Why study at TECH?

Acquire the most complete and up-to-date knowledge of hardware and new technologies, and qualify professionals to work in implementation and development in Telecommunications Systems Engineering”

##IMAGE##

Advances in telecommunications happen constantly, as this is one of the fastest evolving areas in the engineering sector. Therefore, it is necessary to have experts in Computer Science who can adapt to these changes and know first-hand the new tools and techniques that arise in this field. 

The Professional master’s degree in Specific Telecommunication Technology addresses a range of topics pertaining to this field. Their study presents a clear advantage over other Master's degrees that focus on specific blocks, which prevents the student from knowing the interrelation with other areas included in the multidisciplinary field of telecommunications, offering a broader vision that incorporates the complementary skills of other areas of interest. Besides, this educational program’s teaching team has made a careful selection of each one of the topics to offer students the most complete study opportunity possible that is always linked to current events. 

This program is aimed at those people interested in reaching a higher level of knowledge about Specific Telecommunication Technology. The main objective is to educate the student on how to apply the knowledge acquired in this Master's Degree in the real world, and in a work environment that rigorously and realistically reproduces the conditions that can be found in their future.   

In addition, as it is a 100% online Master's Degree, the student is not conditioned by fixed schedules or the need to move to another location, but can access the contents at any time of the day, balancing their work or personal life with their academic duties.

Don’t miss this opportunity to study this TECH Professional master’s degree in Specific Telecommunication Technology” It's the perfect opportunity to advance your career"

This Professional master’s degree in Specific Telecommunication Technology contains the most complete and up-to-date program on the market. The most important features include:

  • The development of practical cases presented by experts in Specific Telecommunication Technology
  • The graphic, schematic, and practical contents with which they are created, that provide scientific and practical information on the disciplines that are essential for professional practice
  • Practical exercises where self-assessment can be used to improve learning
  • Special emphasis on innovative methodologies in Specific Telecommunication Technology
  • Theoretical lessons, questions for the expert, debate forums on controversial topics, and individual reflection assignments
  • Content that is accessible from any fixed or portable device with an Internet connection

With a system created to achieve a sufficiently broad body of knowledge and efficient practical experience, this program is a highly valuable tool for professional growth”

Its teaching staff includes professionals belonging to the field of Information Technology, who bring to this program the experience of their work, as well as recognized specialists from leading companies and prestigious universities. 

Its multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide an immersive education programmed to learn in real situations. 

This program is designed around Problem-Based Learning, whereby students must try to solve different professional practice situations that arise throughout the program. In order to achieve the above, the professional will receive the help of an innovative system of interactive videos, made by experienced and recognized experts in Specific Telecommunication Technology.    

The study system has been created to offer a perfect reconciliation to the student, between dedication to study and other activities, without interfering in the effectiveness of learning” 

##IMAGE##

Focused on real learning, this Professional master’s degree offers the support of high-quality audiovisual systems that will allow students a practical and straightforward immersion”

Syllabus

The syllabus has been designed on the basis of educational efficiency, carefully selecting the contents to offer a complete program, which includes all the fields of study that are essential to achieve real knowledge of the subject Including the latest updates and aspects of the field. 

##IMAGE##

We have the most complete and up-to-date educational program in the market. We strive for excellence and for you to achieve it too" 

Module 1. Circuit Analysis 

1.1. Basic Concepts of Circuits

1.1.1. Basic Components of Circuits
1.1.2. Nodes, Branches and Meshes
1.1.3. Resistance
1.1.4. Capacitors
1.1.5. Coils

1.2. Circuit Analysis Methods

1.2.1. Kirchoff's Laws. Law of Currents: Nodal Analysis
1.2.2. Kirchoff's Laws. Law of Tensions: Mesh Analysis
1.2.3. Superposition Theorem
1.2.4. Other Theorems of Interest

1.3. Sinusoidal Functions and Phasors

1.3.1. Review of Sinusoidal Functions and their Characteristics
1.3.2. Sinusoidal Functions as Circuit Excitation
1.3.3. Phasor Definition
1.3.4. Basic Phasor Operations

1.4. Analysis of Sinusoidal Steady-State Circuits. Effects of Passive Components Excited by Sinusoidal Functions    

1.4.1. Impedance and Admittance of Passive Components 
1.4.2. Sinusoidal Current and Voltage in Resistors 
1.4.3. Sinusoidal Current and Voltage in Capacitors 
1.4.4. Sinusoidal Current and Voltage in Coils 

1.5. Sinusoidal Steady-State Power

1.5.1. Definitions
1.5.2. Effective Values
1.5.3. Example 1 of Power Calculation
1.5.4. Example 2 of Power Calculation

1.6. Generators

1.6.1. Ideal Generators
1.6.2. Real Generators
1.6.3. Associations of Generators in Series Assembly
1.6.4. Associations of Generators in Mixed Assembly

1.7. Topological Circuit Analysis

1.7.1. Equivalent Circuits
1.7.2. Thévenin’s Equivalent
1.7.3. Continuous Steady-State of Thévenin’s Equivalent
1.7.4. Norton Equivalent

