¿Por qué estudiar en TECH?

¡Prepara tu empresa para el futuro con TECH! Incorporarás los procedimientos con IA más actuales y con todas las garantías para avanzar hacia el éxito” 

##IMAGE##

¿Por qué estudiar en TECH?

TECH es la mayor escuela de negocio 100% online del mundo. Se trata de una Escuela de Negocios de élite, con un modelo de máxima exigencia académica. Un centro de alto rendimiento internacional y de entrenamiento intensivo en habilidades directivas.   

TECH es una universidad de vanguardia tecnológica, que pone todos sus recursos al alcance del alumno para ayudarlo a alcanzar el éxito empresarial”

En TECH Universidad Tecnológica

idea icon
Innovación

La universidad ofrece un modelo de aprendizaje en línea que combina la última tecnología educativa con el máximo rigor pedagógico. Un método único con el mayor reconocimiento internacional que aportará las claves para que el alumno pueda desarrollarse en un mundo en constante cambio, donde la innovación debe ser la apuesta esencial de todo empresario.

“Caso de Éxito Microsoft Europa” por incorporar en los programas un novedoso sistema de multivídeo interactivo. 
head icon
Máxima exigencia

El criterio de admisión de TECH no es económico. No se necesita realizar una gran inversión para estudiar en esta universidad. Eso sí, para titularse en TECH, se podrán a prueba los límites de inteligencia y capacidad del alumno. El listón académico de esta institución es muy alto...

95% de los alumnos de TECH finaliza sus estudios con éxito.
neuronas icon
Networking

En TECH participan profesionales de todos los países del mundo, de tal manera que el alumno podrá crear una gran red de contactos útil para su futuro. 

+100.000 directivos capacitados cada año, +200 nacionalidades distintas.
hands icon
Empowerment

El alumno crecerá de la mano de las mejores empresas y de profesionales de gran prestigio e influencia. TECH ha desarrollado alianzas estratégicas y una valiosa red de contactos con los principales actores económicos de los 7 continentes.

+500 acuerdos de colaboración con las mejores empresas.
star icon
Talento

Este programa es una propuesta única para sacar a la luz el talento del estudiante en el ámbito empresarial. Una oportunidad con la que podrá dar a conocer sus inquietudes y su visión de negocio.

TECH ayuda al alumno a enseñar al mundo su talento al finalizar este programa.
earth icon
Contexto multicultural

Estudiando en TECH el alumno podrá disfrutar de una experiencia única. Estudiará en un contexto multicultural. En un programa con visión global, gracias al cual podrá conocer la forma de trabajar en diferentes lugares del mundo, recopilando la información más novedosa y que mejor se adapta a su idea de negocio.

Los alumnos de TECH provienen de más de 200 nacionalidades.  
##IMAGE##
human icon
Aprende con los mejores

El equipo docente de TECH explica en las aulas lo que le ha llevado al éxito en sus empresas, trabajando desde un contexto real, vivo y dinámico. Docentes que se implican al máximo para ofrecer una especialización de calidad que permita al alumno avanzar en su carrera y lograr destacar en el ámbito empresarial.

Profesores de 20 nacionalidades diferentes.

TECH busca la excelencia y, para ello, cuenta con una serie de características que hacen de esta una universidad única:   

brain icon
Análisis 

En TECH se explora el lado crítico del alumno, su capacidad de cuestionarse las cosas, sus competencias en resolución de problemas y sus habilidades interpersonales.  

micro icon
Excelencia académica

En TECH se pone al alcance del alumno la mejor metodología de aprendizaje online. La universidad combina el método Relearning (metodología de aprendizaje de posgrado con mejor valoración internacional) con el Estudio de Caso. Tradición y vanguardia en un difícil equilibrio, y en el contexto del más exigente itinerario académico.   

corazon icon
Economía de escala

TECH es la universidad online más grande del mundo. Tiene un portfolio de más de 10.000 posgrados universitarios. Y en la nueva economía, volumen + tecnología = precio disruptivo. De esta manera, se asegura de que estudiar no resulte tan costoso como en otra universidad. 

