Why study at TECH?

Artificial Intelligence has revolutionized the world of Marketing, optimizing the effectiveness of strategies and fostering a closer and more personalized relationship with customers" 

##IMAGE##

Why Study at TECH?

TECH is the world's largest 100% online business school. It is an elite business school, with a model based on the highest academic standards. A world-class center for intensive managerial skills education.   

TECH is a university at the forefront of technology, and puts all its resources at the student's disposal to help them achieve entrepreneurial success"

At TECH Global University

idea icon

Innovation

The university offers an online learning model that balances the latest educational technology with the most rigorous teaching methods. A unique method with the highest international recognition that will provide students with the keys to develop in a rapidly-evolving world, where innovation must be every entrepreneur’s focus.

"Microsoft Europe Success Story", for integrating the innovative, interactive multi-video system. 
head icon

The Highest Standards

Admissions criteria at TECH are not economic. Students don't need to make a large investment to study at this university. However, in order to obtain a qualification from TECH, the student's intelligence and ability will be tested to their limits. The institution's academic standards are exceptionally high...  

95% of TECH students successfully complete their studies.
neuronas icon

Networking

Professionals from countries all over the world attend TECH, allowing students to establish a large network of contacts that may prove useful to them in the future.  

100,000+ executives prepared each year, 200+ different nationalities.
hands icon

Empowerment

Students will grow hand in hand with the best companies and highly regarded and influential professionals. TECH has developed strategic partnerships and a valuable network of contacts with major economic players in 7 continents.  

500+ collaborative agreements with leading companies.
star icon

Talent

This program is a unique initiative to allow students to showcase their talent in the business world. An opportunity that will allow them to voice their concerns and share their business vision. 

After completing this program, TECH helps students show the world their talent.
earth icon

Multicultural Context 

While studying at TECH, students will enjoy a unique experience. Study in a multicultural context. In a program with a global vision, through which students can learn about the operating methods in different parts of the world, and gather the latest information that best adapts to their business idea.

TECH students represent more than 200 different nationalities.  
##IMAGE##
human icon

Learn with the best

In the classroom, TECH’s teaching staff discuss how they have achieved success in their companies, working in a real, lively, and dynamic context. Teachers who are fully committed to offering a quality specialization that will allow students to advance in their career and stand out in the business world. 

Teachers representing 20 different nationalities. 

TECH strives for excellence and, to this end, boasts a series of characteristics that make this university unique:   

brain icon

Analysis 

TECH explores the student’s critical side, their ability to question things, their problem-solving skills, as well as their interpersonal skills.  

micro icon

Academic Excellence 

TECH offers students the best online learning methodology. The university combines the Relearning method (postgraduate learning methodology with the best international valuation) with the Case Study. Tradition and vanguard in a difficult balance, and in the context of the most demanding educational itinerary. 

corazon icon

Economy of Scale 

TECH is the world’s largest online university. It currently boasts a portfolio of more than 10,000 university postgraduate programs. And in today's new economy, volume + technology = a ground-breaking price. This way, TECH ensures that studying is not as expensive for students as it would be at another university.   

At TECH, you will have access to the most rigorous and up-to-date case analyses in academia” 

Syllabus

The Professional master’s degree in Artificial Intelligence in Marketing and Communication is designed to address unique and advanced topics. The inclusion of specific modules, such as "Content Generation with AI" and "Automation and Optimization of Marketing Processes with AI", will provide unparalleled depth in key areas. The focus on ethics, future trends and integration of success stories, will offer a comprehensive and practical understanding of how AI redefines today's Digital Marketing strategies. 

You will acquire the fundamental skills and competencies to incorporate AI resources into sales management and lead generation" 

Syllabus

This Professional master’s degree in Artificial Intelligence in Marketing and Communication stands out for its comprehensive and advanced approach. The diversity of modules, which includes areas such as content generation; automation and process optimization; data analytics and AI-based decision making; as well as sales and lead generation, will provide professionals with a holistic perspective of how to integrate Artificial Intelligence into various facets of Digital Marketing. 

Unlike other programs, this one distinguishes itself by offering comprehensive content that covers, from essential fundamentals to future trends, ensuring that students acquire in-depth and up-to-date knowledge. Furthermore, it will not only focus on theory, but will also offer practical application through case studies and success analysis, enabling graduates to develop practical and strategic skills. 

Furthermore, special attention to ethical considerations and future trends will ensure that graduates are prepared to meet the challenges and take advantage of emerging opportunities in the dynamic field of Artificial Intelligence in Marketing. It is a syllabus focused on professional improvement for the achievement of work objectives that is offered through an innovative and flexible online learning system, allowing participants to combine teaching with their other tasks. 

In this way, to facilitate the assimilation and retention of all concepts, TECH bases all its programs on the innovative and effective Relearning methodology. Under this approach, students will strengthen their understanding with the repetition of key concepts, presented in various audiovisual formats to achieve a natural and gradual acquisition of skills. 

This Professional master’s degree takes place over 24 months and is divided into 20 modules: 

Module 1. Fundamentals of Artificial Intelligence 
Module 2. Data Types and Data Life Cycle
Module 3. Data in Artificial Intelligence
Module 4. Data Mining. Selection, Pre-Processing and Transformation
Module 5. Algorithm and Complexity in Artificial Intelligence
Module 6. Intelligent Systems
Module 7. Machine Learning and Data Mining
Module 8. Neural Networks, the Basis of Deep Learning
Module 9. Deep Neural Networks Training
Module 10. Model Customization and Training with TensorFlow
Module 11. Deep Computer Vision with Convolutional Neural Networks
Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention
Module 13. Autoencoders, GANs and Diffusion Models
Module 14. Bio-Inspired Computing 
Module 15. Artificial Intelligence: Strategies and Applications
Module 16. Artificial Intelligence in Digital Marketing Strategies 
Module 17. Content Generation with AI
Module 18. Automation and Optimization of Marketing Processes with AI
Module 19. Analysis of Communication and Marketing Data for Decision Making 
Module 20. Sales and Lead Generation with Artificial Intelligence

##IMAGE##

Where, When and How is it Taught?