1.8. Fundamental Circuit Theorems

1.8.1. Superposition Theorem
1.8.2. Maximum Power Transfer Theorem
1.8.3. Substitution Theorem
1.8.4. Millman Theorem
1.8.5. Reciprocity Theorem

1.9. Transformers and Coupled Circuits

1.9.1. Introduction
1.9.2. Iron Core Transformers: The Ideal Model
1.9.3. Excessive Impedance
1.9.4. Power Transformer Specifications
1.9.5. Transformer Applications
1.9.6. Practical Iron-Core Transformers
1.9.7. Transformer Testing
1.9.8. Voltage and Frequency Effects
1.9.9. Weakly Coupled Circuits
1.9.10. Magnetically Coupled Circuits with Sinusoidal Excitation
1.9.11. Coupled Impedance

1.10. Transient Phenomena Analysis in Circuits

1.10.1. Calculation of Instantaneous Current and Voltage in Passive Components
1.10.2. One Order Circuits in Transient Regime
1.10.3. Second Order Circuits in Transient Regime
1.10.4. Resonance and Frequency Effects: Filtering

Module 2. Electromagnetism, Semiconductors and Waves 

2.1. Mathematics for Field Physics

2.1.1. Vectors and Orthogonal Coordinate Systems
2.1.2. Gradient of a Scalar Field
2.1.3. Divergence of a Vector Field and Divergence Theorem
2.1.4. Rotation of a Vector Field and Stokes' Theorem
2.1.5. Classification of Fields: Helmholtz Theorem

2.2. Electrostatic Field I  

2.2.1. Fundamental Postulates
2.2.2. Coulomb's Law and Fields Generated by Charge Distributions
2.2.3. Gauss' Law
2.2.4. Electrostatic Potential

2.3. Electrostatic Field II  

2.3.1. Material Media: Metals and Dielectrics
2.3.2. Boundary Conditions
2.3.3. Capacitors
2.3.4. Electrostatic Forces and Energy
2.3.5. Problem-Solving with Boundary Values

2.4. Stationary Electric Currents  

2.4.1. Current Density and Ohm's Law
2.4.2. Load and Current Continuity
2.4.3. Current Equations
2.4.4. Resistance Calculations

2.5. Magnetostatic Field I  

2.5.1. Fundamental Postulates
2.5.2. Vector Potential
2.5.3. Biot-Savart’s Law
2.5.4. The Magnetic Dipole

2.6. Magnetostatic Field II  

2.6.1. Magnetic Field in Material Resources
2.6.2. Boundary Conditions
2.6.3. Inductance
2.6.4. Forces and Energy
2.6.5. Electromagnetic Fields 

2.7 Introduction

2.7.1. Electromagnetic Fields
2.7.2. Maxwell's Laws of Electromagnetism
2.7.3. Electromagnetic Waves

2.8. Semiconductor Materials 

2.8.1. Introduction
2.8.2. Difference between Metals, Insulators and Semiconductors
2.8.3. Current Carriers
2.8.4. Carrier Density Calculation

2.9. Semiconductor Diode  

2.9.1. The PN Junction
2.9.2. Derivation of the Diode Equation
2.9.3. The Diode in Large Signal: Circuits
2.9.4. The Diode in Small Signal: Circuits

2.10. Transistors  

2.10.1. Definition
2.10.2. Characteristic Curves of the Transistor
2.10.3. Bipolar Junction Transistor
2.10.4. Field Effect Transistors

Module 3. Random Signals and Linear Systems 

3.1. Probability Theory 

3.1.1. Concept of Probability Probability Space
3.1.2. Conditional Probability and Independent Events
3.1.3. Total Probability Theorem. Bayes' Theorem  
3.1.4. Composite Experiments. Bernoulli Tests

3.2. Random Variables

3.2.1. Random Variable Definition
3.2.2. Probability Distributions
3.2.3. Main Distributions
3.2.4. Functions of Random Variables
3.2.5. Moments of Random Variable
3.2.6. Generator Functions

3.3. Random Vectors

3.3.1. Random Vector Definition
3.3.2. Joint Distribution
3.3.3. Marginal Distributions 
3.3.4. Conditional Distributions
3.3.5. Linear Correlation Between Two Variables
3.3.6. Normal Multivariant Distribution

3.4. Random Processes

3.4.1. Definition and Description of Random Processes
3.4.2. Random Processes in Discrete Time
3.4.3. Random Processes in Continuous Time
3.4.4. Stationary Processes
3.4.5. Gaussian Processes
3.4.6. Markovian Processes

3.5. Queuing Theory in Telecommunications

3.5.1. Introduction 
3.5.2. Basic Concepts
3.5.3. Model Description
3.5.4. Example of the Application of Queuing Theory in Telecommunications

3.6. Random Processes. Temporal Characteristics

3.6.1. Concept of Random Process
3.6.2. Processes Qualification
3.6.3. Main Statistics
3.6.4. Stationarity and Independence
3.6.5. Temporary Averages
3.6.6. Ergodicity