En TECH tendrás acceso a los análisis de casos más rigurosos y actualizados del panorama académico” 

Estructura y contenido

El Máster de Formación Permanente en Inteligencia Artificial es un programa a tu medida que se imparte en formato 100% online para que elijas el momento y lugar que mejor se adapte a tu disponibilidad, horarios e intereses. Un programa que se desarrolla a lo largo de 12 meses y que pretende ser una experiencia única y estimulante que siembre las bases para tu éxito profesional.

Profundizarás en el dato como parte de la Inteligencia Artificial, desde su extracción y agrupación por tipos, hasta su posterior procesamiento y análisis”

Plan de estudios

El plan de estudios de este Máster de Formación Permanente de TECH ha sido diseñado con el objetivo de dotar a los egresados los conocimientos más vanguardistas en IA. Por ello, los profesionales adquirirán las herramientas necesarias para desarrollar procesos de optimización inspirados en la evolución biológica. Así, podrán identificar y aplicar soluciones eficaces a problemas complejos con un profundo dominio de la IA.

Se trata así de una titulación académica exclusiva en la que los alumnos explorarán los fundamentos esenciales de la IA. De esta manera, integrará su utilización en aplicaciones de uso masivo, permitiéndoles comprender cómo estás plataformas pueden enriquecer la experiencia del usuario y maximizar la eficiencia operativa.

Asimismo, para facilitar la asimilación y retención de todos los conceptos, TECH basa todas sus titulaciones en la innovadora y eficaz metodología Relearning. Bajo este enfoque, los estudiantes fortalecerán su comprensión con la repetición de conceptos clave a lo largo de todo el programa, presentados en diversos formatos audiovisuales para lograr una adquisición de destrezas natural y gradual.

Un temario enfocado a la mejora profesional para el alcance de objetivos laborales que se ofrece a través de un sistema de aprendizaje en línea innovador y flexible que permite a los egresados compaginar la enseñanza con sus otros quehaceres.

Módulo 1. Fundamentos de la Inteligencia Artificial
Módulo 2. Tipos y Ciclo de Vida del Dato
Módulo 3. El dato en la Inteligencia Artificial
Módulo 4. Minería de Datos. Selección, preprocesamiento y transformación
Módulo 5. Algoritmia y complejidad en Inteligencia Artificial
Módulo 6. Sistemas inteligentes
Módulo 7. Aprendizaje automático y minería de datos
Módulo 8. Las redes neuronales, base de Deep Learning
Módulo 9. Entrenamiento de redes neuronales profundas
Módulo 10. Personalización de Modelos y entrenamiento con TensorFlow
Módulo 11. Deep Computer Vision con Redes Neuronales Convolucionales  
Módulo 12. Procesamiento del lenguaje natural (NLP) con Redes Naturales Recurrentes (RNN) y Atención
Módulo 13. Autoencoders, GANs, y Modelos de Difusión
Módulo 14. Computación bioinspirada   
Módulo 15. Inteligencia Artificial: estrategias y aplicaciones 

##IMAGE##

¿Dónde, cuándo y cómo se imparte?

TECH ofrece la posibilidad de desarrollar este Máster de Formación Permanente en Inteligencia Artificial de manera totalmente online. Durante los 12 meses que dura la especialización, el alumno podrá acceder a todos los contenidos de este programa en cualquier momento, lo que le permitirá autogestionar su tiempo de estudio.

Módulo 1. Fundamentos de la Inteligencia Artificial

1.1. Historia de la Inteligencia artificial 

1.1.1. ¿Cuándo se empieza a hablar de inteligencia artificial?
1.1.2. Referentes en el cine 
1.1.3. Importancia de la inteligencia artificial 
1.1.4. Tecnologías que habilitan y dan soporte a la inteligencia artificial 

1.2. La Inteligencia Artificial en juegos 

1.2.1. Teoría de Juegos 
1.2.2. Minimax y poda Alfa-Beta 
1.2.3. Simulación: Monte Carlo 

1.3. Redes de neuronas 

1.3.1. Fundamentos biológicos 
1.3.2. Modelo computacional 
1.3.3. Redes de neuronas supervisadas y no supervisadas 
1.3.4. Perceptrón simple 
1.3.5. Perceptrón multicapa 

1.4. Algoritmos genéticos 

1.4.1. Historia 
1.4.2. Base biológica 
1.4.3. Codificación de problemas 
1.4.4. Generación de la población inicial 
1.4.5. Algoritmo principal y operadores genéticos 
1.4.6. Evaluación de individuos: Fitness 