TECH offers the possibility to develop this Professional master’s degree in Artificial Intelligence in Marketing and Communication completely online. Throughout the 12 months of the educational program, you will be able to access all the contents of this program at any time, allowing you to self-manage your study time. 

Module 1. Fundamentals of Artificial Intelligence

1.1. History of Artificial Intelligence 

1.1.1. When Do We Start Talking About Artificial Intelligence?
1.1.2. References in Film 
1.1.3. Importance of Artificial Intelligence 
1.1.4. Technologies that Enable and Support Artificial Intelligence 

1.2. Artificial Intelligence in Games 

1.2.1. Game Theory 
1.2.2. Minimax and Alpha-Beta Pruning 
1.2.3. Simulation: Monte Carlo 

1.3. Neural Networks 

1.3.1. Biological Fundamentals 
1.3.2. Computational Model 
1.3.3. Supervised and Unsupervised Neural Networks 
1.3.4. Simple Perceptron 
1.3.5. Multilayer Perceptron. 

1.4. Genetic Algorithms 

1.4.1. History 
1.4.2. Biological Basis 
1.4.3. Problem Coding 
1.4.4. Generation of the Initial Population 
1.4.5. Main Algorithm and Genetic Operators 
1.4.6. Evaluation of Individuals: Fitness 

1.5. Thesauri, Vocabularies, Taxonomies 

1.5.1. Vocabulary 
1.5.2. Taxonomy 
1.5.3. Thesauri 
1.5.4. Ontologies 
1.5.5. Knowledge Representation: Semantic Web 

1.6. Semantic Web 

1.6.1. Specifications RDF, RDFS and OWL 
1.6.2. Inference/ Reasoning 
1.6.3. Linked Data 

1.7. Expert systems and DSS 

1.7.1. Expert Systems 
1.7.2. Decision Support Systems 

1.8. Chatbots and Virtual Assistants

1.8.1. Types of Assistants: Voice and Text Assistants
1.8.2. Fundamental Parts for the Development of an Assistant: Intents, Entities and Dialog Flow 
1.8.3. Integrations: Web, Slack, Whatsapp, Facebook 
1.8.4. Assistant Development Tools: Dialog Flow, Watson Assistant

1.9. AI Implementation Strategy 
1.10. Future of Artificial Intelligence

1.10.1. Understand How to Detect Emotions Using Algorithms
1.10.2. Creating a Personality: Language, Expressions and Content
1.10.3. Trends of Artificial Intelligence
1.10.4. Reflections

Module 2. Data Types and Data Life Cycle

2.1. Statistics

2.1.1. Statistics: Descriptive Statistics, Statistical Inferences
2.1.2. Population, Sample, Individual
2.1.3. Variables: Definition, Measurement Scales

2.2. Types of Data Statistics

2.2.1. According to Type

2.2.1.1. Quantitative: Continuous Data and Discrete Data
2.2.1.2. Qualitative: Binomial Data, Nominal Data and Ordinal Data 

2.2.2. According to their Shape 

2.2.2.1. Numeric
2.2.2.2. Text: 
2.2.2.3. Logical

2.2.3. According to its Source

2.2.3.1. Primary
2.2.3.2. Secondary

2.3. Life Cycle of Data

2.3.1. Stages of the Cycle
2.3.2. Milestones of the Cycle
2.3.3. FAIR Principles

2.4. Initial Stages of the Cycle

2.4.1. Definition of Goals
2.4.2. Determination of Resource Requirements
2.4.3. Gantt Chart
2.4.4. Data Structure

2.5. Data Collection

2.5.1. Methodology of Data Collection
2.5.2. Data Collection Tools
2.5.3. Data Collection Channels

2.6. Data Cleaning

2.6.1. Phases of Data Cleansing
2.6.2. Data Quality
2.6.3. Data Manipulation (with R)

2.7. Data Analysis, Interpretation and Result Evaluation

2.7.1. Statistical Measures
2.7.2. Relationship Indexes
2.7.3. Data Mining

2.8. Data Warehouse (Datawarehouse)

2.8.1. Elements that Comprise it
2.8.2. Design
2.8.3. Aspects to Consider

2.9. Data Availability

2.9.1. Access
2.9.2. Uses
2.9.3. Security/Safety

2.10. Regulatory Aspects 

2.10.1. Data Protection Law
2.10.2. Good Practices
2.10.3. Other Normative Aspects

Module 3. Data in Artificial Intelligence

3.1. Data Science 

3.1.1. Data Science 
3.1.2. Advanced Tools for Data Scientists 

3.2. Data, Information and Knowledge 

3.2.1. Data, Information and Knowledge
3.2.2. Types of Data 
3.2.3. Data Sources 

3.3. From Data to Information

3.3.1. Data Analysis 
3.3.2. Types of Analysis 
3.3.3. Extraction of Information from a Dataset 

3.4. Extraction of Information Through Visualization 

3.4.1. Visualization as an Analysis Tool 
3.4.2. Visualization Methods
3.4.3. Visualization of a Data Set 

3.5. Data Quality 

3.5.1. Quality Data 
3.5.2. Data Cleaning
3.5.3. Basic Data Pre-Processing 

3.6. Dataset 

3.6.1. Dataset Enrichment 
3.6.2. The Curse of Dimensionality 
3.6.3. Modification of Our Data Set 

3.7. Unbalance

3.7.1. Classes of Unbalance 
3.7.2. Unbalance Mitigation Techniques 
3.7.3. Balancing a Dataset 

3.8. Unsupervised Models

3.8.1. Unsupervised Model 
3.8.2. Methods 
3.8.3. Classification with Unsupervised Models 

3.9. Supervised Models 

3.9.1. Supervised Model 
3.9.2. Methods 
3.9.3. Classification with Supervised Models 

3.10. Tools and Good Practices 

3.10.1. Good Practices for Data Scientists 
3.10.2. The Best Model
3.10.3. Useful Tools

Module 4. Data Mining: Selection, Pre-Processing and Transformation

4.1. Statistical Inference 

4.1.1. Descriptive Statistics vs. Statistical Inference 
4.1.2. Parametric Procedures 
4.1.3. Non-Parametric Procedures 

4.2. Exploratory Analysis 

4.2.1. Descriptive Analysis
4.2.2. Visualization 
4.2.3. Data Preparation 

4.3. Data Preparation 

4.3.1. Integration and Data Cleaning
4.3.2. Normalization of Data 
4.3.3. Transforming Attributes

4.4. Missing Values 

4.4.1. Treatment of Missing Values 
4.4.2. Maximum Likelihood Imputation Methods 
4.4.3. Missing Value Imputation Using Machine Learning 

