Presentazione

Grazie a questo Master Semipresenziale di TECH, acquisirai una conoscenza approfondita dei fondamenti essenziali dell'Intelligenza Artificiale, come l'algoritmia, il data mining e i sistemi intelligenti"

##IMAGE##

Secondo dati recenti, l'uso dell'Intelligenza Artificiale (IA) nella programmazione ha permesso di automatizzare attività ripetitive e complesse, riducendo i tempi di sviluppo e aumentando la precisione nel rilevamento degli errori. Le aziende leader nel settore tecnologico hanno integrato l'IA nei loro flussi di lavoro di sviluppo software, migliorando l'efficienza e facilitando la creazione di applicazioni più intelligenti e adattabili.

Nasce così questo Master Semipresenziale, che stabilirà le basi dell'Intelligenza Artificiale, fornendo agli informatici una solida base nella teoria e nei concetti chiave. Inoltre, analizzeremo i tipi di dati e la loro gestione efficiente per le applicazioni IA, nonché il ruolo dei dati nell'IA, incluso come possono essere ottimizzati e utilizzati in modo efficace per migliorare i risultati.

Inoltre, i professionisti saranno immersi in tecnologie all'avanguardia come TensorFlow e applicazioni specializzate come l'elaborazione del linguaggio naturale e le reti neurali ricorrenti. In questo modo, saranno preparati ad affrontare sfide complesse in settori come l'informatica bioispirata e il miglioramento della produttività. Inoltre, sarà indagata l'architettura del software per il QA Testing e lo sviluppo di applicazioni web e mobile. 

Infine, il piano di studi si concentrerà sull'implementazione dell'IA per migliorare la qualità dei test software, un approccio completo che garantirà agli studenti di essere preparati a comprendere in profondità l'Intelligenza Artificiale, applicarla in modo efficace nei progetti 
del mondo reale.

In questo contesto, TECH ha sviluppato un programma universitario che integra la teoria, completamente online, con un tirocinio pratico di 3 settimane presso le principali aziende del settore. In questo modo, la prima parte del percorso accademico si adatta agli orari di lavoro e personali dello studente, che avrà bisogno solo di un dispositivo elettronico con accesso a Internet. Si basa anche sulla rivoluzionaria metodologia Relearning, che enfatizza la revisione dei concetti chiave per facilitare una comprensione profonda e naturale dei contenuti.

Ti focalizza sulle applicazioni pratiche dell'IA in diversi contesti, come progetti web, app mobili e QA Testing, con il supporto della migliore università digitale del mondo, secondo Forbes: TECH”

Questo Master semipresenziale in Intelligenza Artificiale nella Programmazione possiede il programma più completo e aggiornato del mercato. Le sue caratteristiche principali sono:

  • Sviluppo di oltre 100 casi clinici presentati da professionisti della Intelligenza Artificiale e da professori universitari con una vasta esperienza nella sua applicazione alla Programmazione
  • Contenuti grafici, schematici ed eminentemente pratici che forniscono informazione tecnica riguardo alle discipline essenziali per l’esercizio della professione
  • Lezioni teoriche, domande all'esperto, forum di discussione su argomenti controversi e lavori di riflessione individuale
  • Contenuti disponibili da qualsiasi dispositivo fisso o mobile dotato di connessione a internet
  • Possibilità di svolgere un tirocinio presso una delle migliori aziende del settore

Analizzerai i tipi e il ciclo di vita dei dati, nonché la loro applicazione diretta nell'estrazione di dati, attraverso i migliori materiali didattici, all'avanguardia tecnologica ed educativa"

In questa proposta di Master, di carattere professionalizzante e modalità semipresenziale, il programma è diretto all'aggiornamento dei professionisti dell’Intelligenza Artificiale nella Programmazione, che svolgono le loro funzioni in aziende specializzate in questo campo e che richiedono un alto livello di qualificazione. I contenuti sono basati sulle ultime evidenze scientifiche, orientati in modo didattico per integrare le conoscenze teoriche nella pratica informatica, e gli elementi teorico-pratici faciliteranno l'aggiornamento delle conoscenze e permetteranno di prendere decisioni in situazioni complesse.

I contenuti multimediali, sviluppati in base alle ultime tecnologie educative, forniranno al professionista un apprendimento coinvolgente e localizzato, ovvero inserito in un contesto reale. La creazione di questo programma è incentrata sull’Apprendimento Basato su Problemi, mediante il quale lo specialista deve cercare di risolvere le diverse situazioni che gli si presentano durante il corso. Lo studente potrà usufruire di un innovativo sistema di video interattivi creati da esperti di rinomata fama.

Svolgi un tirocinio di 3 settimane presso un centro prestigioso e acquisisci tutte le conoscenze di cui hai bisogno per crescere personalmente e lavorativamente"

##IMAGE##

Ti immergerai in argomenti avanzati, come le reti neurali profonde e la loro formazione utilizzando strumenti come TensorFlow, grazie ad una vasta libreria di risorse multimediali"

Pianificazione del corso

Il titolo accademico offrirà un piano di studi completo e aggiornato, che affronterà sia le basi teoriche che le applicazioni pratiche dell'Intelligenza Artificiale. Tra i contenuti del programma, sono stati inclusi moduli essenziali come "Fondamenti di Intelligenza Artificiale" e "Tipi e ciclo di vita dei dati", che getteranno le basi per comprendere la gestione e l'elaborazione di grandi volumi di informazioni. Altri moduli in evidenza sono "Data mining: Selezione, pre-elaborazione e trasformazione", "Algoritmia e complessità nell'Intelligenza Artificiale" e "Sistemi intelligenti", che approfondiranno tecniche avanzate e algoritmi cruciali per lo sviluppo dell'IA.

maestria inteligencia artificial programacion Tech Universidad

Coprirai aree specialistiche come apprendimento automatico, data mining, reti neurali e deep learning, nonché elaborazione del linguaggio naturale (NLP)"

Modulo 1. Fondamenti di Intelligenza Artificiale

 1.1. Storia dell’intelligenza artificiale 

1.1.1. Quando si è cominciato a parlare di intelligenza artificiale?
 1.1.2. Riferimenti nel cinema 
1.1.3. Importanza dell'intelligenza artificiale 
1.1.4. Tecnologie che favoriscono e supportano l'intelligenza artificiale 

1.2. Intelligenza artificiale nei giochi 

1.2.1. Teoria dei giochi 
1.2.2. Minimax e potatura Alfa-Beta 
1.2.3. Simulazione: Monte Carlo 

1.3. Reti neurali 

1.3.1. Basi biologiche 
1.3.2. Modello computazionale 
1.3.3. Reti neurali supervisionate e non 
1.3.4. Percettrone semplice 
1.3.5. Percettrone multistrato 

1.4. Algoritmi genetici 

1.4.1. Storia 
1.4.2. Base biologica 
1.4.3. Codifica dei problemi 
1.4.4. Generazione della popolazione iniziale 
1.4.5. Algoritmo principale e operatori genetici 
1.4.6. Valutazione degli individui: Fitness 

1.5. Thesauri, vocabolari, tassonomie 

1.5.1. Vocabolari 
1.5.2. Tassonomie 
1.5.3. Thesauri 
1.5.4. Ontologie 
1.5.5. Rappresentazione della conoscenza: web semantico 

1.6. Web semantico 

1.6.1. Specifiche: RDF, RDFS e OWL 
1.6.2. Inferenza/ragionamento 
1.6.3. Linked Data 

1.7. Sistemi esperti e DSS 

1.7.1. Sistemi esperti 
1.7.2. Sistemi di supporto decisionale 

1.8. Chatbot e Assistenti Virtuali

1.8.1. Tipi di assistenti: assistente vocale e scritto
1.8.2. Parti fondamentali per lo sviluppo di un assistente: Intent, entità e flusso di dialogo 
1.8.3. Integrazioni: web, Slack, Whatsapp, Facebook 
1.8.4. Strumenti per lo sviluppo di un assistente: Dialog Flow, Watson Assistant