1.5. Tesauros, vocabularios, taxonomías 

1.5.1. Vocabularios 
1.5.2. Taxonomías 
1.5.3. Tesauros 
1.5.4. Ontologías 
1.5.5. Representación del conocimiento: web semántica 

1.6. Web semántica 

1.6.1. Especificaciones: RDF, RDFS y OWL 
1.6.2. Inferencia/razonamiento 
1.6.3. Linked Data 

1.7. Sistemas expertos y DSS 

1.7.1. Sistemas expertos 
1.7.2. Sistemas de soporte a la decisión 

1.8. Chatbots y Asistentes Virtuales

1.8.1. Tipos de asistentes: asistentes por voz y por texto
1.8.2. Partes fundamentales para el desarrollo de un asistente: Intents, entidades y flujo de diálogo 
1.8.3. Integraciones: web, Slack, Whatsapp, Facebook 
1.8.4. Herramientas de desarrollo de asistentes: Dialog Flow, Watson Assistant

1.9. Estrategia de implantación de IA 
1.10. Futuro de la inteligencia artificial

1.10.1. Entendemos cómo detectar emociones mediante algoritmos
1.10.2. Creación de una personalidad: lenguaje, expresiones y contenido
1.10.3. Tendencias de la inteligencia artificial
1.10.4. Reflexiones

Módulo 2. Tipos y Ciclo de Vida del Dato 

2.1. La Estadística

2.1.1. Estadística: estadística descriptiva, estadística inferencias
2.1.2. Población, muestra, individuo
2.1.3. Variables: definición, escalas de medida

2.2. Tipos de datos estadísticos

2.2.1. Según tipo

2.2.1.1. Cuantitativos: datos continuos y datos discretos
2.2.1.2. Cualitativos: datos binomiales, datos nominales y datos ordinales 

2.2.2. Según su forma 

2.2.2.1. Numérico
2.2.2.2. Texto 
2.2.2.3. Lógico

2.2.3. Según su fuente

2.2.3.1. Primarios
2.2.3.2. Secundarios

2.3. Ciclo de vida de los datos

2.3.1. Etapas del ciclo
2.3.2. Hitos del ciclo
2.3.3. Principios FAIR

2.4. Etapas iniciales del ciclo

2.4.1. Definición de metas
2.4.2. Determinación de recursos necesarios
2.4.3. Diagrama de Gantt
2.4.4. Estructura de los datos

2.5. Recolección de datos

2.5.1. Metodología de recolección
2.5.2. Herramientas de recolección
2.5.3. Canales de recolección

2.6. Limpieza del dato

2.6.1. Fases de la limpieza de datos
2.6.2. Calidad del dato
2.6.3. Manipulación de datos (con R)

2.7. Análisis de datos, interpretación y valoración de resultados

2.7.1. Medidas estadísticas
2.7.2. Índices de relación
2.7.3. Minería de datos

2.8. Almacén del dato (Datawarehouse)

2.8.1. Elementos que lo integran
2.8.2. Diseño
2.8.3. Aspectos a considerar

2.9. Disponibilidad del dato

2.9.1. Acceso
2.9.2. Utilidad
2.9.3. Seguridad

2.10. Aspectos Normativos 

2.10.1. Ley de protección de datos
2.10.2. Buenas prácticas
2.10.3. Otros aspectos normativos

Módulo 3. El dato en la Inteligencia Artificial 

3.1. Ciencia de datos 

3.1.1. La ciencia de datos 
3.1.2. Herramientas avanzadas para el científico de datos 

3.2. Datos, información y conocimiento 

3.2.1. Datos, información y conocimiento
3.2.2. Tipos de datos 
3.2.3. Fuentes de datos 

3.3. De los datos a la información

3.3.1. Análisis de Datos 
3.3.2. Tipos de análisis 
3.3.3. Extracción de Información de un Dataset 

3.4. Extracción de información mediante visualización 

3.4.1. La visualización como herramienta de análisis 
3.4.2. Métodos de visualización
3.4.3. Visualización de un conjunto de datos 