4.5. Noise in the Data

4.5.1. Noise Classes and Attributes 
4.5.2. Noise Filtering
4.5.3. The Effect of Noise 

4.6. The Curse of Dimensionality 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Multidimensional Data Reduction 

4.7. From Continuous to Discrete Attributes 

4.7.1. Continuous Data Vs. Discreet Data 
4.7.2. Discretization Process 

4.8. The Data

4.8.1. Data Selection
4.8.2. Prospects and Selection Criteria 
4.8.3. Selection Methods

4.9. Instance Selection 

4.9.1. Methods for Instance Selection 
4.9.2. Prototype Selection 
4.9.3. Advanced Methods for Instance Selection 

4.10. Data Pre-Processing in Big Data Environments

Module 5. Algorithm and Complexity in Artificial Intelligence

5.1. Introduction to Algorithm Design Strategies 

5.1.1. Recursion 
5.1.2. Divide and Conquer 
5.1.3. Other Strategies 

5.2. Efficiency and Analysis of Algorithms 

5.2.1. Efficiency Measures 
5.2.2. Measuring the Size of the Input 
5.2.3. Measuring Execution Time 
5.2.4. Worst, Best and Average Case 
5.2.5. Asymptotic Notation 
5.2.6. Criteria for Mathematical Analysis of Non-Recursive Algorithms 
5.2.7. Mathematical Analysis of Recursive Algorithms 
5.2.8. Empirical Analysis of Algorithms 

5.3. Sorting Algorithms 

5.3.1. Concept of Sorting 
5.3.2. Bubble Sorting 
5.3.3. Sorting by Selection 
5.3.4. Sorting by Insertion 
5.3.5. Merge Sort 
5.3.6. Quick Sort 

5.4. Algorithms with Trees 

5.4.1. Tree Concept 
5.4.2. Binary Trees 
5.4.3. Tree Paths 
5.4.4. Representing Expressions 
5.4.5. Ordered Binary Trees 
5.4.6. Balanced Binary Trees 

5.5. Algorithms Using Heaps 

5.5.1. Heaps 
5.5.2. The Heapsort Algorithm 
5.5.3. Priority Queues 

5.6. Graph Algorithms 

5.6.1. Representation 
5.6.2. Traversal in Width 
5.6.3. Depth Travel 
5.6.4. Topological Sorting 

5.7. Greedy Algorithms 

5.7.1. Greedy Strategy 
5.7.2. Elements of the Greedy Strategy 
5.7.3. Currency Exchange 
5.7.4. Traveler’s Problem 
5.7.5. Backpack Problem 

5.8. Minimal Path Finding 

5.8.1. The Minimum Path Problem 
5.8.2. Negative Arcs and Cycles 
5.8.3. Dijkstra's Algorithm 

5.9. Greedy Algorithms on Graphs 

5.9.1. The Minimum Covering Tree 
5.9.2. Prim's Algorithm 
5.9.3. Kruskal’s Algorithm 
5.9.4. Complexity Analysis 

5.10. Backtracking 

5.10.1. Backtracking 
5.10.2. Alternative Techniques

Module 6. Intelligent Systems

6.1. Agent Theory 

6.1.1. Concept History 
6.1.2. Agent Definition 
6.1.3. Agents in Artificial Intelligence 
6.1.4. Agents in Software Engineering 

6.2. Agent Architectures 

6.2.1. The Reasoning Process of an Agent 
6.2.2. Reactive Agents 
6.2.3. Deductive Agents 
6.2.4. Hybrid Agents 
6.2.5. Comparison 

6.3. Information and Knowledge 

6.3.1. Difference between Data, Information and Knowledge 
6.3.2. Data Quality Assessment 
6.3.3. Data Collection Methods 
6.3.4. Information Acquisition Methods 
6.3.5. Knowledge Acquisition Methods 

6.4. Knowledge Representation 

6.4.1. The Importance of Knowledge Representation 
6.4.2. Definition of Knowledge Representation According to Roles 
6.4.3. Knowledge Representation Features 

6.5. Ontologies 

6.5.1. Introduction to Metadata 
6.5.2. Philosophical Concept of Ontology 
6.5.3. Computing Concept of Ontology 
6.5.4. Domain Ontologies and Higher-Level Ontologies 
6.5.5. How to Build an Ontology? 

6.6. Ontology Languages and Ontology Creation Software 

6.6.1. Triple RDF, Turtle and N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introduction to Ontology Creation Tools 
6.6.6. Installing and Using Protégé 

6.7. Semantic Web 

6.7.1. Current and Future Status of the Semantic Web 
6.7.2. Semantic Web Applications 

6.8. Other Knowledge Representation Models 

6.8.1. Vocabulary 
6.8.2. Global Vision 
6.8.3. Taxonomy 
6.8.4. Thesauri 
6.8.5. Folksonomy 
6.8.6. Comparison 
6.8.7. Mind Maps 

6.9. Knowledge Representation Assessment and Integration 

6.9.1. Zero-Order Logic 
6.9.2. First-Order Logic 
6.9.3. Descriptive Logic 
6.9.4. Relationship between Different Types of Logic 
6.9.5. Prolog: Programming Based on First-Order Logic 

6.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems 

6.10.1. Concept of Reasoner 
6.10.2. Reasoner Applications 
6.10.3. Knowledge-Based Systems 
6.10.4. MYCIN: History of Expert Systems 
6.10.5. Expert Systems Elements and Architecture 
6.10.6. Creating Expert Systems