 1.9. Strategia di implementazione dell'IA 
 1.10. Futuro dell’intelligenza artificiale
 

1.10.1. Comprendere come identificare emozioni tramite algoritmi
1.10.2. Creazione di una personalità: linguaggio, espressioni e contenuto
1.10.3. Tendenze dell'intelligenza artificiale
1.10.4. Riflessioni

Modulo 2. Tipi e cicli di vita del dato

 2.1. La Statistica
 

2.1.1. Statistica: statistiche descrittive, inferenze statistiche
 2.1.2. Popolazione, campione, individuo
 2.1.3. Variabili: definizione, scale di misurazione

 2.2. Tipi di dati statistici

 2.2.1. Secondo la tipologia

 2.2.1.1. Quantitativi: dati continui e discreti
 2.2.1.2. Qualitativi: dati binominali, nominali e ordinali 

2.2.2. Secondo la forma 

2.2.2.1. Numerici
 2.2.2.2. Testuali 
2.2.2.3. Logici

 2.2.3. Secondo la fonte

 2.2.3.1. Primari
 2.2.3.2. Secondari

2.3. Ciclo di vita dei dati

 2.3.1. Fasi del ciclo
 2.3.2. Tappe del ciclo
 2.3.3. Principi FAIR

 2.4. Fasi iniziali del ciclo

 2.4.1. Definizione delle mete
 2.4.2. Determinazione delle risorse necessarie
 2.4.3. Diagramma di Gantt
 2.4.4. Struttura dei dati

 2.5. Raccolta di dati

 2.5.1. Metodologia di raccolta
 2.5.2. Strumenti di raccolta
 2.5.3. Canali di raccolta

 2.6. Pulizia del dato

 2.6.1. Fasi di pulizia dei dati
 2.6.2. Qualità del dato
 2.6.3. Elaborazione dei dati (con R)

 2.7. Analisi dei dati, interpretazione e valutazione dei risultati

 2.7.1. Misure statistiche
 2.7.2. Indici di relazione
 2.7.3. Data Mining

 2.8. Archiviazione dei dati (Datawarehouse)

 2.8.1. Elementi che lo integrano
 2.8.2. Progettazione
 2.8.3. Aspetti da considerare

 2.9. Disponibilità del dato

 2.9.1. Accesso
 2.9.2. Utilità
 2.9.3. Sicurezza

 2.10. Aspetti normativi 

2.10.1. Legge di protezione dei dati
 2.10.2. Best practice
 2.10.3. Altri aspetti normativi

Modulo 3. Il dato nell’Intelligenza Artificiale

3.1. Data Science 

3.1.1. Data Science 
3.1.2. Strumenti avanzati per i data scientist 

3.2. Dati, informazioni e conoscenza 

3.2.1. Dati, informazioni e conoscenza
3.2.2. Tipi di dati 
3.2.3. Fonti di dati 

3.3. Dai dati all’informazione

 3.3.1. Analisi dei dati 
3.3.2. Tipi di analisi 
3.3.3. Estrazione di informazioni da un Dataset 

3.4. Estrazione di informazioni tramite visualizzazione 

3.4.1. La visualizzazione come strumento di analisi 
3.4.2. Metodi di visualizzazione
 3.4.3. Visualizzazione di un insieme di dati 

3.5. Qualità dei dati 

3.5.1. Dati di qualità 
3.5.2. Pulizia di dati
 3.5.3. Pre-elaborazione base dei dati 

3.6. Dataset 

3.6.1. Arricchimento del Dataset 
3.6.2. La maledizione della dimensionalità 
3.6.3. Modifica di un insieme di dati 

3.7. Squilibrio

 3.7.1. Squilibrio di classe 
3.7.2. Tecniche di mitigazione dello squilibrio 
3.7.3. Equilibrio di un Dataset 

3.8. Modelli non supervisionati

 3.8.1. Modello non supervisionato 
3.8.2. Metodi 
3.8.3. Classificazione con modelli non supervisionati 

3.9. Modelli supervisionati 

3.9.1. Modello supervisionato 
3.9.2. Metodi 
3.9.3. Classificazione con modelli supervisionati 

3.10. Strumenti e best practice 

3.10.1. Best practice per i data scientist 
3.10.2. Il modello migliore
 3.10.3. Strumenti utili 

Modulo 4. Data Mining: Selezione, pre-elaborazione e trasformazione 

4.1. Inferenza statistica 

4.1.1. Statistica descrittiva vs Inferenza statistica 
4.1.2. Procedure parametriche 
4.1.3. Procedure non parametriche 

4.2. Analisi esplorativa 

4.2.1. Analisi descrittiva
 4.2.2. Visualizzazione 
4.2.3. Preparazione dei dati 

4.3. Preparazione dei dati 

4.3.1. Integrazione e pulizia di dati
 4.3.2. Standardizzazione dei dati 
4.3.3. Trasformazione degli attributi

 4.4. I valori mancanti 

4.4.1. Trattamenti dei valori mancanti 
4.4.2. Metodi di imputazione a massima verosimiglianza 
4.4.3. Imputazione di valori mancanti mediante apprendimento automatico 

4.5. Rumore nei dati

 4.5.1. Classi di rumore e attributi 
4.5.2. Filtraggio del rumore
 4.5.3. Effetto del rumore 

4.6. La maledizione della dimensionalità 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Riduzione dei dati multidimensionali 

4.7. Da attributi continui a discreti 

4.7.1. Dati continui vs discreti 
4.7.2. Processo di discretizzazione 

4.8. I dati

 4.8.1. Selezione dei dati
 4.8.2. Prospettiva e criteri di selezione 
4.8.3. Metodi di selezione

 4.9. Selezione di istanze 

4.9.1. Metodi per la selezione di istanze 
4.9.2. Selezione di prototipi 
4.9.3. Metodi avanzati per la selezione di istanze 

4.10. Pre-elaborazione dei dati negli ambienti Big Data 

 
Modulo 5. Algoritmi e complessità nell'Intelligenza Artificiale

5.1. Introduzione ai modelli di progettazione di algoritmi 

5.1.1. Risorse 
5.1.2. Dividi e conquista 
5.1.3. Altre strategie 

5.2. Efficienza e analisi degli algoritmi 

5.2.1. Misure di efficienza 
5.2.2. Misurare l'ingresso di input 
5.2.3. Misurare il tempo di esecuzione 
5.2.4. Caso peggiore, migliore e medio 
5.2.5. Notazione asintotica 
5.2.6. Criteri di analisi matematica per algoritmi non ricorsivi 
5.2.7. Analisi matematica per algoritmi ricorsivi 
5.2.8. Analisi empirica degli algoritmi 

5.3. Algoritmi di ordinamento 

5.3.1. Concetto di ordinamento 
5.3.2. Ordinamento delle bolle 
5.3.3. Ordinamento per selezione 
5.3.4. Ordinamento per inserimento 
5.3.5. Ordinamento per fusione (Merge_Sort) 
5.3.6. Ordinamento rapido (Quick_Sort) 

5.4. Algoritmi con alberi 

5.4.1. Concetto di albero 
5.4.2. Alberi binari 
5.4.3. Percorsi degli alberi 
5.4.4. Rappresentare le espressioni 
5.4.5. Alberi binari ordinati 
5.4.6. Alberi binari bilanciati 

5.5. Algoritmi con Heaps 

5.5.1. Gli Heaps 
5.5.2. L’algoritmo Heapsort 
5.5.3. Code prioritarie 

5.6. Algoritmi con grafi 

5.6.1. Rappresentazione 
5.6.2. Percorso in larghezza 
5.6.3. Percorso in profondità 
5.6.4. Ordinamento topologico 

5.7. Algoritmi Greedy 

5.7.1. La strategia Greedy 
5.7.2. Elementi della strategia Greedy 
5.7.3. Cambio valuta 
5.7.4. Il problema del viaggiatore 
5.7.5. Problema dello zaino 

5.8. Ricerca del percorso minimo 

5.8.1. Il problema del percorso minimo 
5.8.2. Archi e cicli negativi 
5.8.3. Algoritmo di Dijkstra 

5.9. Algoritmi Greedy sui grafi 

5.9.1. L'albero a sovrapposizione minima 
5.9.2. Algoritmo di Prim 
5.9.3. Algoritmo di Kruskal 
5.9.4. Analisi della complessità 