3.5. Calidad de los datos 

3.5.1. Datos de calidad 
3.5.2. Limpieza de datos
3.5.3. Preprocesamiento básico de datos 

3.6. Dataset 

3.6.1. Enriquecimiento del Dataset 
3.6.2. La maldición de la dimensionalidad 
3.6.3. Modificación de nuestro conjunto de datos 

3.7. Desbalanceo

3.7.1. Desbalanceo de clases 
3.7.2. Técnicas de mitigación del desbalanceo 
3.7.3. Balanceo de un Dataset 

3.8. Modelos no supervisados

3.8.1. Modelo no supervisado 
3.8.2. Métodos 
3.8.3. Clasificación con modelos no supervisados 

3.9. Modelos supervisados 

3.9.1. Modelo supervisado 
3.9.2. Métodos 
3.9.3. Clasificación con modelos supervisados 

3.10. Herramientas y buenas prácticas 

3.10.1. Buenas prácticas para un científico de datos 
3.10.2. El mejor modelo
3.10.3. Herramientas útiles 

Módulo 4. Minería de Datos. Selección, preprocesamiento y transformación 

4.1. La inferencia estadística 

4.1.1. Estadística descriptiva vs. Inferencia estadística 
4.1.2. Procedimientos paramétricos 
4.1.3. Procedimientos no paramétricos 

4.2. Análisis exploratorio 

4.2.1. Análisis descriptivo
4.2.2. Visualización 
4.2.3. Preparación de datos 

4.3. Preparación de datos 

4.3.1. Integración y limpieza de datos
4.3.2. Normalización de datos 
4.3.3. Transformando atributos

4.4. Los valores perdidos 

4.4.1. Tratamiento de valores perdidos 
4.4.2. Métodos de imputación de máxima verosimilitud 
4.4.3. Imputación de valores perdidos usando aprendizaje automático 

4.5. El ruido en los datos

4.5.1. Clases de ruido y atributos 
4.5.2. Filtrado de ruido
4.5.3. El efecto del ruido 

4.6. La maldición de la dimensionalidad 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Reducción de datos multidimensionales 

4.7. De atributos continuos a discretos 

4.7.1. Datos continuos versus discretos 
4.7.2. Proceso de discretización 

4.8. Los datos

4.8.1. Selección de datos
4.8.2. Perspectivas y criterios de selección 
4.8.3. Métodos de selección

4.9. Selección de instancias 

4.9.1. Métodos para la selección de instancias 
4.9.2. Selección de prototipos 
4.9.3. Métodos avanzados para la selección de instancias 

4.10. Preprocesamiento de datos en entornos Big Data 

Módulo 5. Algoritmia y complejidad en Inteligencia Artificial 

5.1. Introducción a las estrategias de diseño de algoritmos 

5.1.1. Recursividad 
5.1.2. Divide y conquista 
5.1.3. Otras estrategias 

5.2. Eficiencia y análisis de los algoritmos 

5.2.1. Medidas de eficiencia 
5.2.2. Medir el tamaño de la entrada 
5.2.3. Medir el tiempo de ejecución 
5.2.4. Caso peor, mejor y medio 
5.2.5. Notación asintónica 
5.2.6. Criterios de Análisis matemático de algoritmos no recursivos 
5.2.7. Análisis matemático de algoritmos recursivos 
5.2.8. Análisis empírico de algoritmos 

5.3. Algoritmos de ordenación 

5.3.1. Concepto de ordenación 
5.3.2. Ordenación de la burbuja 
5.3.3. Ordenación por selección 
5.3.4. Ordenación por inserción 
5.3.5. Ordenación por mezcla (Merge_Sort
5.3.6. Ordenación rápida (Quick_Sort

5.4. Algoritmos con árboles 

5.4.1. Concepto de árbol 
5.4.2. Árboles binarios 
5.4.3. Recorridos de árbol 
5.4.4. Representar expresiones 
5.4.5. Árboles binarios ordenados 
5.4.6. Árboles binarios balanceados 