Module 7. Machine Learning and Data Mining

7.1. Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning 

7.1.1. Key Concepts of Knowledge Discovery Processes 
7.1.2. Historical Perspective of Knowledge Discovery Processes 
7.1.3. Stages of the Knowledge Discovery Processes 
7.1.4. Techniques Used in Knowledge Discovery Processes 
7.1.5. Characteristics of Good Machine Learning Models 
7.1.6. Types of Machine Learning Information 
7.1.7. Basic Learning Concepts 
7.1.8. Basic Concepts of Unsupervised Learning 

7.2. Data Exploration and Pre-processing 

7.2.1. Data Processing 
7.2.2. Data Processing in the Data Analysis Flow 
7.2.3. Types of Data 
7.2.4. Data Transformations 
7.2.5. Visualization and Exploration of Continuous Variables 
7.2.6. Visualization and Exploration of Categorical Variables 
7.2.7. Correlation Measures 
7.2.8. Most Common Graphic Representations 
7.2.9. Introduction to Multivariate Analysis and Dimensionality Reduction 

7.3. Decision Trees 

7.3.1. ID Algorithm 
7.3.2. Algorithm C 
7.3.3. Overtraining and Pruning 
7.3.4. Analysis of Results 

7.4. Evaluation of Classifiers 

7.4.1. Confusion Matrixes 
7.4.2. Numerical Evaluation Matrixes 
7.4.3. Kappa Statistic 
7.4.4. ROC Curves 

7.5. Classification Rules 

7.5.1. Rule Evaluation Measures 
7.5.2. Introduction to Graphic Representation 
7.5.3. Sequential Overlay Algorithm 

7.6. Neural Networks 

7.6.1. Basic Concepts 
7.6.2. Simple Neural Networks 
7.6.3. Backpropagation Algorithm 
7.6.4. Introduction to Recurrent Neural Networks 

7.7. Bayesian Methods 

7.7.1. Basic Probability Concepts 
7.7.2. Bayes' Theorem 
7.7.3. Naive Bayes 
7.7.4. Introduction to Bayesian Networks 

7.8. Regression and Continuous Response Models 

7.8.1. Simple Linear Regression 
7.8.2. Multiple Linear Regression 
7.8.3. Logistic Regression 
7.8.4. Regression Trees 
7.8.5. Introduction to Support Vector Machines (SVM) 
7.8.6. Goodness-of-Fit Measures 

7.9. Clustering 

7.9.1. Basic Concepts 
7.9.2. Hierarchical Clustering 
7.9.3. Probabilistic Methods 
7.9.4. EM Algorithm 
7.9.5. B-Cubed Method 
7.9.6. Implicit Methods 

7.10. Text Mining and Natural Language Processing (NLP) 

7.10.1. Basic Concepts 
7.10.2. Corpus Creation 
7.10.3. Descriptive Analysis 
7.10.4. Introduction to Feelings Analysis

Module 8. Neural Networks, the Basis of Deep Learning

8.1. Deep Learning 

8.1.1. Types of Deep Learning 
8.1.2. Applications of Deep Learning 
8.1.3. Advantages and Disadvantages of Deep Learning 

8.2. Surgery 

8.2.1. Sum 
8.2.2. Product 
8.2.3. Transfer 

8.3. Layers 

8.3.1. Input layer 
8.3.2. Cloak 
8.3.3. Output layer 

8.4. Union of Layers and Operations 

8.4.1. Architecture Design 
8.4.2. Connection between layers 
8.4.3. Forward propagation 

8.5. Construction of the first neural network 

8.5.1. Network Design 
8.5.2. Establish the weights 
8.5.3. Network Training 

8.6. Trainer and Optimizer 

8.6.1. Optimizer Selection 
8.6.2. Establishment of a Loss Function 
8.6.3. Establishing a Metric 

8.7. Application of the Principles of Neural Networks 

8.7.1. Activation Functions 
8.7.2. Backward Propagation 
8.7.3. Parameter Adjustment 

8.8. From Biological to Artificial Neurons 

8.8.1. Functioning of a Biological Neuron 
8.8.2. Transfer of Knowledge to Artificial Neurons 
8.8.3. Establish Relations Between the Two 

8.9. Implementation of MLP (Multilayer Perceptron) with Keras 

8.9.1. Definition of the Network Structure 
8.9.2. Model Compilation 
8.9.3. Model Training 

8.10. Fine tuning  hyperparameters of neural networks 

8.10.1. Selection of the Activation Function 
8.10.2. Set the Learning Rate 
8.10.3. Adjustment of Weights

Module 9. Deep Neural Networks Training

9.1. Gradient Problems 

9.1.1. Gradient Optimization Techniques 
9.1.2. Stochastic Gradients 
9.1.3. Weight Initialization Techniques 

9.2. Reuse of Pre-Trained Layers 

9.2.1. Learning transfer training 
9.2.2. Feature Extraction 
9.2.3. Deep Learning 

9.3. Optimizers 

9.3.1. Stochastic Gradient Descent Optimizers 
9.3.2. Optimizers Adam and RMSprop 
9.3.3. Moment Optimizers 

9.4. Programming of the learning rate 

9.4.1. Automatic Learning Rate Control 
9.4.2. Learning Cycles 
9.4.3. Smoothing Terms 

9.5. Overfitting 

9.5.1. Cross Validation 
9.5.2. Regularization 
9.5.3. Evaluation Metrics 

9.6. Practical Guidelines 

9.6.1. Model Design 
9.6.2. Selection of metrics and evaluation parameters 
9.6.3. Hypothesis Testing 

9.7. Transfer Learning 

9.7.1. Learning transfer training 
9.7.2. Feature Extraction 
9.7.3. Deep Learning 

9.8. Data Augmentation 

9.8.1. Image Transformations 
9.8.2. Synthetic Data Generation 
9.8.3. Text Transformation 

9.9. Practical Application of Transfer Learning 

9.9.1. Learning Transfer Training 
9.9.2. Feature Extraction 
9.9.3. Deep Learning 

9.10. Regularization 

9.10.1. L and L 
9.10.2. Regularization by Maximum Entropy 
9.10.3. Dropout

Module 10. Model Customization and Training with TensorFlow

10.1. TensorFlow 

10.1.1. Use of the TensorFlow Library 
10.1.2. Model Training with TensorFlow 
10.1.3. Operations with Graphs in TensorFlow 