3.7. Random Processes. Spectral Characteristic

3.7.1. Introduction
3.7.2. Power Density Spectrum
3.7.3. Power Density Spectral Properties
3.7.4. Relationship between the Power Spectrum and Autocorrelation

3.8. Signals and Systems. Properties

3.8.1. Introduction to Signals
3.8.2. Introduction to Systems
3.8.3. Basic Properties of Systems  

3.8.3.1. Linearity
3.8.3.2. Time Invariance
3.8.3.3. Causality
3.8.3.4. Stability
3.8.3.5. Memory
3.8.3.6. Invertibility  

3.9. Lineal Systems with Random Inputs

3.9.1. Fundamentals of Linear Systems
3.9.2. Response to Linear Systems and Random Signals
3.9.3. Systems with Random Noise
3.9.4. Spectral Characteristics of the System Response
3.9.5. Equivalent Noise Bandwidth and Temperature
3.9.6. Noise Source Modeling  

3.10. LTI Systems

3.10.1. Introduction
3.10.2. Discrete-Time LTI Systems
3.10.3. Continuous-Time LTI Systems
3.10.4. Properties of LTI Systems
3.10.5. Systems Described by Differential Equations

Module 4. Fields and Waves 

4.1. Mathematics for Field Physics

4.1.1. Vectors and Orthogonal Coordinate Systems
4.1.2. Gradient of a Scalar Field
4.1.3. Divergence of a Vector Field and Divergence Theorem
4.1.4. Rotation of a Vector Field and Stokes' Theorem
4.1.5. Classification of Fields: Helmholtz Theorem

4.2. Introduction to Waves  

4.2.1. Wave Equation  
4.2.2. General Solutions to Wave Equations: D’Alembert Solution  
4.2.3. Harmonic Solutions to Wave Equations  
4.2.4. Wave Equation in the Transformed Domain  
4.2.5. Wave and Standing Wave Propagation  

4.3. The electromagnetic field and Maxwell's equations  

4.3.1. Maxwell's Equations
4.3.2. Continuity on the Electromagnetic Boundaries
4.3.3. Wave Equation
4.3.4. Monochromatic or Harmonic Dependence Fields

4.4. Propagation of Uniform Plane Waves

4.4.1. Wave Equation
4.4.2. Uniform Plane Waves
4.4.3. Lossless Media Propagation  
4.4.4. Propagation in Lossy Media  

4.5. Polarization and Incidence of Uniform Plane Waves

4.5.1. Electric Transversal Polarization
4.5.2. Magnetic Transversal Polarization
4.5.3. Lineal Polarization
4.5.4. Circular Polarization
4.5.5. Elliptical Polarization
4.5.6. Normal Incidence of Uniform Plane Waves
4.5.7. Oblique Incidence of Uniform Plane Waves

4.6. Basic Concepts of Transmission Line Theory

4.6.1. Introduction
4.6.2. Circuit Model of the Transmission Line
4.6.3. General Equations of the Transmission Line
4.6.4. Wave Equation Solution in both the Time Domain and the Frequency Domain
4.6.5. Low-Loss and No-Loss Lines
4.6.6. Power 

4.7. Completed Transmission Line

4.7.1. Introduction
4.7.2. Reflection
4.7.3. Stationary Waves
4.7.4. Input Impedance
4.7.5. Load and Generator Mismatch
4.7.6. Transitory Response 

4.8. Wave Guide and Transmission Lin 

4.8.1. Introduction
4.8.2. General Solutions for TEM, TE and TM Waves
4.8.3. Parallel Plane Guide
4.8.4. Rectangular Guide
4.8.5. Circular Wave Guide
4.8.6. Coaxial Cable
4.8.7. Plane Lines 

4.9. Microwave Circuits, Smith Chart and Impedance Match

4.9.1. Introduction to Microwave Circuits

4.9.1.1. Equivalent Voltages and Currents
4.9.1.2. Impedance and Admittance Parameters
4.9.1.3. Scattering Parameters

4.9.2. Smith's Chart  

4.9.2.1. Definition of Smith’s Chart
4.9.2.2. Simple Calculations
4.9.2.3. Smith's Chart on Admissions  

4.9.3. Adaptation of Impedances. Simple Stub 
4.9.4. Adaptation of Impedances. Double Stub 
4.9.5. Quarter-Wave Transformers

4.10. Introduction to Antennae  

4.10.1. Introduction and Brief Historical Review
4.10.2. Electromagnetic Spectrum 
4.10.3. Radiation Diagram 

4.10.3.1. System of Coordinates 
4.10.3.2. Three Dimensional Diagrams 
4.10.3.3. Two Dimensional Diagrams 
4.10.3.4. Level Curves 

4.10.4. Fundamental Parameters of Antennae 

4.10.4.1. Radiated Power Density 
4.10.4.2. Directivity 
4.10.4.3. Gain 
4.10.4.4. Polarization 
4.10.4.5. Impedances 
4.10.4.6. Adaptation 
4.10.4.7. Area and Effective Longitude 