5.5. Algoritmos con Heaps 

5.5.1. Los Heaps 
5.5.2. El algoritmo Heapsort 
5.5.3. Las colas de prioridad 

5.6. Algoritmos con grafos 

5.6.1. Representación 
5.6.2. Recorrido en anchura 
5.6.3. Recorrido en profundidad 
5.6.4. Ordenación topológica 

5.7. Algoritmos Greedy 

5.7.1. La estrategia Greedy 
5.7.2. Elementos de la estrategia Greedy 
5.7.3. Cambio de monedas 
5.7.4. Problema del viajante 
5.7.5. Problema de la mochila 

5.8. Búsqueda de caminos mínimos 

5.8.1. El problema del camino mínimo 
5.8.2. Arcos negativos y ciclos 
5.8.3. Algoritmo de Dijkstra 

5.9. Algoritmos Greedy sobre grafos 

5.9.1. El árbol de recubrimiento mínimo 
5.9.2. El algoritmo de Prim 
5.9.3. El algoritmo de Kruskal 
5.9.4. Análisis de complejidad 

5.10. Backtracking 

5.10.1. El Backtracking 
5.10.2. Técnicas alternativas 

Módulo 6. Sistemas inteligentes 

6.1. Teoría de agentes 

6.1.1. Historia del concepto 
6.1.2. Definición de agente 
6.1.3. Agentes en Inteligencia Artificial 
6.1.4. Agentes en ingeniería de Software 

6.2. Arquitecturas de agentes 

6.2.1. El proceso de razonamiento de un agente 
6.2.2. Agentes reactivos 
6.2.3. Agentes deductivos 
6.2.4. Agentes híbridos 
6.2.5. Comparativa 

6.3. Información y conocimiento 

6.3.1. Distinción entre datos, información y conocimiento 
6.3.2. Evaluación de la calidad de los datos 
6.3.3. Métodos de captura de datos 
6.3.4. Métodos de adquisición de información 
6.3.5. Métodos de adquisición de conocimiento 

6.4. Representación del conocimiento 

6.4.1. La importancia de la representación del conocimiento 
6.4.2. Definición de representación del conocimiento a través de sus roles 
6.4.3. Características de una representación del conocimiento 

6.5. Ontologías 

6.5.1. Introducción a los metadatos 
6.5.2. Concepto filosófico de ontología 
6.5.3. Concepto informático de ontología 
6.5.4. Ontologías de dominio y ontologías de nivel superior 
6.5.5. ¿Cómo construir una ontología? 

6.6. Lenguajes para ontologías y Software para la creación de ontologías 

6.6.1. Tripletas RDF, Turtle y N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introducción a las diferentes herramientas para la creación de ontologías 
6.6.6. Instalación y uso de Protégé 

6.7. La web semántica 

6.7.1. El estado actual y futuro de la web semántica 
6.7.2. Aplicaciones de la web semántica 

6.8. Otros modelos de representación del conocimiento 

6.8.1. Vocabularios 
6.8.2. Visión global 
6.8.3. Taxonomías 
6.8.4. Tesauros 
6.8.5. Folksonomías 
6.8.6. Comparativa 
6.8.7. Mapas mentales 

6.9. Evaluación e integración de representaciones del conocimiento 

6.9.1. Lógica de orden cero 
6.9.2. Lógica de primer orden 
6.9.3. Lógica descriptiva 
6.9.4. Relación entre diferentes tipos de lógica 
6.9.5. Prolog: programación basada en lógica de primer orden 

6.10. Razonadores semánticos, sistemas basados en conocimiento y Sistemas Expertos 

6.10.1. Concepto de razonador 
6.10.2. Aplicaciones de un razonador 
6.10.3. Sistemas basados en el conocimiento 
6.10.4. MYCIN, historia de los Sistemas Expertos 
6.10.5. Elementos y Arquitectura de Sistemas Expertos 
6.10.6. Creación de Sistemas Expertos 

Módulo 7. Aprendizaje automático y minería de datos 

7.1. Introducción a los procesos de descubrimiento del conocimiento y conceptos básicos de aprendizaje automático 

7.1.1. Conceptos clave de los procesos de descubrimiento del conocimiento 
7.1.2. Perspectiva histórica de los procesos de descubrimiento del conocimiento 
7.1.3. Etapas de los procesos de descubrimiento del conocimiento 
7.1.4. Técnicas utilizadas en los procesos de descubrimiento del conocimiento 
7.1.5. Características de los buenos modelos de aprendizaje automático 
7.1.6. Tipos de información de aprendizaje automático 
7.1.7. Conceptos básicos de aprendizaje 
7.1.8. Conceptos básicos de aprendizaje no supervisado 