10.2. TensorFlow and NumPy 

10.2.1. NumPy Computing Environment for TensorFlow 
10.2.2. Using NumPy Arrays with TensorFlow 
10.2.3. NumPy operations for TensorFlow Graphs 

10.3. Model Customization and Training Algorithms 

10.3.1. Building Custom Models with TensorFlow 
10.3.2. Management of Training Parameters 
10.3.3. Use of Optimization Techniques for Training 

10.4. TensorFlow Features and Graphs 

10.4.1. Functions with TensorFlow 
10.4.2. Use of Graphs for Model Training 
10.4.3. Graphs Optimization with TensorFlow Operations 

10.5. Loading and Preprocessing Data with TensorFlow 

10.5.1. Loading Data Sets with TensorFlow 
10.5.2. Preprocessing Data with TensorFlow 
10.5.3. Using TensorFlow Tools for Data Manipulation 

10.6. The tf.data API 

10.6.1. Using the tf.dataAPI for Data Processing 
10.6.2. Construction of Data Streams with tf.data 
10.6.3. Using the tf.data API for Model Training 

10.7. The TFRecord Format 

10.7.1. Using the TFRecordAPI for data serialization 
10.7.2. TFRecord File Upload with TensorFlow 
10.7.3. Using TFRecord files for Model Training 

10.8. Layers of preprocessing of Keras 

10.8.1. Using the Keras Preprocessing API 
10.8.2. Preprocessing Pipelined Construction with Keras 
10.8.3. Using the Keras Preprocessing API for Model Training 

10.9. The TensorFlow Datasets Project 

10.9.1. Using TensorFlow Datasets for data loading 
10.9.2. Preprocessing Data with TensorFlow Datasets 
10.9.3. Using TensorFlow Datasets for model training 

10.10. Building a Deep Learning App with TensorFlow 

10.10.1. Practical Application 
10.10.2. Building a Deep Learning App with TensorFlow 
10.10.3. Model training with TensorFlow 
10.10.4. Using the application to predict results

Module 11. Deep Computer Vision with Convolutional Neural Networks

11.1. The Visual Cortex Architecture 

11.1.1. Functions of the Visual Cortex 
11.1.2. Theories of Computational Vision 
11.1.3. Models of Image Processing 

11.2. Convolutional Layers 

11.2.1. Reuse of Weights in Convolution 
11.2.2. Convolution D 
11.2.3. Activation Functions 

11.3. Layers of grouping and implementation of layers of grouping with Keras 

11.3.1. Pooling and Striding 
11.3.2. Flattening 
11.3.3. Types of Pooling 

11.4. CNN Architecture 

11.4.1. VGG Architecture 
11.4.2. AlexNet Architecture 
11.4.3. Architecture ResNet 

11.5. Implementing a CNN ResNet- using Keras 

11.5.1. Weight Initialization 
11.5.2. Input Layer Definition 
11.5.3. Output Definition 

11.6. Use of pre-trained Keras models 

11.6.1. Characteristics of Pre-trained Models 
11.6.2. Uses of Pre-trained Models 
11.6.3. Advantages of Pre-trained Models 

11.7. Pre-trained Models for Transfer Learning 

11.7.1. Transfer Learning 
11.7.2. Transfer Learning Process 
11.7.3. Advantages of Transfer Learning 

11.8. Deep Computer Vision Classification and Localization 

11.8.1. Image Classification 
11.8.2. Localization of Objects in Images 
11.8.3. Object Detection 

11.9. Object Detection and Object Tracking 

11.9.1. Object Detection Methods 
11.9.2. Object Tracking Algorithms 
11.9.3. Tracking and Localization Techniques 

11.10. Semantic Segmentation 

11.10.1. Deep Learning for Semantic Segmentation 
11.10.2. Edge Detection 
11.10.3. Segmentation methods based on rules

Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention

12.1. Text Generation using RNN 

12.1.1. Training an RNN for Text Generation 
12.1.2. Natural Language Generation with RNN 
12.1.3. Text Generation Applications with RNN 

12.2. Training Data Set Creation 

12.2.1. Preparation of the Data for Training an RNN 
12.2.2. Storage of training data set 
12.2.3. Data Cleaning and Transformation 
12.2.4. Sentiment Analysis 

12.3. Rating of reviews with RNN 

12.3.1. Detection of Themes in Comments 
12.3.2. Sentiment analysis with deep learning algorithms 

12.4. Encoder-Decoder Network for Neural Machine Translation 

12.4.1. Training an RNN for Machine Translation 
12.4.2. Use of an encoder-decoder network for machine translation 
12.4.3. Improving the Accuracy of Machine Translation with RNNs 

12.5. Attention Mechanisms 

12.5.1. Application of care mechanisms in NRN 
12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models 
12.5.3. Advantages of attention mechanisms in neural networks 

12.6. Transformer Models 

12.6.1. Using TransformersModels for Natural Language Processing 
12.6.2. Application of Transformers Models for Vision 
12.6.3. Advantages of Transformers Models 

12.7. Transformers for Vision 

12.7.1. Use of Transformers Models for Vision 
12.7.2. Image Data Preprocessing 
12.7.3. Training a Transformers Model for Vision 

12.8. Hugging Face’s Transformers Bookstore 

12.8.1. Using the Hugging Face’s TransformersLibrary 
12.8.2. Hugging Face’s TransformersLibrary Application 
12.8.3. Advantages of Hugging Face’s TransformersLibrary 

12.9. Other Transformers Libraries. Comparison 

12.9.1. Comparison Between Different TransformersLibraries 
12.9.2. Use of the Other Transformers Libraries 
12.9.3. Advantages of the Other Transformers Libraries 

12.10. Development of an NLP Application with RNN and Attention. Practical Application 

12.10.1. Development of a Natural Language Processing Application with RNN and Attention 
12.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application 
12.10.3. Evaluation of the Practical Application