Module 5. Communication Theory 

5.1. Introduction: Telecommunication Systems and Transmission Systems

5.1.1. Introduction
5.1.2. Basic Concepts and History
5.1.3. Telecommunication Systems
5.1.4. Transmission Systems

5.2. Signal Characterization

5.2.1. Deterministic and Random Signals
5.2.2. Periodic and Non-Periodic Signal
5.2.3. Energy and Power Signal
5.2.4. Baseband and Bandpass Signal
5.2.5. Basic Parameters of a Signal

5.2.5.1. Mean Value 
5.2.5.2. Average Energy and Power
5.2.5.3. Maximum Value and Effective Value
5.2.5.4. Energy and Power Spectral Density
5.2.5.5. Power Calculation in Logarithmic Units

5.3. Disturbances in Transmission Systems

5.3.1. Ideal Channel Transmission
5.3.2. Classification of Disturbances
5.3.3. Linear Distortion 
5.3.4. Non-Linear Distortion 
5.3.5. Crosstalk and Interference 
5.3.6. Noise 

5.3.6.1. Types of Noise 
5.3.6.2. Characterization

5.3.7. Narrow Band Passing Signals 

5.4. Analog Communications. Concepts

5.4.1. Introduction 
5.4.2. General Concepts
5.4.3. Baseband Transmission 

5.4.3.1. Modulation and Demodulation 
5.4.3.2. Characterization 
5.4.3.3. Multiplexing 

5.4.4. Mixers 
5.4.5. Characterization 
5.4.6. Type of Mixers 

5.5. Analog Communications. Lineal Modulations

5.5.1. Basic Concepts
5.5.2. Amplitude Modulation (AM) 

5.5.2.1. Characterization 
5.5.2.2. Parameters
5.5.2.3. Modulation/Demodulation

5.5.3. Double Side Band (DSB) Modulation

5.5.3.1. Characterization 
5.5.3.2. Parameters
5.5.3.3. Modulation/Demodulation

5.5.4. Single Side Band (SSB) Modulation 

5.5.4.1. Characterization 
5.5.4.2. Parameters
5.5.4.3. Modulation/Demodulation

5.5.5. Vestigial Side Band (VSB) Modulation 

5.5.5.1. Characterization 
5.5.5.2. Parameters
5.5.5.3. Modulation/Demodulation

5.5.6. Quadrature Amplitude Modulation (QAM)

5.5.6.1. Characterization 
5.5.6.2. Parameters
5.5.6.3. Modulation/Demodulation

5.5.7. Noise in Analog Modulations 

5.5.7.1. Approach 
5.5.7.2. Noise in DBL 
5.5.7.3. Noise in BLU 
5.5.7.4. Noise in AM 

5.6. Analog Communications. Angular Modulations

5.6.1. Phase and Frequency Modulation 
5.6.2. Narrow Band Angular Modulation
5.6.3. Spectrum Calculation
5.6.4. Generation and Demodulation 
5.6.5. Angular Demodulation with Noise 

5.6.5.1. Noise in PM 

5.6.6. Noise in FM 
5.6.7. Comparison between Analog Modulations

5.7. Digital Communication Introduction. Transmission Models 

5.7.1. Introduction 
5.7.2. Fundamental Parameters 
5.7.3. Advantages of Digital Systems
5.7.4. Limitations of Digital Systems
5.7.5. PCM Systems 
5.7.6. Modulations in Digital Systems
5.7.7. Demodulations in Digital Systems

5.8. Digital Communication Digital Base Band Transmission

5.8.1. PAM Binary Systems 

5.8.1.1. Characterization 
5.8.1.2. Signal Parameters
5.8.1.3. Spectral Model 

5.8.2. Basic Binary Sampling Receiver

5.8.2.1. Bipolar NRZ 
5.8.2.2. Bipolar RZ 
5.8.2.3. Error Probability 

5.8.3. Optimal Binary Receptor

5.8.3.1. Context 
5.8.3.2. Error Rate Calculation 
5.8.3.3. Optimal Receptor Filter Design
5.8.3.4. SNR Calculation 
5.8.3.5. Loans 
5.8.3.6. Characterization 

5.8.4. M-PAM Systems 

5.8.4.1. Parameters
5.8.4.2. Constellations
5.8.4.3. Optimal Receiver 
5.8.4.4. Bit Error Ratio (BER) 

5.8.5. Signal Vectorial Space
5.8.6. Constellation of a Digital Modulation
5.8.7. M-Signal Receivers 

5.9. Digital Communication Digital Bandpass Transmission. Digital Modulations

5.9.1. Introduction 
5.9.2. ASK Modulation 

5.9.2.1. Characterization 
5.9.2.2. Parameters
5.9.2.3. Modulation/Demodulation

5.9.3. QAM Modulation 

5.9.3.1. Characterization 
5.9.3.2. Parameters
5.9.3.3. Modulation/Demodulation

5.9.4. PSK Modulation 

5.9.4.1. Characterization 
5.9.4.2. Parameters
5.9.4.3. Modulation/Demodulation

5.9.5. FSK Modulation 

5.9.5.1. Characterization 
5.9.5.2. Parameters
5.9.5.3. Modulation/Demodulation

5.9.6. Other Digital Modulations 
5.9.7. Comparison between Digital Modulations

5.10. Digital Communication Comparison, IES, Diagram and Eyes

5.10.1. Comparison between Digital Modulations

5.10.1.1. Energy and Power of the Modulations
5.10.1.2. Envelope 
5.10.1.3. Noise Protection 
5.10.1.4. Spectral Model 
5.10.1.5. Channel Coding Techniques 
5.10.1.6. Synchronization Signals
5.10.1.7. SER Symbol Error Rate 