7.2. Exploración y preprocesamiento de datos 

7.2.1. Tratamiento de datos 
7.2.2. Tratamiento de datos en el flujo de análisis de datos 
7.2.3. Tipos de datos 
7.2.4. Transformaciones de datos 
7.2.5. Visualización y exploración de variables continuas 
7.2.6. Visualización y exploración de variables categóricas 
7.2.7. Medidas de correlación 
7.2.8. Representaciones gráficas más habituales 
7.2.9. Introducción al análisis multivariante y a la reducción de dimensiones 

7.3. Árboles de decisión 

7.3.1. Algoritmo ID 
7.3.2. Algoritmo C 
7.3.3. Sobreentrenamiento y poda 
7.3.4. Análisis de resultados 

7.4. Evaluación de clasificadores 

7.4.1. Matrices de confusión 
7.4.2. Matrices de evaluación numérica 
7.4.3. Estadístico de Kappa 
7.4.4. La curva ROC 

7.5. Reglas de clasificación 

7.5.1. Medidas de evaluación de reglas 
7.5.2. Introducción a la representación gráfica 
7.5.3. Algoritmo de recubrimiento secuencial 

7.6. Redes neuronales 

7.6.1. Conceptos básicos 
7.6.2. Redes de neuronas simples 
7.6.3. Algoritmo de Backpropagation 
7.6.4. Introducción a las redes neuronales recurrentes 

7.7. Métodos bayesianos 

7.7.1. Conceptos básicos de probabilidad 
7.7.2. Teorema de Bayes 
7.7.3. Naive Bayes 
7.7.4. Introducción a las redes bayesianas 

7.8. Modelos de regresión y de respuesta continua 

7.8.1. Regresión lineal simple 
7.8.2. Regresión lineal múltiple 
7.8.3. Regresión logística 
7.8.4. Árboles de regresión 
7.8.5. Introducción a las máquinas de soporte vectorial (SVM) 
7.8.6. Medidas de bondad de ajuste 

7.9. Clustering 

7.9.1. Conceptos básicos 
7.9.2. Clustering jerárquico 
7.9.3. Métodos probabilistas 
7.9.4. Algoritmo EM 
7.9.5. Método B-Cubed 
7.9.6. Métodos implícitos 

7.10. Minería de textos y procesamiento de lenguaje natural (NLP) 

7.10.1. Conceptos básicos 
7.10.2. Creación del corpus 
7.10.3. Análisis descriptivo 
7.10.4. Introducción al análisis de sentimientos 

Módulo 8. Las redes neuronales, base de Deep Learning 

8.1. Aprendizaje Profundo 

8.1.1. Tipos de aprendizaje profundo 
8.1.2. Aplicaciones del aprendizaje profundo 
8.1.3. Ventajas y desventajas del aprendizaje profundo 

8.2. Operaciones 

8.2.1. Suma 
8.2.2. Producto 
8.2.3. Traslado 

8.3. Capas 

8.3.1. Capa de entrada 
8.3.2. Capa oculta 
8.3.3. Capa de salida 

8.4. Unión de Capas y Operaciones 

8.4.1. Diseño de arquitecturas 
8.4.2. Conexión entre capas 
8.4.3. Propagación hacia adelante 

8.5. Construcción de la primera red neuronal 

8.5.1. Diseño de la red 
8.5.2. Establecer los pesos 
8.5.3. Entrenamiento de la red 

8.6. Entrenador y Optimizador 

8.6.1. Selección del optimizador 
8.6.2. Establecimiento de una función de pérdida 
8.6.3. Establecimiento de una métrica 

8.7. Aplicación de los Principios de las Redes Neuronales 

8.7.1. Funciones de activación 
8.7.2. Propagación hacia atrás 
8.7.3. Ajuste de los parámetros 

8.8. De las neuronas biológicas a las artificiales 

8.8.1. Funcionamiento de una neurona biológica 
8.8.2. Transferencia de conocimiento a las neuronas artificiales 
8.8.3. Establecer relaciones entre ambas 