Module 13. Autoencoders, GANs, and Diffusion Models 

13.1. Representation of Efficient Data 

13.1.1. Dimensionality Reduction 
13.1.2. Deep Learning 
13.1.3. Compact Representations 

13.2. PCA Realization with an Incomplete Linear Automatic Encoder 

13.2.1. Training Process 
13.2.2. Implementation in Python 
13.2.3. Use of Test Data 

13.3. Stacked Automatic Encoders 

13.3.1. Deep Neural Networks 
13.3.2. Construction of Coding Architectures 
13.3.3. Use of Regularization 

13.4. Convolutional Autoencoders 

13.4.1. Design of Convolutional Models 
13.4.2. Convolutional Model Training 
13.4.3. Results Evaluation 

13.5. Automatic Encoder Denoising 

13.5.1. Filter Application 
13.5.2. Design of Coding Models 
13.5.3. Use of Regularization Techniques 

13.6. Sparse Automatic Encoders 

13.6.1. Increasing Coding Efficiency 
13.6.2. Minimizing the Number of Parameters 
13.6.3. Using Regularization Techniques 

13.7. Variational Automatic Encoders 

13.7.1. Use of Variational Optimization 
13.7.2. Unsupervised Deep Learning 
13.7.3. Deep Latent Representations 

13.8. Generation of fashion MNIST images 

13.8.1. Pattern Recognition 
13.8.2. Image Generation 
13.8.3. Deep Neural Networks Training 

13.9. Generative adversarial networks and dissemination models 

13.9.1. Content Generation from Images 
13.9.2. Modeling of Data Distributions 
13.9.3. Use of Adversarial Networks 

13.10. Implementation of the Models 

13.10.1. Practical Application 
13.10.2. Implementation of the Models 
13.10.3. Use of Real Data 
13.10.4. Results Evaluation

Module 14. Bio-Inspired Computing 

14.1. Introduction to Bio-Inspired Computing 

14.1.1. Introduction to Bio-Inspired Computing 

14.2. Social Adaptation Algorithms 

14.2.1. Bio-Inspired Computation Based on Ant Colonies 
14.2.2. Variants of Ant Colony Algorithms 
14.2.3. Particle Cloud Computing 

14.3. Genetic Algorithms 

14.3.1. General Structure 
14.3.2. Implementations of the Major Operators 

14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms 

14.4.1. CHC Algorithm 
14.4.2. Multimodal Problems 

14.5. Evolutionary Computing Models (I) 

14.5.1. Evolutionary Strategies 
14.5.2. Evolutionary Programming 
14.5.3. Algorithms Based on Differential Evolution 

14.6. Evolutionary Computation Models (II) 

14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA) 
14.6.2. Genetic Programming 

14.7. Evolutionary Programming Applied to Learning Problems 

14.7.1. Rules-Based Learning 
14.7.2. Evolutionary Methods in Instance Selection Problems 

14.8. Multi-Objective Problems 

14.8.1. Concept of Dominance 
14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems 

14.9. Neural Networks (I) 

14.9.1. Introduction to Neural Networks 
14.9.2. Practical Example with Neural Networks 

14.10. Neural Networks (II) 

14.10.1. Use Cases of Neural Networks in Medical Research 
14.10.2. Use Cases of Neural Networks in Economics 
14.10.3. Use Cases of Neural Networks in Artificial Vision 

Module 15. Artificial Intelligence: Strategies and Applications

15.1. Financial Services 

15.1.1. The implications of Artificial Intelligence (AI) in financial services. Opportunities and challenges
15.1.2. Case Uses
15.1.3. Potential Risks Related to the Use of AI 
15.1.4. Potential Future Developments/Uses of AI 

15.2. Implications of Artificial Intelligence in the Healthcare Service

15.2.1. Implications of AI in the Healthcare Sector. Opportunities and Challenges
15.2.2. Case Uses 

15.3. Risks Related to the Use of AI in the Health Service 

15.3.1. Potential Risks Related to the Use of AI 
15.3.2. Potential Future Developments/Uses of AI

15.4. Retail

15.4.1. Implications of AI in Retail. Opportunities and Challenges
15.4.2. Case Uses
15.4.3. Potential Risks Related to the Use of AI
15.4.4. Potential Future Developments/Uses of AI 

15.5. Industry 

15.5.1. Implications of AI in Industry. Opportunities and Challenges 
15.5.2. Case Uses 

15.6. Potential risks related to the use of AI in industry 

15.6.1. Case Uses 
15.6.2. Potential Risks Related to the Use of AI 
15.6.3. Potential Future Developments/uses of AI

15.7. Public Administration

15.7.1. AI implications for public administration. Opportunities and Challenges 
15.7.2. Case Uses
15.7.3. Potential Risks Related to the Use of AI
15.7.4. Potential Future Developments/uses of AI

15.8. Educational

15.8.1. AI implications for education. Opportunities and Challenges 
15.8.2. Case Uses
15.8.3. Potential Risks Related to the Use of AI
15.8.4. Potential Future Developments/uses of AI 

15.9. Forestry and Agriculture

15.9.1. Implications of AI in Forestry and Agriculture. Opportunities and Challenges
15.9.2. Case Uses 
15.9.3. Potential Risks Related to the Use of AI 
15.9.4. Potential Future Developments/Uses of AI

15.10. Human Resources

15.10.1. Implications of AI for Human Resources Opportunities and Challenges 
15.10.2. Case Uses
15.10.3. Potential Risks Related to the use of AI
15.10.4. Potential Future Developments/uses of AI

Module 16. Artificial Intelligence in Digital Marketing Strategies 

16.1. Digital Marketing Transformation with AI 

16.1.1. Introduction to Digital Transformation 
16.1.2. Impact on Content Strategy 
16.1.3. Automation of Marketing Processes 
16.1.4. Development of Customer Experience 

16.2. AI Tools for SEO and SEM 

16.2.1. Keyword Optimization with AI 
16.2.2. Competition Analysis 
16.2.3. Search Trend Forecast 
16.2.4. Intelligent Audience Segmentation 

16.3. IA Application in Social Media 

16.3.1. Sentiment Analysis 
16.3.2. Social Trend Detection 
16.3.3. Publication Automation 
16.3.4. Automated Content Generation 