5.10. Backtracking 

5.10.1. Il Backtracking 
5.10.2. Tecniche alternative 

Modulo 6. Sistemi intelligenti 

6.1. Teoria degli agenti 

6.1.1. Storia del concetto 
6.1.2. Definizione di agente 
6.1.3. Agenti nell'Intelligenza Artificiale 
6.1.4. Agenti nell'Ingegneria dei Software 

6.2. Architetture di agenti 

6.2.1. Il processo di ragionamento dell'agente 
6.2.2. Agenti reattivi 
6.2.3. Agenti deduttivi 
6.2.4. Agenti ibridi 
6.2.5. Confronto 

6.3. Informazione e conoscenza 

6.3.1. Distinzione tra dati, informazioni e conoscenza 
6.3.2. Valutazione della qualità dei dati 
6.3.3. Metodi di raccolta dei dati 
6.3.4. Metodi di acquisizione dei dati 
6.3.5. Metodi di acquisizione della conoscenza 

6.4. Rappresentazione della conoscenza 

6.4.1. L'importanza della rappresentazione della conoscenza 
6.4.2. Definire la rappresentazione della conoscenza attraverso i suoi ruoli 
6.4.3. Caratteristiche di una rappresentazione della conoscenza 

6.5. Ontologie 

6.5.1. Introduzione ai metadati 
6.5.2. Concetto filosofico di ontologia 
6.5.3. Concetto informatico di ontologia 
6.5.4. Ontologie di dominio e di livello superiore 
6.5.5. Come costruire un'ontologia? 

6.6. Linguaggi ontologici e software per la creazione di ontologie 

6.6.1. Triple RDF, Turtle e N 
6.6.2. Schema RDF 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introduzione ai diversi strumenti per la creazione di ontologie 
6.6.6. Installazione e utilizzo di Protégé 

6.7. Sito web semantico 

6.7.1. Lo stato attuale e il futuro del web semantico 
6.7.2. Applicazioni del web semantico 

6.8. Altri modelli di rappresentazione della conoscenza 

6.8.1. Vocabolari 
6.8.2. Panoramica 
6.8.3. Tassonomie 
6.8.4. Thesauri 
6.8.5. Folksonomie 
6.8.6. Confronto 
6.8.7. Mappe mentali 

6.9. Valutazione e integrazione delle rappresentazioni della conoscenza 

6.9.1. Logica dell'ordine zero 
6.9.2. Logica di prim’ordine 
6.9.3. Logica descrittiva 
6.9.4. Relazione tra i diversi tipi di logica 
6.9.5. Prolog: programmazione basata sulla logica del primo ordine 

6.10. Ragionatori semantici, sistemi basati sulla conoscenza e sistemi esperti 

6.10.1. Concetto di ragionatore 
6.10.2. Applicazioni di un ragionatore 
6.10.3. Sistemi basati sulla conoscenza 
6.10.4. MYCIN, storia dei sistemi esperti 
6.10.5. Elementi e architettura dei sistemi esperti 
6.10.6. Creazione di sistemi esperti 

Modulo 7. Apprendimento automatico e data mining

7.1. Introduzione ai processi di scoperta della conoscenza e ai concetti di base dell'apprendimento automatico 

7.1.1. Concetti chiave dei processi di scoperta della conoscenza 
7.1.2. Prospettiva storica sui processi di scoperta della conoscenza 
7.1.3. Fasi dei processi di scoperta della conoscenza 
7.1.4. Tecniche utilizzate nei processi di scoperta della conoscenza 
7.1.5. Caratteristiche dei buoni modelli di apprendimento automatico 
7.1.6. Tipi di informazioni sull'apprendimento automatico 
7.1.7. Concetti di base dell'apprendimento 
7.1.8. Concetti di base dell'apprendimento non supervisionato 

7.2. Analisi e pre-elaborazione dei dati 

7.2.1. Elaborazione dei dati 
7.2.2. Trattamento dei dati nel flusso di analisi dei dati 
7.2.3. Tipi di dati 
7.2.4. Trasformazione dei dati 
7.2.5. Visualizzazione ed esplorazione di variabili continue 
7.2.6. Visualizzazione ed esplorazione di variabili categoriche 
7.2.7. Misure di correlazione 
7.2.8. Rappresentazioni grafiche più comuni 
7.2.9. Introduzione all'analisi multivariata e alla riduzione delle dimensioni 

7.3. Alberi decisionali 

7.3.1. Algoritmo ID 
7.3.2. Algoritmo C 
7.3.3. Sovrallenamento e potatura 
7.3.4. Analisi dei risultati 

7.4. Valutazione dei classificatori 

7.4.1. Matrici di confusione 
7.4.2. Matrici di valutazione numerica 
7.4.3. Statistica Kappa 
7.4.4. La curva ROC 

7.5. Regole di classificazione 

7.5.1. Misure di valutazione delle regole 
7.5.2. Introduzione alla rappresentazione grafica 
7.5.3. Algoritmo di sovrapposizione sequenziale 

7.6. Reti neuronali 

7.6.1. Concetti di base 
7.6.2. Reti neurali semplici 
7.6.3. Algoritmo di Backpropagation 
7.6.4. Introduzione alle reti neurali ricorrenti 

7.7. Metodi bayesiani 

7.7.1. Concetti di base della probabilità 
7.7.2. Teorema di Bayes 
7.7.3. Naive Bayes 
7.7.4. Introduzione alle reti bayesiane 

7.8. Modelli di regressione e di risposta continua 

7.8.1. Regressione lineare semplice 
7.8.2. Regressione lineare multipla 
7.8.3. Regressione logistica 
7.8.4. Alberi di regressione 
7.8.5. Introduzione alle macchine a vettori di supporto (SVM) 
7.8.6. Misure di bontà di adattamento 

7.9. Clustering 

7.9.1. Concetti di base 
7.9.2. Clustering gerarchico 
7.9.3. Metodi probabilistici 
7.9.4. Algoritmo EM 
7.9.5. Metodo B-Cubed 
7.9.6. Metodi impliciti 

7.10. Estrazione di testi ed elaborazione del linguaggio naturale (NLP) 

7.10.1. Concetti di base 
7.10.2. Creazione del corpus 
7.10.3. Analisi descrittiva 
7.10.4. Introduzione alla sentiment analysis 

Módulo 8. Las redes neuronales, base de Deep Learning 

8.1. Aprendizaje profundo 

8.1.1. Tipos de aprendizaje profundo 
8.1.2. Aplicaciones del aprendizaje profundo 
8.1.3. Ventajas y desventajas del aprendizaje profundo 

8.2. Operaciones 

8.2.1. Suma 
8.2.2. Producto 
8.2.3. Traslado 

8.3. Capas 

8.3.1. Capa de entrada 
8.3.2. Capa oculta 
8.3.3. Capa de salida 

8.4. Unión de capas y operaciones 

8.4.1. Diseño de arquitecturas 
8.4.2. Conexión entre capas 
8.4.3. Propagación hacia adelante 

8.5. Construcción de la primera red neuronal 

8.5.1. Diseño de la red 
8.5.2. Establecer los pesos 
8.5.3. Entrenamiento de la red 

8.6. Entrenador y optimizador 

8.6.1. Selección del optimizador 
8.6.2. Establecimiento de una función de pérdida 
8.6.3. Establecimiento de una métrica 

8.7. Aplicación de los Principios de las Redes Neuronales 

8.7.1. Funciones de activación 
8.7.2. Propagación hacia atrás 
8.7.3. Ajuste de los parámetros 

8.8. De las neuronas biológicas a las artificiales 

8.8.1. Funcionamiento de una neurona biológica 
8.8.2. Transferencia de conocimiento a las neuronas artificiales 
8.8.3. Establecer relaciones entre ambas 