5.10.2. Bandwidth-Limited Channels 
5.10.3. Inter Symbol Interference (IES) 

5.10.3.1. Characterization
5.10.3.2. Limitations

5.10.4. Optimal Receiver in PAM Without IES
5.10.5. Eye Diagrams 

Module 6. Transmission Systems. Optical Communication 

6.1. Introduction to Transmission Systems 

6.1.1. Basic Definitions and Transmission System Model 
6.1.2. Description of Some Transmission Systems 
6.1.3. Normalization within Transmission Systems 
6.1.4. Units used in Transmission Systems, Logarithmic Representation 
6.1.5. MDT Systems 

6.2. Characterization of the Digital Signal 

6.2.1. Characterization of Analog and Digital Sources 
6.2.2. Digital Codification of Analog Signals 
6.2.3. Digital Representation of Audio Signal 
6.2.4. Representation of Video Signal 

6.3. Transmission Media and Disturbance 

6.3.1. Introduction and Characterization of Transmission Media 
6.3.2. Metallic Transmission Lines 
6.3.3. Fiber Optic Transmission Lines 
6.3.4. Radio Transmission 
6.3.5. Comparison of Transmission Media 
6.3.6. Disturbances in Transmission 

6.3.6.1. Attenuation
6.3.6.2. Distortion
6.3.6.3. Noise
6.3.6.4. Channel Capacity

6.4. Digital Transmission Systems 

6.4.1. Digital Transmission Systems Model 
6.4.2. Comparison between Analog and Digital Transmission 
6.4.3. Fiber Optic Transmission System 
6.4.4. Digital Radio Link 
6.4.5. Other Systems 

6.5. Optical Communication Systems. Basic Concepts and Optical Elements 

6.5.1. Introduction to Optical Communication Systems 
6.5.2. Fundamental Relationships about Light 
6.5.3. Modulation Formats 
6.5.4. Power and Time Balance 
6.5.5. Multiplexing Techniques 
6.5.6. Optical Networks 
6.5.7. Non-Wavelength-Selective Passive Optical Elements
6.5.8. Wavelength-Selective Passive Optical Elements

6.6. Optical Fiber 

6.6.1. Characteristic Parameters of Single-Mode and Multimode Fibers 
6.6.2. Attenuation and Temporal Dispersion 
6.6.3. Non-Lineal Effects 
6.6.4. Regulations on Fiber Optics 

6.7. Optical Transmitting and Receiving Devices

6.7.1. Basic Principles of Light Emission 
6.7.2. Stimulated Emission
6.7.3. Fabry-Perot Resonator 
6.7.4. Required Conditions for Achieving Laser Oscillation
6.7.5. Characteristics of Laser Radiation 
6.7.6. Light Emission in Semiconductors 
6.7.7. Semiconductor Lasers
6.7.8. Light-Emitting Diodes, LEDs
6.7.9. Comparison between LED and Semiconductor Laser
6.7.10. Light Detection Mechanisms in Semiconductor Junctions
6.7.11. PN photodiodes 
6.7.12. PIN photodiodes 
6.7.13. Avalanche Photodiodes or APDs 
6.7.14. Basic Configuration of the Receptor Circuit

6.8. Transmission Media in Optical Communication

6.8.1. Refraction and Reflection 
6.8.2. Propagation in a Confined Two-Dimensional Medium 
6.8.3. Different Types of Optical Fibers 
6.8.4. Physical Properties of Optical Fibers 
6.8.5. Dispersion in Optical Fibers 

6.8.5.1. Intermodal Dispersion 
6.8.5.2. Phase Velocity and Group Velocity 
6.8.5.3. Intermodal Dispersion 

6.9. Multiplexing and Switching in Optical Networks

6.9.1. Multiplexing in Optical Networks 
6.9.2. Photonic Switching 
6.9.3. WDM Networks Basic Principles 
6.9.4. Characteristic Components of a WDM System 
6.9.5. Architecture and Functioning of WDM Networks 

6.10. Passive Optical Networks (PON)

6.10.1. Coherent Optical Communication 
6.10.2. Optical Time Division Multiplexing (OTDM) 
6.10.3. Characteristic Elements of Passive Optical Networks 
6.10.4. Architecture of PON Networks 
6.10.5. Optical Multiplexing in PON Networks