16.4. AI tools for Customer Communication 

16.4.1. Personalized Chatbots 
16.4.2. Automated E-mail Response Systems 
16.4.3. Real-Time Response Optimization 
16.4.4. Customer Feedback Analysis 

16.5. Personalization of the User Experience of AI-enabled Tools and Websites 

16.5.1. Personalized Recommendations 
16.5.2. User Interface Adaptation 
16.5.3. Dynamic Audience Segmentation 
16.5.4. Intelligent A/B Testing 

16.6. Chatbots and Virtual Assistants in Marketing Digital 

16.6.1. Proactive Interaction 
16.6.2. Multichannel Integration 
16.6.3. Contextual Responses 
16.6.4. Conversation Analytics 

16.7. Programmatic Advertising with AI 

16.7.1. Advanced Segmentation 
16.7.2. Real-Time Optimization 
16.7.3. Automatic Bidding 
16.7.4. Analysis of Results 

16.8. Predictive Analytics and Big Data in Digital Marketing 

16.8.1. Market Trends Forecast 
16.8.2. Advanced Attribution Models 
16.8.3. Predictive Audience Segmentation 
16.8.4. Sentiment Analysis in Big Data 

16.9. AI and Email Marketing for Campaign Customization and Automation 

16.9.1. Dynamic List Segmentation 
16.9.2. Dynamic Content in Emails 
16.9.3. Workflow Automation 
16.9.4. Open Rate Optimization 

16.10. Future Trends in AI for Digital Marketing 

16.10.1. Advanced Conversational AI 
16.10.2. Augmented Reality Integration 
16.10.3. Emphasis on AI Ethics 
16.10.4. AI in Content Creation 

Module 17. Content Generation with IA 

17.1. Prompt Engineering in ChatGPT 

17.1.1. Quality Improvement of the Generated Content 
17.1.2. Model Performance Optimization Strategies 
17.1.3. Effective Prompts Design 

17.2. AI Image Generation Tools 

17.2.1. Object Recognition and Generation 
17.2.2. Applying Custom Styles and Filters to Images 
17.2.3. Methods to Improve the Visual Quality of Images 

17.3. Video Creation with AI 

17.3.1. Tools to Automate Video Editing 
17.3.2. Voice Synthesis and Automatic Dubbing 
17.3.3. Techniques for Object Tracking and Animation 

17.4. Text Generation with AI for Blogging and Social Media Creation 

17.4.1. Strategies for Improving SEO Positioning in Generated Content 
17.4.2. Using AI to Predict and Generate Content Trends 
17.4.3. Creating Attractive Headlines 

17.5. Personalization of Content with AI for Different Audiences 

17.5.1. Identification and Analysis of Audience Profiles 
17.5.2. Dynamic Adaptation of Content according to User Profiles 
17.5.3. Predictive Audience Segmentation 

17.6. Ethical Considerations for the Responsible Use of AI in Content Generation 

17.6.1. Transparency in Content Generation 
17.6.2. Preventing Bias and Discrimination in Content Generation 
17.6.3. Control and Human Supervision in Generative Processes 

17.7. Analysis of Successful Cases in Content Generation with AI 

17.7.1. Identification of Key Strategies in Successful Cases 
17.7.2. Adaptation to Different Sectors 
17.7.3. Importance of Collaboration between AI Specialists and Industry Practitioners

17.8. Integration of AI-generated Content in Digital Marketing Strategies 

17.8.1. Optimization of Advertising Campaigns with Content Generation 
17.8.2. Personalization of User Experience 
17.8.3. Automation of Marketing Processes 

17.9. Future Trends in Content Generation with AI 

17.9.1. Advanced and Seamless Text, Image and Audio Integration 
17.9.2. Hyper-personalized Content Generation 
17.9.3. Improved AI Development in Emotion Detection 

17.10. Evaluation and Measurement of the Impact of AI-generated Content 

17.10.1. Appropriate Metrics to Evaluate the Performance of Generated Content 
17.10.2. Measurement of Audience Engagement 
17.10.3. Continuous Improvement of Content through Analytics

Module 18. Automation and Optimization of Marketing Processes with AI 

18.1. Marketing Automation with AI 

18.1.1. Audience Segmentation Based on AI 
18.1.2. Workflow Automation 
18.1.3. Continuous Optimization of Online Campaigns 

18.2. Integration of Data and Platforms in Automated Marketing Strategies 

18.2.1. Analysis and Unification of Multichannel Data 
18.2.2. Interconnection between Different Marketing Platforms 
18.2.3. Real-Time Data Updating 

18.3. Optimization of Advertising Campaigns with AI 

18.3.1. Predictive Analysis of Advertising Performance 
18.3.2. Automatic Advertisement Personalization According to Target Audience 
18.3.3. Automatic Budget Adjustment Based on Results 

18.4. Audience Personalization with AI 

18.4.1. Content Segmentation and Personalization 
18.4.2. Personalized Content Recommendations 
18.4.3. Automatic Identification of Audiences or Homogeneous Groups 

18.5. Automation of Responses to Customers through AI 

18.5.1. Chatbots and Machine Learning 
18.5.2. Automatic Response Generation 
18.5.3. Automatic Problem Solving 

18.6. AI in Email Marketing for Automation and Customization 

18.6.1. Automation of Email Sequences 
18.6.2. Dynamic Customization of Content According to Preferences 
18.6.3. Intelligent Segmentation of Mailing Lists 

18.7. Sentiment Analysis with AI in Social Media and Customer Feedback 

18.7.1. Automatic Sentiment Monitoring in Comments 
18.7.2. Personalized Responses to Emotions 
18.7.3. Predictive Reputation Analysis 

18.8. Price and Promotion Optimization with AI 

18.8.1. Automatic Price Adjustment Based on Predictive Analysis 
18.8.2. Automatic Generation of Offers Adapted to User Behavior 
18.8.3. Real-Time Competitive and Price Analysis 

18.9. Integration of AI into Existing Marketing Tools 

18.9.1. Integration of AI Capabilities with Existing Marketing Platforms 
18.9.2. Optimization of Existing Functionalities 
18.9.3. Integration with CRM Systems 