8.9. Implementación de MLP (Perceptrón Multicapa) con Keras 

8.9.1. Definición de la estructura de la red 
8.9.2. Compilación del modelo 
8.9.3. Entrenamiento del modelo 

8.10. Hiperparámetros de Fine tuning de Redes Neuronales 

8.10.1. Selección de la función de activación 
8.10.2. Establecer el Learning rate 
8.10. 3. Ajuste de los pesos

Módulo 9. Entrenamiento de redes neuronales profundas 

9.1. Problemas de Gradientes 

9.1.1. Técnicas de optimización de gradiente 
9.1.2. Gradientes Estocásticos 
9.1.3. Técnicas de inicialización de pesos 

9.2. Reutilización de capas preentrenadas 

9.2.1. Entrenamiento de transferencia de aprendizaje 
9.2.2. Extracción de características 
9.2.3. Aprendizaje profundo 

9.3. Optimizadores 

9.3.1. Optimizadores de descenso de gradiente estocástico 
9.3.2. Optimizadores Adam y RMSprop 
9.3.3. Optimizadores de momento 

9.4. Programación de la tasa de aprendizaje 

9.4.1. Control de tasa de aprendizaje automático 
9.4.2. Ciclos de aprendizaje 
9.4.3. Términos de suavizado 

9.5. Sobreajuste 

9.5.1. Validación cruzada 
9.5.2. Regularización 
9.5.3. Métricas de evaluación 

9.6. Directrices prácticas 

9.6.1. Diseño de modelos 
9.6.2. Selección de métricas y parámetros de evaluación 
9.6.3. Pruebas de hipótesis 

9.7. Transfer Learning 

9.7.1. Entrenamiento de transferencia de aprendizaje 
9.7.2. Extracción de características 
9.7.3. Aprendizaje profundo 

9.8. Data Augmentation 

9.8.1. Transformaciones de imagen 
9.8.2. Generación de datos sintéticos 
9.8.3. Transformación de texto 

9.9. Aplicación Práctica de Transfer Learning 

9.9.1. Entrenamiento de transferencia de aprendizaje 
9.9.2. Extracción de características 
9.9.3. Aprendizaje profundo 

9.10. Regularización 

9.10.1. L y L 
9.10.2. Regularización por máxima entropía 
9.10.3. Dropout

Módulo 10. Personalización de Modelos y entrenamiento con TensorFlow 

10.1. TensorFlow 

10.1.1. Uso de la biblioteca TensorFlow 
10.1.2. Entrenamiento de modelos con TensorFlow 
10.1.3. Operaciones con gráficos en TensorFlow 

10.2. TensorFlow y NumPy 

10.2.1. Entorno computacional NumPy para TensorFlow 
10.2.2. Utilización de los arrays NumPy con TensorFlow 
10.2.3. Operaciones NumPy para los gráficos de TensorFlow 

10.3. Personalización de modelos y algoritmos de entrenamiento 

10.3.1. Construcción de modelos personalizados con TensorFlow 
10.3.2. Gestión de parámetros de entrenamiento 
10.3.3. Utilización de técnicas de optimización para el entrenamiento 

10.4. Funciones y gráficos de TensorFlow 

10.4.1. Funciones con TensorFlow 
10.4.2. Utilización de gráficos para el entrenamiento de modelos 
10.4.3. Optimización de gráficos con operaciones de TensorFlow 

10.5. Carga y preprocesamiento de datos con TensorFlow 

10.5.1. Carga de conjuntos de datos con TensorFlow 
10.5.2. Preprocesamiento de datos con TensorFlow 
10.5.3. Utilización de herramientas de TensorFlow para la manipulación de datos 

10.6. La API tfdata 

10.6.1. Utilización de la API tfdata para el procesamiento de datos 
10.6.2. Construcción de flujos de datos con tfdata 
10.6.3. Uso de la API tfdata para el entrenamiento de modelos 

10.7. El formato TFRecord 

10.7.1. Utilización de la API TFRecord para la serialización de datos 
10.7.2. Carga de archivos TFRecord con TensorFlow 
10.7.3. Utilización de archivos TFRecord para el entrenamiento de modelos 

10.8. Capas de preprocesamiento de Keras 

10.8.1. Utilización de la API de preprocesamiento de Keras 
10.8.2. Construcción de pipelined de preprocesamiento con Keras 
10.8.3. Uso de la API de preprocesamiento de Keras para el entrenamiento de modelos 

10.9. El proyecto TensorFlow Datasets 

10.9.1. Utilización de TensorFlow Datasets para la carga de datos 
10.9.2. Preprocesamiento de datos con TensorFlow Datasets 
10.9.3. Uso de TensorFlow Datasets para el entrenamiento de modelos 

10.10. Construcción de una Aplicación de Deep Learning con TensorFlow 

10.10.1. Aplicación práctica 
10.10.2. Construcción de una aplicación de Deep Learning con TensorFlow 
10.10.3. Entrenamiento de un modelo con TensorFlow 
10.10.4. Utilización de la aplicación para la predicción de resultados

Módulo 11. Deep Computer Vision con Redes Neuronales Convolucionales 

11.1. La Arquitectura Visual Cortex 

11.1.1. Funciones de la corteza visual 
11.1.2. Teorías de la visión computacional 
11.1.3. Modelos de procesamiento de imágenes 

11.2. Capas convolucionales 

11.2.1 Reutilización de pesos en la convolución 
11.2.2. Convolución D 
11.2.3. Funciones de activación 

11.3. Capas de agrupación e implementación de capas de agrupación con Keras 

11.3.1. Pooling y Striding 
11.3.2. Flattening 
11.3.3. Tipos de Pooling 

11.4. Arquitecturas CNN 

11.4.1. Arquitectura VGG 
11.4.2. Arquitectura AlexNet 
11.4.3. Arquitectura ResNet 

11.5. Implementación de una CNN ResNet usando Keras 

11.5.1. Inicialización de pesos 
11.5.2. Definición de la capa de entrada 
11.5.3. Definición de la salida 

11.6. Uso de modelos preentrenados de Keras 

11.6.1. Características de los modelos preentrenados 
11.6.2. Usos de los modelos preentrenados 
11.6.3. Ventajas de los modelos preentrenados 

11.7. Modelos preentrenados para el aprendizaje por transferencia 

11.7.1. El aprendizaje por transferencia 
11.7.2. Proceso de aprendizaje por transferencia 
11.7.3. Ventajas del aprendizaje por transferencia 

11.8. Clasificación y localización en Deep Computer Vision 

11.8.1. Clasificación de imágenes 
11.8.2. Localización de objetos en imágenes 
11.8.3. Detección de objetos 

11.9. Detección de objetos y seguimiento de objetos 

11.9.1. Métodos de detección de objetos 
11.9.2. Algoritmos de seguimiento de objetos 
11.9.3. Técnicas de rastreo y localización 

11.10. Segmentación semántica 

11.10.1. Aprendizaje profundo para segmentación semántica 
11.10.2. Detección de bordes 
11.10.3. Métodos de segmentación basados en reglas

Módulo 12. Procesamiento del lenguaje natural (NLP) con Redes Naturales Recurrentes (RNN) y atención 

12.1. Generación de texto utilizando RNN 

12.1.1. Entrenamiento de una RNN para generación de texto 
12.1.2. Generación de lenguaje natural con RNN 
12.1.3. Aplicaciones de generación de texto con RNN 

12.2. Creación del conjunto de datos de entrenamiento 

12.2.1. Preparación de los datos para el entrenamiento de una RNN 
12.2.2. Almacenamiento del conjunto de datos de entrenamiento 
12.2.3. Limpieza y transformación de los datos 
12.2.4. Análisis de Sentimiento 

12.3. Clasificación de opiniones con RNN 

12.3.1. Detección de temas en los comentarios 
12.3.2. Análisis de sentimiento con algoritmos de aprendizaje profundo 

12.4. Red de codificador-decodificador para la traducción automática neuronal 

12.4.1. Entrenamiento de una RNN para la traducción automática 
12.4.2. Uso de una red encoder-decoder para la traducción automática 
12.4.3. Mejora de la precisión de la traducción automática con RNN 

12.5. Mecanismos de atención 

12.5.1. Aplicación de mecanismos de atención en RNN 
12.5.2. Uso de mecanismos de atención para mejorar la precisión de los modelos 
12.5.3. Ventajas de los mecanismos de atención en las redes neuronales 

12.6. Modelos Transformers 

12.6.1. Uso de los modelos Transformers para procesamiento de lenguaje natural 
12.6.2. Aplicación de los modelos Transformers para visión 
12.6.3. Ventajas de los modelos Transformers 