Module 7. Switching Networks and Telecommunication Infrastructures 

7.1. Introduction to Switch Networks

7.1.1. Switching Techniques 
7.1.2. Local LAN Networks
7.1.3. Topology and Transmission Media Review
7.1.4. Basic Transfer Concepts
7.1.5. Methods of Accessing the Media
7.1.6. Network Interconnection Equipment

7.2. Switching Techniques and Switch Structure. ISDN and FR Networks

7.2.1. Switch Networks
7.2.2. Circuit-Switch Networks
7.2.3. ISDN 
7.2.4. Packet-Switched Networks
7.2.5. FR 

7.3. Traffic Parameters and Network Dimensioning

7.3.1. Fundamental Traffic Concepts
7.3.2. Loss Systems
7.3.3. Standby Systems
7.3.4. Traffic Modeling System Examples

7.4. Quality of Service and Traffic Management Algorithms

7.4.1. Quality of Service
7.4.2. Congestion Effects
7.4.3. Congestion Control
7.4.4. Traffic Control 
7.4.5. Traffic Management Algorithms 

7.5. Access Networks: WAN Access Technologies

7.5.1. Wide Area Networks
7.5.2. WAN Network Access Technologies
7.5.3. xDSL Access
7.5.4. FTTH 

7.6. ATM: Asynchronous Transfer Mode

7.6.1. ATM Service
7.6.2. Protocol Architecture
7.6.3. Logical ATM Connections
7.6.4. ATM Cells
7.6.5. ATM Cell Transmission
7.6.6. Types of ATM Services

7.7. MPLS: Multi-protocol Label Switching

7.7.1. Introduction MPLS
7.7.2. MPLS Operations
7.7.3. Labels
7.7.4. VPN

7.8. Project for the Implementation of a Telematic Network

7.8.1. Obtaining Information
7.8.2. Planning 

7.8.2.1. System Dimensioning
7.8.2.2. Installation Site Drawings and Schematics

7.8.3. Technical Design Specifications
7.8.4. Network Implementation and Deployment

7.9. Structured Cabling. Case Study 

7.9.1. Introduction  
7.9.2. Structured Cabling Organizations and Standards
7.9.3. Transmission of medium
7.9.4. Structured Cabling 
7.9.5. Physical Interface 
7.9.6. Parts of a Structured Cabling (Horizontal and Vertical) 
7.9.7. Identification System 
7.9.8. Case Study

7.10. Common Telecommunication Infrastructure Planning

7.10.1. Introduction ICT

7.10.1.1. ICT Standards 

7.10.2. Enclosures and Piping

7.10.2.1. Exterior Area 
7.10.2.2. Common Area  
7.10.2.3. Private Zone 

7.10.3. ICT Distribution Networks 
7.10.4. Technical Projects

Module 8. Fundamentals of Mobile and Cell Network Communications 

8.1. Introduction to Mobile Communication

8.1.1. General Considerations
8.1.2. Composition and Classification
8.1.3. Frequency Bands
8.1.4. Channel and Modulation Classes 
8.1.5. Radio Coverage, Quality and Capacity
8.1.6. Evolution of Mobile Communications Systems 

8.2. Fundamentals of the Radio Interface, Radiating Elements and Basic Parameters

8.2.1. The Physical Layer
8.2.2. Radio Interface Fundamentals
8.2.3. Noise in Mobile Systems
8.2.4. Multiple Access Techniques
8.2.5. Modulations Used in Mobile Communications
8.2.6. Wave Propagation Modes 

8.2.6.1. Surface Wave 
8.2.6.2. Ionosphere Wave 
8.2.6.3. Spatial Wave 
8.2.6.4. Ionospheric and Tropospheric Effects 

8.3. Wave Propagation through Mobile Channels

8.3.1. Basic Characteristics of Propagation through Mobile Channels
8.3.2. Evolution of Basic Propagation Loss Prediction Models
8.3.3. Methods Based on Ray Theory
8.3.4. Empirical Methods of Propagation Prediction
8.3.5. Propagation Models for Microcells
8.3.6. Multipath Channels
8.3.7. Characteristics of Multipath Channels

8.4. SS7 Signaling System

8.4.1. Signalling Systems
8.4.2. SS7. SS7. Characteristics and Architecture
8.4.3. Message Transfer Part (MTP) 
8.4.4. Signaling Control Part (SCCP) 
8.4.5. User Parts (TUP, ISUP) 
8.4.6. Application Parts (MAP, TCAP, INAP, etc.) 

