Al sumergirte en un entorno de aprendizaje interactivo, tendrás la oportunidad de colaborar con profesionales del diseño, compartir ideas y experimentar con tecnologías de última generación. Este enfoque práctico y colaborativo te brindará una perspectiva única y valiosa que podrás aplicar directamente en tu carrera. Al concluir el Máster en Inteligencia Artificial en Diseño, no solo habrás ampliado tu conjunto de habilidades, sino que también habrás obtenido una comprensión profunda de cómo la inteligencia artificial está transformando el panorama del diseño. Prepárate para destacar en el mercado laboral, diferenciándote como un profesional del diseño capacitado para abordar los retos del siglo XXI. Únete a nosotros en esta emocionante travesía hacia el futuro del diseño.