12.7. Transformers para visión 

12.7.1. Uso de los modelos Transformers para visión 
12.7.2. Preprocesamiento de los datos de imagen 
12.7.3. Entrenamiento de un modelo Transformers para visión 

12.8. Librería de Transformers de Hugging Face 

12.8.1. Uso de la librería de Transformers de Hugging Face 
12.8.2. Aplicación de la librería de Transformers de Hugging Face 
12.8.3. Ventajas de la librería de Transformers de Hugging Face 

12.9. Otras Librerías de Transformers. Comparativa 

12.9.1. Comparación entre las distintas librerías de Transformers 
12.9.2. Uso de las demás librerías de Transformers 
12.9.3. Ventajas de las demás librerías de Transformers 

12.10. Desarrollo de una Aplicación de NLP con RNN y Atención. Aplicación práctica 

12.10.1. Desarrollo de una aplicación de procesamiento de lenguaje natural con RNN y atención 
12.10.2. Uso de RNN, mecanismos de atención y modelos Transformers en la aplicación 
12.10.3. Evaluación de la aplicación práctica 

Módulo 13. Autoencoders, GANs y modelos de difusión 

13.1. Representaciones de datos eficientes 

13.1.1. Reducción de dimensionalidad 
13.1.2. Aprendizaje profundo 
13.1.3. Representaciones compactas 

13.2. Realización de PCA con un codificador automático lineal incompleto 

13.2.1. Proceso de entrenamiento 
13.2.2. Implementación en Python 
13.2.3. Utilización de datos de prueba 

13.3. Codificadores automáticos apilados 

13.3.1. Redes neuronales profundas 
13.3.2. Construcción de arquitecturas de codificación 
13.3.3. Uso de la regularización 

13.4. Autocodificadores convolucionales 

13.4.1. Diseño de modelos convolucionales 
13.4.2. Entrenamiento de modelos convolucionales 
13.4.3. Evaluación de los resultados 

13.5. Eliminación de ruido de codificadores automáticos 

13.5.1. Aplicación de filtros 
13.5.2. Diseño de modelos de codificación 
13.5.3. Uso de técnicas de regularización 

13.6. Codificadores automáticos dispersos 

13.6.1. Incrementar la eficiencia de la codificación 
13.6.2. Minimizando el número de parámetros 
13.6.3. Utilización de técnicas de regularización 

13.7. Codificadores automáticos variacionales 

13.7.1. Utilización de optimización variacional 
13.7.2. Aprendizaje profundo no supervisado 
13.7.3. Representaciones latentes profundas 

13.8. Generación de imágenes MNIST de moda 

13.8.1. Reconocimiento de patrones 
13.8.2. Generación de imágenes 
13.8.3. Entrenamiento de redes neuronales profundas 

13.9. Redes adversarias generativas y modelos de difusión 

13.9.1. Generación de contenido a partir de imágenes 
13.9.2. Modelado de distribuciones de datos 
13.9.3. Uso de redes adversarias 

13.10 Implementación de los Modelos 

13.10.1. Aplicación Práctica 
13.10.2. Implementación de los modelos 
13.10.3. Uso de datos reales 
13.10.4. Evaluación de los resultados

Módulo 14. Computación bioinspirada  

14.1. Introducción a la computación bioinspirada 

14.1.1. Introducción a la computación bioinspirada 

14.2. Algoritmos de adaptación social 

14.2.1. Computación bioinspirada basada en colonia de hormigas 
14.2.2. Variantes de los algoritmos de colonias de hormigas 
14.2.3. Computación basada en nubes de partículas 

14.3. Algoritmos genéticos 

14.3.1. Estructura general 
14.3.2. Implementaciones de los principales operadores 

14.4. Estrategias de exploración-explotación del espacio para algoritmos genéticos 

14.4.1. Algoritmo CHC 
14.4.2. Problemas multimodales 

14.5. Modelos de computación evolutiva (I) 

14.5.1. Estrategias evolutivas 
14.5.2. Programación evolutiva 
14.5.3. Algoritmos basados en evolución diferencial 

14.6. Modelos de computación evolutiva (II) 

14.6.1. Modelos de evolución basados en estimación de distribuciones (EDA) 
14.6.2. Programación genética 

14.7. Programación evolutiva aplicada a problemas de aprendizaje 

14.7.1. Aprendizaje basado en reglas 
14.7.2. Métodos evolutivos en problemas de selección de instancias 

14.8. Problemas multiobjetivo 

14.8.1. Concepto de dominancia 
14.8.2. Aplicación de algoritmos evolutivos a problemas multiobjetivo 

14.9. Redes neuronales (I) 

14.9.1. Introducción a las redes neuronales 
14.9.2. Ejemplo práctico con redes neuronales 

14.10. Redes neuronales (II) 

14.10.1. Casos de uso de las redes neuronales en la investigación médica 
14.10.2. Casos de uso de las redes neuronales en la economía 
14.10.3. Casos de uso de las redes neuronales en la visión artificial

Módulo 15. Inteligencia Artificial: Estrategias y aplicaciones  

15.1. Servicios financieros 

15.1.1. Las implicaciones de la Inteligencia Artificial (IA) en los servicios financieros.  Oportunidades y desafíos  
15.1.2. Casos de uso  
15.1.3. Riesgos potenciales relacionados con el uso de IA 
15.1.4. Potenciales desarrollos/usos futuros de la IA 

15.2. Implicaciones de la Inteligencia Artificial en el servicio sanitario  

15.2.1. Implicaciones de la IA en el sector sanitario. Oportunidades y desafíos  
15.2.2. Casos de uso 

15.3. Riesgos Relacionados con el uso de la IA en el servicio sanitario 

15.3.1. Riesgos potenciales relacionados con el uso de IA 
15.3.2. Potenciales desarrollos/usos futuros de la IA  

15.4. Retail  

15.4.1. Implicaciones de la IA en Retail. Oportunidades y desafíos  
15.4.2. Casos de uso  
15.4.3. Riesgos potenciales relacionados con el uso de IA  
15.4.4. Potenciales desarrollos/usos futuros de la IA 

15.5. Industria   

15.5.1. Implicaciones de la IA en la Industria. Oportunidades y desafíos 
15.5.2. Casos de uso 

15.6. Riesgos potenciales relacionados con el uso de IA en la Industria   

15.6.1. Casos de uso 
15.6.2. Riesgos potenciales relacionados con el uso de IA 
15.6.3. Potenciales desarrollos/usos futuros de la IA  

15.7. Administración Pública  

15.7.1. Implicaciones de la IA en la Administración Pública. Oportunidades y desafíos 
15.7.2. Casos de uso  
15.7.3. Riesgos potenciales relacionados con el uso de IA  
15.7.4. Potenciales desarrollos/usos futuros de la IA  

15.8. Educación  

15.8.1. Implicaciones de la IA en la educación. Oportunidades y desafíos 
15.8.2. Casos de uso  
15.8.3. Riesgos potenciales relacionados con el uso de IA  
15.8.4. Potenciales desarrollos/usos futuros de la IA 

15.9. Silvicultura y agricultura  

15.9.1. Implicaciones de la IA en la silvicultura y la agricultura. Oportunidades y desafíos  
15.9.2. Casos de uso 
15.9.3. Riesgos potenciales relacionados con el uso de IA 
15.9.4. Potenciales desarrollos/usos futuros de la IA  

15.10 Recursos Humanos  

15.10.1. Implicaciones de la IA en los Recursos Humanos. Oportunidades y desafíos 
15.10.2. Casos de uso  
15.10.3. Riesgos potenciales relacionados con el uso de IA  
15.10.4. Potenciales desarrollos/usos futuros de la IA 

Módulo 16. Mejora de la productividad en Desarrollo de software con IA  

16.1. Preparar un entorno de desarrollo adecuado 

16.1.1. Selección de herramientas esenciales para desarrollo con IA  
16.1.2. Configuración de las herramientas elegidas 
16.1.3. Implementación de pipelines de CI/CD adaptados a proyectos con IA 
16.1.4. Gestión eficiente de dependencias y versiones en entornos de desarrollo 