8.9. Implementación de MLP (Perceptrón multicapa) con Keras 

8.9.1. Definición de la estructura de la red 
8.9.2. Compilación del modelo 
8.9.3. Entrenamiento del modelo 

8.10. Hiperparámetros de Fine tuning de Redes Neuronales 

8.10.1. Selección de la función de activación 
8.10.2. Establecer el Learning rate 
8.10.3. Ajuste de los pesos 

Módulo 9. Entrenamiento de redes neuronales profundas 

9.1. Problemas de Gradientes 

9.1.1. Técnicas de optimización de gradiente 
9.1.2. Gradientes Estocásticos 
9.1.3. Técnicas de inicialización de pesos 

9.2. Reutilización de capas preentrenadas 

9.2.1. Entrenamiento de transferencia de aprendizaje 
9.2.2. Extracción de características 
9.2.3. Aprendizaje profundo 

9.3. Optimizadores 

9.3.1. Optimizadores de descenso de gradiente estocástico 
9.3.2. Optimizadores Adam y RMSprop 
9.3.3. Optimizadores de momento 

9.4. Programación de la tasa de aprendizaje 

9.4.1. Control de tasa de aprendizaje automático 
9.4.2. Ciclos de aprendizaje 
9.4.3. Términos de suavizado 

9.5. Sobreajuste 

9.5.1. Validación cruzada 
9.5.2. Regularización 
9.5.3. Métricas de evaluación 

9.6. Directrices Prácticas 

9.6.1. Diseño de modelos 
9.6.2. Selección de métricas y parámetros de evaluación 
9.6.3. Pruebas de hipótesis 

9.7. Transfer Learning 

9.7.1. Entrenamiento de transferencia de aprendizaje 
9.7.2. Extracción de características 
9.7.3. Aprendizaje profundo 

9.8. Data Augmentation 

9.8.1. Transformaciones de imagen 
9.8.2. Generación de datos sintéticos 
9.8.3. Transformación de texto 

9.9. Aplicación Práctica de Transfer Learning 

9.9.1. Entrenamiento de transferencia de aprendizaje 
9.9.2. Extracción de características 
9.9.3. Aprendizaje profundo 

9.10. Regularización 

9.10.1. L y L 
9.10.2. Regularización por máxima entropía 
9.10.3. Dropout 

Módulo 10. Personalización de Modelos y entrenamiento con TensorFlow 

10.1. TensorFlow 

10.1.1. Uso de la biblioteca TensorFlow 
10.1.2. Entrenamiento de modelos con TensorFlow 
10.1.3. Operaciones con gráficos en TensorFlow 

10.2. TensorFlow y NumPy 

10.2.1. Entorno computacional NumPy para TensorFlow 
10.2.2. Utilización de los arrays NumPy con TensorFlow 
10.2.3. Operaciones NumPy para los gráficos de TensorFlow 

10.3. Personalización de modelos y algoritmos de entrenamiento 

10.3.1. Construcción de modelos personalizados con TensorFlow 
10.3.2. Gestión de parámetros de entrenamiento 
10.3.3. Utilización de técnicas de optimización para el entrenamiento 

10.4. Funciones y gráficos de TensorFlow 

10.4.1. Funciones con TensorFlow 
10.4.2. Utilización de gráficos para el entrenamiento de modelos 
10.4.3. Optimización de gráficos con operaciones de TensorFlow 

10.5. Carga y preprocesamiento de datos con TensorFlow 

10.5.1. Carga de conjuntos de datos con TensorFlow 
10.5.2. Preprocesamiento de datos con TensorFlow 
10.5.3. Utilización de herramientas de TensorFlow para la manipulación de datos 

10.6. La API tfdata 

10.6.1. Utilización de la API tfdata para el procesamiento de datos 
10.6.2. Construcción de flujos de datos con tfdata 
10.6.3. Uso de la API tfdata para el entrenamiento de modelos 

10.7. El formato TFRecord 

10.7.1. Utilización de la API TFRecord para la serialización de datos 
10.7.2. Carga de archivos TFRecord con TensorFlow 
10.7.3. Utilización de archivos TFRecord para el entrenamiento de modelos 

10.8. Capas de preprocesamiento de Keras 

10.8.1. Utilización de la API de preprocesamiento de Keras 
10.8.2. Construcción de pipelined de preprocesamiento con Keras 
10.8.3. Uso de la API de preprocesamiento de Keras para el entrenamiento de modelos 