8.5. PMR and PAMR Systems. TETRA Systems

8.5.1. Basic Concepts of a PMR Network 
8.5.2. Structure of a PMR Network 
8.5.3. Backbone Systems. PAMR
8.5.4. TETRA Systems

8.6. Classic Cellular Systems (FDMA/TDM)

8.6.1. Fundamentals of Cellular Systems
8.6.2. Classic Cellular Concept
8.6.3. Cellular Planning
8.6.4. Geometry of Cellular Networks
8.6.5. Cellular Division
8.6.6. Dimensioning of a Cellular System
8.6.7. Calculation of Interference in Cellular Systems
8.6.8. Coverage and Interference in Real Cellular Systems
8.6.9. Frequency Assignment in Cellular Systems
8.6.10. Architecture of Cellular Networks

8.7. GSM System; Global System for Mobile Communication

8.7.1. Introduction to GSM. Origin and Evolution
8.7.2. GSM Telecommunication Services 
8.7.3. Architecture of GSM Networks 
8.7.4. GSM Radio Interface: Channels, TDMA Structure and Bursts
8.7.5. Modulation, Codification and Intertwined
8.7.6. Transmission Properties
8.7.7. Protocols

8.8. GPRS Service: General Packet Radio Service

8.8.1. Introduction to GPRS. Origin and Evolution
8.8.2. General Features of the GPRS
8.8.3. Architecture of GPRS Networks
8.8.4. GPRS Radio Interface: Channels, TDMA Structure and Bursts
8.8.5. Transmission Properties
8.8.6. Protocols

8.9. UMTS (W-CDMA) System

8.9.1. UMTS Origin. Characteristics of the 3rd Generation
8.9.2. Architecture of UMTS Networks
8.9.3. UMTS Radio Interface: Channels, Codes and Characteristics
8.9.4. Modulation, Codification and Intertwined
8.9.5. Transmission Properties
8.9.6. Protocols and Services
8.9.7. Capacity in UMTS
8.9.8. Planning and Radio Link Balance

8.10. Cellular Systems: 3G, 4G and 5G Evolution 

8.10.1. Introduction
8.10.2. Evolution towards 3G 
8.10.3. Evolution towards 4G 

Module 9. Mobile Communications Networks 

9.1. Introduction Mobile Communication Networks

9.1.1. Communication Networks
9.1.2. Communication Network Classification
9.1.3. Radioelectric Spectrum
9.1.4. Radio Telephone Systems
9.1.5. Cellular Technology
9.1.6. Evolution of Mobile Telephone Systems

9.2. Protocols and Architecture

9.2.1. Protocol Concept Review
9.2.2. Communication Architecture Concept Review
9.2.3. OSI Model Review
9.2.4. TCP/IP Protocol Architecture Review
9.2.5. Structure of a Mobile Telephony Network 

9.3. Mobile Communication Principles

9.3.1. Radiation and Antenna Types
9.3.2. Frequency Reuse
9.3.3. Signal Propagation
9.3.4. Itinerancy and Transfer
9.3.5. Multiple Access Techniques
9.3.6. Analog and Digital Systems
9.3.7. Portability

9.4. GSM Network Review: Technical Characteristics, Architecture and Interfaces

9.4.1. GSM Systems
9.4.2. GSM Technical Characteristics
9.4.3. GSM Network Architecture
9.4.4. GSM Channel Structure
9.4.5. GSM Interfaces 

9.5. GSM and GPRS Protocol Review

9.5.1. Introduction  
9.5.2. GSM Protocols
9.5.3. GSM Evolution
9.5.4. GPRS

9.6. UMTS System. Technical Characteristics, Architecture and HSPA

9.6.1. Introduction  
9.6.2. UMTS Systems
9.6.3. UMTS Technical Characteristics
9.6.4. UMTS Network Architecture
9.6.5. HSPA

9.7. UMTS System. Protocols, Interfaces and VoIP

9.7.1. Introduction  
9.7.2. UMTS Channel Structure
9.7.3. UMTS Protocols
9.7.4. UMTS Interfaces 
9.7.5. VoIP and IMS

9.8. VoIP: Traffic Models for IP Telephony

9.8.1. VoIP Introduction
9.8.2. Protocols
9.8.3. VoIP Elements
9.8.4. Real-Time VoIP Transport
9.8.5. Packaged Voice Traffic Models

9.9. LTE System. Technical Characteristics and Architecture. CS Fallback

9.9.1. LTE Systems
9.9.2. LTE Technical Characteristics
9.9.3. LTE Network Architecture
9.9.4. LTE Channel Structure
9.9.5. LTE Calls: VoLGA, CS FB and VoLTE

9.10. LTE Systems: Interfaces, Protocols and Services

9.10.1. Introduction 
9.10.2. LTE Interfaces
9.10.3. LTE Protocols

Module 10. Radio Networks and Services 

10.1. Basic Techniques in Radio Networks 

10.1.1. Introduction to Radio Networks
10.1.2. Basic Fundamentals 
10.1.3. Multiple Access Techniques (MAC): Random Access (RA). MF-TDMA, CDMA and OFDMA
10.1.4. Optimization of the Radio Link: Fundamentals of Link Control Techniques (LCT) HARQ. MIMO 

10.2. Radioelectric Spectrum

10.2.1. Definition 
10.2.2. Nomenclature of Frequency Bands According to ITU-R
10.2.3. Other Frequency Band Nomenclature 
10.2.4. Radio Spectrum Division 
10.2.5. Types of Electromagnetic Radiation 