16.2. Extensiones imprescindibles de IA para Visual Studio Code  

16.2.1. Exploración y selección de extensiones de IA para Visual Studio Code 
16.2.2. Integración de herramientas de análisis estático y dinámico en el IDE 
16.2.3. Automatización de tareas repetitivas con extensiones específicas 
16.2.4. Personalización del entorno de desarrollo para mejorar la eficiencia 

16.3. Diseño No-code de Interfaces de Usuario con Flutterflow 

16.3.1. Principios del diseño No-code y su aplicación en interfaces de usuario 
16.3.2. Incorporación de elementos de IA en el diseño visual de interfaces 
16.3.3. Herramientas y plataformas para la creación No-code de interfaces inteligentes 
16.3.4. Evaluación y mejora continua de interfaces No-code con IA 

16.4. Optimización de código usando ChatGPT 

16.4.1. Identificar código duplicado  
16.4.2. Refactorizar  
16.4.3. Crear códigos legibles  
16.4.4. Entender lo que hace un código  
16.4.5. Mejora nombre de variables y funciones  
16.4.6. Creación de documentación automática  

16.5. Gestión de repositorios con IA usando ChagGPT 

16.5.1. Automatización de procesos de control de versiones con técnicas de IA 
16.5.2. Detección de conflictos y resolución automática en entornos colaborativos  
16.5.3. Análisis predictivo de cambios y tendencias en repositorios de código 
16.5.4. Mejoras en la organización y categorización de repositorios mediante IA 

16.6. Integración de IA en gestión con bases de datos con AskYourDatabase  

16.6.1. Optimización de consultas y rendimiento utilizando técnicas de IA 
16.6.2. Análisis predictivo de patrones de acceso a bases de datos 
16.6.3. Implementación de sistemas de recomendación para optimizar la estructura de la base de datos 
16.6.4. Monitoreo y detección proactiva de posibles problemas en bases de datos 

16.7. Búsqueda de fallos y creación de test unitarios con IA usando ChatGPT  

16.7.1. Generación automática de casos de prueba mediante técnicas de IA 
16.7.2. Detección temprana de vulnerabilidades y errores utilizando análisis estático con IA 
16.7.3. Mejora de la cobertura de pruebas mediante la identificación de áreas críticas por IA 

16.8. Pair Programming con GitHub Copilot  

16.8.1. Integración y uso efectivo de GitHub Copilot en sesiones de Pair Programming 
16.8.2. Integración Mejoras en la comunicación y colaboración entre desarrolladores con GitHub Copilot 
16.8.3. Integración Estrategias para aprovechar al máximo las sugerencias de código generadas por GitHub Copilot 
16.8.4. Integración Casos de estudio y buenas prácticas en Pair Programming asistido por IA 

16.9. Traducción automática entre lenguajes de programación usando ChatGPT 

16.9.1. Herramientas y servicios de traducción automática específicos para lenguajes de programación 
16.9.2. Adaptación de algoritmos de traducción automática a contextos de desarrollo 
16.9.3. Mejora de la interoperabilidad entre diferentes lenguajes mediante traducción automática 
16.9.4. Evaluación y mitigación de posibles desafíos y limitaciones en la traducción automática  

16.10. Herramientas de IA recomendadas para mejorar la productividad  

16.10.1. Análisis comparativo de herramientas de IA para el desarrollo de software 
16.10.2. Integración de herramientas de IA en flujos de trabajo. 
16.10.3. Automatización de tareas rutinarias con herramientas de IA  
16.10.4. Evaluación y selección de herramientas basada en el contexto y los requerimientos del proyecto 

Módulo 17. Arquitectura del software con IA

17.1. Optimización y gestión del rendimiento en herramientas con IA con la ayuda de ChatGPT 

17.1.1. Análisis y perfilado de rendimiento en herramientas con IA 
17.1.2. Estrategias de optimización de algoritmos y modelos de IA 
17.1.3. Implementación de técnicas de caching y paralelización para mejorar el rendimiento 
17.1.4. Herramientas y metodologías para la monitorización continua del rendimiento en tiempo real 

17.2. Escalabilidad en aplicaciones de IA usando ChatGPT  

17.2.1. Diseño de arquitecturas escalables para aplicaciones de IA 
17.2.2. Implementación de técnicas de particionamiento y distribución de carga 
17.2.3. Manejo de flujos de trabajo y carga de trabajo en sistemas escalables 
17.2.4. Estrategias para la expansión horizontal y vertical en entornos con demanda variable 

17.3. Mantenibilidad de aplicaciones con IA usando ChatGPT 

17.3.1. Principios de diseño para facilitar la mantenibilidad en proyectos de IA 
17.3.2. Estrategias de documentación específicas para modelos y algoritmos de IA 
17.3.3. Implementación de pruebas unitarias y de integración para facilitar el mantenimiento
17.3.4. Métodos para la refactorización y mejora continua en sistemas con componentes de IA  

17.4. Diseño de sistemas de gran escala  

17.4.1. Principios arquitectónicos para el diseño de sistemas de gran escala 
17.4.2. Descomposición de sistemas complejos en microservicios 
17.4.3. Implementación de patrones de diseño específicos para sistemas distribuidos 
17.4.4. Estrategias para la gestión de la complejidad en arquitecturas de gran escala con componentes de IA  

17.5. Almacenamiento de datos de gran escala para herramientas de IA  

17.5.1. Selección de tecnologías de almacenamiento de datos escalables 
17.5.2. Diseño de esquemas de bases de datos para el manejo eficiente de grandes volúmenes de datos 
17.5.3. Estrategias de particionamiento y replicación en entornos de almacenamiento de datos masivos 
17.5.4. Implementación de sistemas de gestión de datos para garantizar la integridad y disponibilidad en proyectos con IA 

17.6. Estructuras de datos Con IA usando ChatGPT 

17.6.1. Adaptación de estructuras de datos clásicas para su uso en algoritmos de IA 
17.6.2. Diseño y optimización de estructuras de datos específicas con ChatGPT 
17.6.3. Integración de estructuras de datos eficientes en sistemas con procesamiento intensivo de datos 
17.6.4. Estrategias para la manipulación y almacenamiento de datos en tiempo real en estructuras de datos con IA  

17.7. Algoritmos de programación para productos con IA  

17.7.1. Desarrollo e implementación de algoritmos específicos para aplicaciones con IA 
17.7.2. Estrategias de selección de algoritmos según el tipo de problema y los requisitos del producto 
17.7.3. Adaptación de algoritmos clásicos para su integración en sistemas de inteligencia artificial 
17.7.4. Evaluación y comparación de rendimiento entre diferentes algoritmos en contextos de desarrollo con IA  

17.8. Patrones diseño para desarrollo con IA  

17.8.1. Identificación y aplicación de patrones de diseño comunes en proyectos con componentes de IA 
17.8.2. Desarrollo de patrones específicos para la integración de modelos y algoritmos en sistemas existentes 
17.8.3. Estrategias de implementación de patrones para mejorar la reusabilidad y mantenibilidad en proyectos de IA 
17.8.4. Casos de estudio y buenas prácticas en la aplicación de patrones de diseño en arquitecturas con IA 

17.9. Implementación de clean architecture usando ChatGPT  

17.9.1. Principios y conceptos fundamentales de Clean Architecture  
17.9.2. Adaptación de Clean Architecture a proyectos con componentes de IA 
17.9.3. Implementación de capas y dependencias en sistemas con arquitectura limpia 
17.9.4. Beneficios y desafíos de la implementación de Clean Architecture en el desarrollo de software con IA 

17.10. Desarrollo de software seguro en aplicaciones web con DeepCode  

17.10.1. Principios de seguridad en el desarrollo de software con componentes de IA 
17.10.2. Identificación y mitigación de posibles vulnerabilidades en modelos y algoritmos de IA 
17.10.3. Implementación de prácticas de desarrollo seguro en aplicaciones web con funcionalidades de Inteligencia Artificial 
17.10.4. Estrategias para la protección de datos sensibles y la prevención de ataques en proyectos con IA 