18.10. Trends and Future of Marketing Automation with AI 

18.10.1. AI to Improve User Experience 
18.10.2. Predictive Approach to Marketing Decisions 
18.10.3. Conversational Advertising 

Module 19. Analysis of Communication Module 19. Analysis of Communication and Marketing Data for Decision Making 

19.1. Specific Technologies and Tools for Communication and Marketing Data Analysis 

19.1.1. Tools for Analyzing Conversations and Trends in Social Media 
19.1.2. Systems to Identify and Evaluate Emotions in Communications 
19.1.3. Use of Big Data to Analyze Communications 

19.2. Applications of AI in the Analysis of Large Volumes of Marketing Data 

19.2.1. Automatic Processing of Massive Data 
19.2.2. Identification of Behavioral Patterns 
19.2.3. Optimization of Algorithms for Data Analysis 

19.3. Data Visualization and Reporting Tools for Campaigns and Communications with AI 

19.3.1. Creation of Interactive Dashboards 
19.3.2. Automatic Report Generation 
19.3.3. Predictive Visualization of Campaign Results 

19.4. Application of AI in Market Research 

19.4.1. Automatic Survey Data Processing 
19.4.2. Automatic Identification of Audience Segments 
19.4.3. Market Trend Prediction 

19.5. Predictive Analytics in Marketing for Decision Making 

19.5.1. Predictive Models of Consumer Behavior 
19.5.2. Campaign Performance Prediction 
19.5.3. Automatic Adjustment of Strategic Optimization 

19.6. Market Segmentation with AI 

19.6.1. Automated Analysis of Demographic Data 
19.6.2. Identification of Interest Groups 
19.6.3. Dynamic Personalization of Offers 

19.7. Marketing Strategy Optimization with AI 

19.7.1. Use of AI to Measure Channel Effectiveness 
19.7.2. Strategic Automatic Adjustment to Maximize Results 
19.7.3. Scenario Simulation 

19.8. AI in Marketing ROI Measurement 

19.8.1. Conversion Attribution Models 
19.8.2. ROI Analysis using AI 
19.8.3. Customer Lifetime Value Estimation 

19.9. Success Stories in Data Analytics with AI 

19.9.1. Demonstration by Practical Cases in which AI has Improved Results 
19.9.2. Cost and Resource Optimization 
19.9.3. Competitive Advantages and Innovation 

19.10. Challenges and Ethical Considerations in AI Data Analysis 

19.10.1. Biases in Data and Results 
19.10.2. Ethical Considerations in Handling and Analyzing Sensitive Data 
19.10.3. Challenges and Solutions for Making AI Models Transparent

Module 20. Sales and Lead Generation with Artificial Intelligence 

20.1. AI Application in the Sales Process 

20.1.1. Automation of Sales Tasks 
20.1.2. Predictive Analysis of the Sales Cycle 
20.1.3. Optimization of Pricing Strategies 

20.2. Techniques and Tools for Lead Generation with AI 

20.2.1. Automated Prospect Identification 
20.2.2. User Behavior Analysis 
20.2.3. Personalization of Content for Engagement 

20.3. Lead Scoring with AI 

20.3.1. Automated Evaluation of Lead Qualification 
20.3.2. Lead Analysis Based on Interactions 
20.3.3. Lead Scoring Model Optimization 

20.4. AI in Customer Relationship Management 

20.4.1. Automated Follow-up to Improve Customer Relationships 
20.4.2. Personalized Customer Recommendations 
20.4.3. Automation of Personalized Communications 

20.5. Implementation and Success Cases of Virtual Assistants in Sales 

20.5.1. Virtual Assistants for Sales Support 
20.5.2. Customer Experience Improvement 
20.5.3. Conversion Rate Optimization and Sales Closing 

20.6. Customer Needs Prediction with AI 

20.6.1. Purchase Behavior Analysis 
20.6.2. Dynamic Offer Segmentation 
20.6.3. Personalized Recommendation Systems 

20.7. Sales Offer Personalization with AI 

20.7.1. Dynamic Adaptation of Sales Proposals 
20.7.2. Behavior-Based Exclusive Offers 
20.7.3. Creation of Customized Packs 

20.8. Competition Analysis with IA 

20.8.1. Automated Competitor Monitoring 
20.8.2. Automated Comparative Price Analysis 
20.8.3. Predictive Competitive Surveillance 

20.9. Integration of AI in Sales Tools 

20.9.1. Compatibility with CRM Systems 
20.9.2. Empowerment of Sales Tools 
20.9.3. Predictive Analysis in Sales Platforms 

20.10. Innovations and Predictions in the Sales Environment 

20.10.1. Augmented Reality in Shopping Experience 
20.10.2. Advanced Automation in Sales 
20.10.3. Emotional intelligence in Sales Interactions 

##IMAGE##

Make the most of this opportunity to surround yourself with expert professionals and learn from their work methodology"

Executive Master's Degree in Artificial Intelligence in Marketing and Communication

Dive into the universe of strategic innovation with our Executive Master's Degree in Artificial Intelligence in Marketing and Communication, a unique educational proposal in partnership with the leading business school of TECH Global University. Designed for business leaders and visionaries, this program will take you beyond convention and equip you with the skills you need to succeed in a digital and highly competitive business environment. At the core of our approach are online classes, a flexible educational platform that will allow you to access specialized knowledge from anywhere. Experience the freedom to learn at your own pace as you immerse yourself in a curriculum that seamlessly blends theory and practical application

Discover a new horizon in business strategy with this program.

Our approach stands out for its collaboration with industry experts, ensuring you gain a deep and practical understanding of artificial intelligence applied to marketing and communication strategies. Through advanced data analytics, pattern recognition and automation tools, you'll learn how to make informed strategic decisions that will drive the performance of your campaigns and communication strategies. At TECH Global University, we don't just offer you an academic program; we invite you to a comprehensive educational experience. Connect with leading professionals and stay at the forefront of the latest technological trends that are transforming the sphere of marketing and communication in the digital era. Prepare to lead with confidence in an ever-evolving business world. Join us in the artificial intelligence revolution and unleash your full potential in the Executive Master's Degree taught by TECH Global University's Business School. Transform your career and step into a future where innovation and strategy are at the heart of your professional success.