10.3. Radio Communication Systems and Services

10.3.1. Conversion and Treatment of Signals: Analog and Digital Modulations
10.3.2. Digital Signal Transmission
10.3.3. Digital Radio System DAB, IBOC, DRM and DRM+
10.3.4. Radio-frequency Communication Networks
10.3.5. Configuration of Fixed Installations and Mobile Units
10.3.6. Structure of a Fixed and Mobile Radio-frequency Transmitting Center
10.3.7. Installation of Radio and Television Signal Transmission Systems
10.3.8. Verification of the Operation of Broadcasting and Transmission Systems
10.3.9. Maintenance of Transmission Systems 

10.4. Multicast and QoS. End to end  

10.4.1. Introduction  
10.4.2. Multicast IP in Radio Networks
10.4.3. Delay/Disruption Tolerant Networking (DTN)
10.4.4. E-to-E Service Quality:  

10.4.4.1. Impact of Radio Networks on E-to-E QoS
10.4.4.2. TCP in Radio Networks

10.5. Local WLAN Wireless Networks

10.5.1. Introduction to WLANs  

10.5.1.1. Principles of WLANs 

10.5.1.1.1. How Do They Work? 
10.5.1.1.2. Frequency Bands 
10.5.1.1.3. Security/Safety 

10.5.1.2. Applications 
10.5.1.3. Comparison between WLAN and Cabled LAN
10.5.1.4. Health Effects of Radiation 
10.5.1.5. Standardization and Normalization of WLAN Technology 
10.5.1.6. Topology and Configurations 

10.5.1.6.1. Peer-to-Peer (Ad-Hoc) Configuration 
10.5.1.6.2. Configuration in Access Point Mode 
10.5.1.6.3. Other Configurations: Network Interconnections 

10.5.2. IEEE 802.11 Standard - Wi-Fi

10.5.2.1. Architecture 
10.5.2.2. IEEE 802.11 Layers 

10.5.2.2.1. Layers  The Physical Layer 
10.5.2.2.2. The Link (MAC) Layer 

10.5.2.3. Basic WLAN Operation 
10.5.2.4. Radio Spectrum Allocation 
10.5.2.5. IEEE 802.11 Variants 

10.5.3. The HiperLAN standard 

10.5.3.1. Reference Model 
10.5.3.2. HiperLAN/1 
10.5.3.3. HiperLAN/2 
10.5.3.4. Comparison of HiperLAN with 802.11a 

10.6. Wireless Metropolitan Area Networks (WMAN) and Wireless Wide Area Networks (WWAN) 

10.6.1. Introduction to WMAN. Features 
10.6.2. WiMAX. Characteristics and Diagram 
10.6.3. Wireless Wide Area Networks (WWAN). Introduction  
10.6.4. Satellite and Mobile Telephony Network

10.7. Personal WPAN Wireless Networks

10.7.1. Technology and Evolution
10.7.2. Bluetooth
10.7.3. Personal and Sensor Networks
10.7.4. Profiles and Applications 

10.8. Terrestrial Radio Access Networks 

10.8.1. Evolution of Terrestrial Radio Access: WiMAX, 3GPP
10.8.2. 4th Generation Accesses Introduction 
10.8.3. Radio Resources and Capacity
10.8.4. LTE Radio Carriers. MAC, RLC and RRC 

10.9. Satellite Communications

10.9.1. Introduction  
10.9.2. History of Satellite Communications 
10.9.3. Structure of a Satellite Communication System  

10.9.3.1. The Special Segment 
10.9.3.2. The Control Center 
10.9.3.3. The Ground Segment 

10.9.4. Types of Satellite  

10.9.4.1. By Purpose 
10.9.4.2. By Orbit 

10.9.5. Frequency Bands 

10.10. Planning and Regulations of Radio Systems and Services

10.10.1. Terminology and Technical Characteristics 
10.10.2. Frequencies 
10.10.3. Coordination, Notification and Registration of Frequency Assignments and Plan Modifications 
10.10.4. Interference 
10.10.5. Administrative Provisions 
10.10.6. Provisions Relating to Services and Stations

##IMAGE##

A complete journey that will allow you to grow in your intervention capacity, with the confidence of a study in which theoretical growth is combined with the contextual experience of what you have learned”

Professional Master's Degree in Specific Telecommunications Technology

.

The development of telecommunications has taken new aspects in the face of digital innovation in which the market is involved, as a result of this environment, professionals must be qualified with high quality programs that provide the necessary skills to respond to the challenges that may arise in the day to day. At TECH Global University we understand perfectly the need for properly prepared individuals, which is why we designed the most complete Professional Master's Degree in Specific Telecommunication Technology in the educational field. Through the contents provided, the student will create an optimal conceptual background that will enable him/her to evaluate, analyze and execute updating processes, along with renovation projects in which the advantages and disadvantages of different tools in the telecommunications sector are evaluated.

Postgraduate course in Specific Telecommunication Technology

.

The postgraduate course in Specific Telecommunication Technology TECH has innovative thematic axes, through which students will develop skills in circuit analysis, mobile networks, random signals, communication theory and infrastructure installation, which will allow the professional to develop with total efficiency in the work practice. In addition, we have an interactive multimedia system that will help students to boost their technical skills, as they will have to solve practical cases related to real situations, internalizing easily and quickly the different concepts taught in each lesson.