Módulo 18. Proyectos web con IA  

18.1. Preparación del Entorno de Trabajo para Desarrollo Web con IA  

18.1.1. Configuración de entornos de desarrollo web para proyectos con inteligencia artificial 
18.1.2. Selección y preparación de herramientas esenciales para el desarrollo web con IA 
18.1.3. Integración de bibliotecas y frameworks específicos para proyectos web con inteligencia artificial 
18.1.4. Implementación de buenas prácticas en la configuración de entornos de desarrollo colaborativos 

18.2. Creación de Workspace para Proyectos de IA con GitHub Copilot  

18.2.1. Diseño y organización efectiva de workspaces para proyectos web con componentes de inteligencia artificial  
18.2.2. Uso de herramientas de gestión de proyectos y control de versiones en el workspace 
18.2.3. Estrategias para la colaboración y comunicación eficientes en el equipo de desarrollo 
18.2.4. Adaptación del workspace a las necesidades específicas de proyectos web con IA 

18.3. Patrones de Diseño en Productos con GitHub Copilot 

18.3.1. Identificación y aplicación de patrones de diseño comunes en interfaces de usuario con elementos de inteligencia artificial 
18.3.2. Desarrollo de patrones específicos para mejorar la experiencia de usuario en proyectos web con IA 
18.3.3. Integración de patrones de diseño en la arquitectura general de proyectos web con Inteligencia Artificial 
18.3.4. Evaluación y selección de patrones de diseño adecuados según el contexto del proyecto 

18.4. Desarrollo Frontend con GitHub Copilot  

18.4.1. Integración de modelos de IA en la capa de presentación de proyectos web  
18.4.2. Desarrollo de interfaces de usuario adaptativas con elementos de inteligencia artificial 
18.4.3. Implementación de funcionalidades de procesamiento de lenguaje natural (PLN) en el Frontend 
18.4.4. Estrategias para la optimización del rendimiento en el desarrollo Frontend con IA  

18.5. Creación de Base de Datos usando GitHub Copilot  

18.5.1. Selección de tecnologías de bases de datos para proyectos web con inteligencia artificial 
18.5.2. Diseño de esquemas de bases de datos para almacenar y gestionar datos relacionados con IA 
18.5.3. Implementación de sistemas de almacenamiento eficientes para grandes volúmenes de datos generados por modelos de IA 
18.5.4. Estrategias para la seguridad y protección de datos sensibles en bases de datos de proyectos web con IA 

18.6. Desarrollo Backend con GitHub Copilot  

18.6.1. Integración de servicios y modelos de IA en la lógica de negocio del Backend 
18.6.2. Desarrollo de APIs y endpoints específicos para la comunicación entre el Frontend y los componentes de IA 
18.6.3. Implementación de lógica de procesamiento de datos y toma de decisiones en el Backend con Inteligencia Artificial 
18.6.4. Estrategias para la escalabilidad y rendimiento en el desarrollo Backend de proyectos web con IA  

18.7. Optimizar el Proceso de Despliegue de Tu Web  

18.7.1. Automatización de procesos de construcción y despliegue de proyectos web con ChatGPT  
18.7.2. Implementación de pipelines de CI/CD adaptados a aplicaciones web con GitHub Copilot  
18.7.3. Estrategias para la gestión eficiente de versiones y actualizaciones en despliegues continuos 
18.7.4. Monitoreo y análisis post-despliegue para la mejora continua del proceso  

18.8. IA en la Computación en la Nube  

18.8.1. Integración de servicios de inteligencia artificial en plataformas de computación en la nube 
18.8.2. Desarrollo de soluciones escalables y distribuidas utilizando servicios de nube con capacidades de IA 
18.8.3. Estrategias para el manejo eficiente de recursos y costos en entornos de nube con aplicaciones web con IA 
18.8.4. Evaluación y comparación de proveedores de servicios en la nube para proyectos web con Inteligencia Artificial  

18.9. Creación de un Proyecto con IA para Entornos LAMP con la ayuda de ChatGPT  

18.9.1. Adaptación de proyectos web basados en la pila LAMP para incluir componentes de Inteligencia Artificial 
18.9.2. Integración de bibliotecas y frameworks específicos de IA en entornos LAMP 
18.9.3. Desarrollo de funcionalidades de IA que complementan la arquitectura LAMP tradicional  
18.9.4. Estrategias para la optimización y mantenimiento en proyectos web con IA en entornos LAMP.  

18.10. Creación de un Proyecto con IA para Entornos MEVN usando ChatGPT 

18.10.1. Integración de tecnologías y herramientas de la pila MEVN con componentes de Inteligencia Artificial 
18.10.2. Desarrollo de aplicaciones web modernas y escalables en entornos MEVN con capacidades de IA 
18.10.3. Implementación de funcionalidades de procesamiento de datos y aprendizaje automático en proyectos MEVN 
18.10.4. Estrategias para la mejora del rendimiento y la seguridad en aplicaciones web con IA en entornos MEVN 

Módulo 19. Aplicaciones móviles con IA   

19.1. Preparación de Entorno de Trabajo para Desarrollo Móvil con IA  

19.1.1. Configuración de entornos de desarrollo móvil para proyectos con Inteligencia Artificial  
19.1.2. Selección y preparación de herramientas específicas para el desarrollo de aplicaciones móviles con IA 
19.1.3. Integración de bibliotecas y frameworks de IA en entornos de desarrollo móvil 
19.1.4. Configuración de emuladores y dispositivos reales para pruebas de aplicaciones móviles con componentes de inteligencia artificial 

19.2. Creación de un Workspace con GitHub Copilot  

19.2.1. Integración de GitHub Copilot en entornos de desarrollo móvil 
19.2.2. Uso efectivo de GitHub Copilot para la generación de código en proyectos con IA 
19.2.3. Estrategias para la colaboración entre desarrolladores al utilizar GitHub Copilot en el workspace 
19.2.4. Buenas prácticas y limitaciones en el uso de GitHub Copilot en el desarrollo de aplicaciones móviles con IA

19.3. Configuración de Firebase  

19.3.1. Configuración inicial de un proyecto en Firebase para el desarrollo móvil 
19.3.2. Integración de Firebase en aplicaciones móviles con funcionalidades de Inteligencia Artificial 
19.3.3. Uso de servicios de Firebase como base de datos, autenticación y notificaciones en proyectos con IA 
19.3.4. Estrategias para la gestión de datos y eventos en tiempo real en aplicaciones móviles con Firebase  

19.4. Conceptos de Clean Architecture, DataSources, Repositories  

19.4.1. Principios fundamentales de Clean Architecture en el desarrollo móvil con IA 
19.4.2. Implementación de capas de DataSources y Repositories con GitHub Copilot  
19.4.3. Diseño y estructuración de componentes en proyectos móvile con GitHub Copilot 
19.4.4. Beneficios y desafíos de la implementación de Clean Architecture en aplicaciones móviles con IA 

19.5. Creación de Pantalla de Autenticación con GitHub Copilot  

19.5.1. Diseño y desarrollo de interfaces de usuario para pantallas de autenticación en aplicaciones móviles con IA 
19.5.2. Integración de servicios de autenticación con Firebase en la pantalla de inicio de sesión  
19.5.3. Uso de técnicas de seguridad y protección de datos en la pantalla de autenticación 
19.5.4. Personalización y adaptación de la experiencia de usuario en la pantalla de autenticación 

19.6. Creación de Dashboard y Navegación con GitHub Copilot  

19.6.1. Diseño y desarrollo de Dashboards con elementos de Inteligencia Artificial 
19.6.2. Implementación de sistemas de navegación eficientes en aplicaciones móviles con IA 
19.6.3. Integración de funcionalidades de IA en el Dashboard para mejorar la experiencia del usuario  

19.7. Creación de Pantalla con Listado usando GitHub Copilot 

19.7.1. Desarrollo de interfaces de usuario para pantallas con listados en aplicaciones móviles con IA 
19.7.2. Integración de algoritmos de recomendación y filtrado en la pantalla de listado 
19.7.3. Uso de patrones de diseño para la presentación efectiva de datos en el listado 
19.7.4. Estrategias para la carga eficiente de datos en tiempo real en la pantalla con listado 

19.8. Creación de Pantalla de Detalle con GitHub Copilot 

19.8.1. Diseño y desarrollo de interfaces de usuario detalladas para la presentación de información específica  
19.8.2. Integración de funcionalidades de IA para enriquecer la pantalla de detalle 
19.8.3. Implementación de interacciones y animaciones en la pantalla de detalle 
19.8.4. Estrategias para la optimización del rendimiento en la carga y visualización de detalles en aplicaciones móviles con IA 

19.9. Creación de Pantalla de Settings con GitHub Copilot 

19.9.1. Desarrollo de interfaces de usuario para configuración y ajustes en aplicaciones móviles con IA 
19.9.2. Integración de ajustes personalizados relacionados con componentes de inteligencia artificial 
19.9.3. Implementación de opciones de personalización y preferencias en la pantalla de configuración 
19.9.4. Estrategias para la usabilidad y claridad en la presentación de opciones en la pantalla de settings 

19.10. Crear Iconos, Splash y Recursos Gráficos para Tu App con IA  

19.10.1. Diseño y creación de iconos atractivos para representar la aplicación móvil con IA 
19.10.2. Desarrollo de pantallas de inicio (splash) con elementos visuales impactantes 
19.10.3. Selección y adaptación de recursos gráficos que mejoren la estética de la aplicación móvil 
19.10.4. Estrategias para la consistencia y branding visual en los elementos gráficos de la aplicación con IA 

Módulo 20. IA para QA Testing 

20.1. Ciclo de Vida de Testing  

20.1.1. Descripción y comprensión del ciclo de vida de testing en el desarrollo de software
20.1.2. Fases del ciclo de vida de testing y su importancia en el aseguramiento de la calidad 
20.1.3. Integración de la inteligencia artificial en diferentes etapas del ciclo de vida de testing 
20.1.4. Estrategias para la mejora continua del ciclo de vida de testing mediante el uso de IA 

20.2. Test Cases y Detección de Bugs con ayuda de ChatGPT  

20.2.1. Diseño y escritura efectiva de casos de prueba en el contexto de QA Testing 
20.2.2. Identificación de bugs y errores durante la ejecución de casos de prueba 
20.2.3. Aplicación de técnicas de detección temprana de bugs mediante análisis estático 
20.2.4. Uso de herramientas de inteligencia artificial para la identificación automática de bugs en test cases  

20.3. Tipos de Testing  

20.3.1. Exploración de diferentes tipos de testing en el ámbito de QA 
20.3.2. Pruebas unitarias, integración, funcionales, y de aceptación: características y aplicaciones 
20.3.3. Estrategias para la selección y combinación adecuada de tipos de testing en proyectos con ChatGPT 
20.3.4. Adaptación de tipos de testing convencionales a proyectos con ChatGPT 

20.4. Crear un Plan de Pruebas usando ChatGPT 

20.4.1. Diseño y estructuración de un plan de pruebas integral 
20.4.2. Identificación de requisitos y escenarios de prueba en proyectos con IA 
20.4.3. Estrategias para la planificación de pruebas manuales y automatizadas 
20.4.4. Evaluación y ajuste continuo del plan de pruebas en función del desarrollo del proyecto  

20.5. Detección y Reportar Bugs con IA  

20.5.1. Implementación de técnicas de detección automática de bugs mediante algoritmos de aprendizaje automático  
20.5.2. Uso de ChatGPT para el análisis dinámico de código en busca de posibles errores 
20.5.3. Estrategias para la generación automática de informes detallados sobre bugs detectados usando ChatGPT 
20.5.4. Colaboración efectiva entre equipos de desarrollo y QA en la gestión de bugs identificados por IA  

20.6. Creación de Pruebas Automatizadas con IA  

20.6.1. Desarrollo de scripts de prueba automatizados para proyectos usando ChatGPT 
20.6.2. Integración de herramientas de automatización de pruebas basadas en IA  
20.6.3. Uso de ChatGPT para la generación dinámica de casos de prueba automatizados 
20.6.4. Estrategias para la ejecución eficiente y mantenimiento de pruebas automatizadas en proyectos con IA  

20.7. API Testing  

20.7.1. Conceptos fundamentales de API testing y su importancia en QA 
20.7.2. Desarrollo de pruebas para la verificación de APIs en entornos usando ChatGPT 
20.7.3. Estrategias para la validación de datos y resultados en API testing con ChatGPT 
20.7.4. Uso de herramientas específicas para el testing de APIs en proyectos con inteligencia artificial  

20.8. Herramientas de IA para Web Testing  

20.8.1. Exploración de herramientas de inteligencia artificial para la automatización de pruebas en entornos web 
20.8.2. Integración de tecnologías de reconocimiento de elementos y análisis visual en web testing 
20.8.3. Estrategias para la detección automática de cambios y problemas de rendimiento en aplicaciones web usando ChatGPT 
20.8.4. Evaluación de herramientas específicas para la mejora de la eficiencia en el web testing con IA.  

20.9. Mobile Testing Mediante IA  

20.9.1. Desarrollo de estrategias de testing para aplicaciones móviles con componentes de inteligencia artificial 
20.9.2. Integración de herramientas de testing específicas para plataformas móviles basadas en IA 
20.9.3. Uso de ChatGPT para la detección de problemas en el rendimiento de aplicaciones móviles 
20.9.4. Estrategias para la validación de interfaces y funciones específicas de aplicaciones móviles mediante IA 

20.10. Herramientas de QA con IA  

20.10.1. Exploración de herramientas y plataformas de QA que incorporan funcionalidades de Inteligencia Artificial  
20.10.2. Evaluación de herramientas para la gestión y ejecución eficiente de pruebas en proyectos con IA 
20.10.3. Uso de ChatGPT para la generación y optimización de casos de prueba 
20.10.4. Estrategias para la selección y adopción efectiva de herramientas de QA con capacidades de IA

estudiar inteligencia artificial programacion Tech Universidad

Implementarás proyectos web y aplicaciones móviles con IA, optimizando código con herramientas avanzadas, como ChatGPT, y mejorando la productividad y seguridad en el desarrollo de software”

Master Semipresenziale in Intelligenza Artificiale nella Programmazione

Esplora le frontiere della programmazione con il Master Semipresenziale in Intelligenza Artificiale nella Programmazione presso TECH Global University. Questo programma innovativo combina l'apprendimento teorico online con la pratica in aula presso il nostro centro specializzato, offrendoti un'esperienza accademica completa e adattata alle esigenze del mercato attuale. Nel nostro istituto, ci impegniamo a offrire un'istruzione di eccellenza che prepari gli studenti ad affrontare le sfide del mondo digitale. Il nostro approccio semipresenziale ti offre flessibilità senza sacrificare la qualità, assicurandoti di acquisire sia conoscenze teoriche profonde che competenze pratiche. Il corso di laurea ti immergerà nell'affascinante mondo dell'intelligenza artificiale applicata alla programmazione, esplorando le basi degli algoritmi di machine learning fino alla loro implementazione in progetti reali. Imparerai a sviluppare sistemi intelligenti, ottimizzare i processi e risolvere problemi complessi utilizzando strumenti e tecniche all'avanguardia.

Iscriviti alla migliore Facoltà di Informatica

Sai perché TECH è considerata una delle migliori università del mondo? Perché abbiamo un catalogo di oltre diecimila programmi accademici, presenza in diversi paesi, metodologie innovative, tecnologia accademica unica e un personale docente altamente qualificato; per questo non puoi perdere l'opportunità di studiare con noi. Dopo la qualifica, sarai preparato per guidare progetti innovativi in una serie di aree, dall'automazione dei processi alla creazione di soluzioni avanzate per aziende e organizzazioni. Oltre alle competenze tecniche avanzate, svilupperai competenze in analisi critica, processo decisionale e collaborazione di squadra, abilità essenziali per distinguerti in un mercato del lavoro competitivo e dinamico. Unisciti alla straordinaria Facoltà di Informatica di TECH dove avrai accesso a risorse accademiche di prim'ordine e la guida di professionisti con esperienza nel settore. Il nostro obiettivo è prepararti a diventare un leader tecnologico, in grado di affrontare le sfide future con fiducia e creatività. Iscriviti oggi e fai il primo passo verso un futuro promettente nel mondo digitale.