10.9. El proyecto TensorFlow Datasets 

10.9.1. Utilización de TensorFlow Datasets para la carga de datos 
10.9.2. Preprocesamiento de datos con TensorFlow Datasets 
10.9.3. Uso de TensorFlow Datasets para el entrenamiento de modelos 

10.10. Construcción de una Aplicación de Deep Learning con TensorFlow 

10.10.1. Aplicación Práctica 
10.10.2. Construcción de una aplicación de Deep Learning con TensorFlow 
10.10.3. Entrenamiento de un modelo con TensorFlow 
10.10.4. Utilización de la aplicación para la predicción de resultados 

Módulo 11. Deep Computer Vision con Redes Neuronales Convolucionales 

11.1. La Arquitectura Visual Cortex 

11.1.1. Funciones de la corteza visual 
11.1.2. Teorías de la visión computacional 
11.1.3. Modelos de procesamiento de imágenes 

11.2. Capas convolucionales 

11.2.1. Reutilización de pesos en la convolución 
11.2.2. Convolución D 
11.2.3. Funciones de activación 

11.3. Capas de agrupación e implementación de capas de agrupación con Keras 

11.3.1. Pooling y Striding 
11.3.2. Flattening 
11.3.3. Tipos de Pooling 

11.4. Arquitecturas CNN 

11.4.1. Arquitectura VGG 
11.4.2. Arquitectura AlexNet 
11.4.3. Arquitectura ResNet 

11.5. Implementación de una CNN ResNet- usando Keras 

11.5.1. Inicialización de pesos 
11.5.2. Definición de la capa de entrada 
11.5.3. Definición de la salida 

11.6. Uso de modelos preentrenados de Keras 

11.6.1. Características de los modelos preentrenados 
11.6.2. Usos de los modelos preentrenados 
11.6.3. Ventajas de los modelos preentrenados 

11.7. Modelos preentrenados para el aprendizaje por transferencia 

11.7.1. El Aprendizaje por transferencia 
11.7.2. Proceso de aprendizaje por transferencia 
11.7.3. Ventajas del aprendizaje por transferencia 

11.8. Clasificación y Localización en Deep Computer Vision 

11.8.1. Clasificación de imágenes 
11.8.2. Localización de objetos en imágenes 
11.8.3. Detección de objetos 

11.9. Detección de objetos y seguimiento de objetos 

11.9.1. Métodos de detección de objetos 
11.9.2. Algoritmos de seguimiento de objetos 
11.9.3. Técnicas de rastreo y localización 

11.10. Segmentación semántica 

11.10.1. Aprendizaje profundo para segmentación semántica 
11.10.2. Detección de bordes 
11.10.3. Métodos de segmentación basados en reglas 

Módulo 12. Procesamiento del lenguaje natural (NLP) con Redes Naturales Recurrentes (RNN) y Atención 

12.1. Generación de texto utilizando RNN 

12.1.1. Entrenamiento de una RNN para generación de texto 
12.1.2. Generación de lenguaje natural con RNN 
12.1.3. Aplicaciones de generación de texto con RNN 

12.2. Creación del conjunto de datos de entrenamiento 

12.2.1. Preparación de los datos para el entrenamiento de una RNN 
12.2.2. Almacenamiento del conjunto de datos de entrenamiento 
12.2.3. Limpieza y transformación de los datos 
12.2.4. Análisis de Sentimiento 

12.3. Clasificación de opiniones con RNN 

12.3.1. Detección de temas en los comentarios 
12.3.2. Análisis de sentimiento con algoritmos de aprendizaje profundo 

12.4. Red de codificador-decodificador para la traducción automática neuronal 

12.4.1. Entrenamiento de una RNN para la traducción automática 
12.4.2. Uso de una red encoder-decoder para la traducción automática 
12.4.3. Mejora de la precisión de la traducción automática con RNN 

12.5. Mecanismos de atención 

12.5.1. Aplicación de mecanismos de atención en RNN 
12.5.2. Uso de mecanismos de atención para mejorar la precisión de los modelos 
12.5.3. Ventajas de los mecanismos de atención en las redes neuronales 

12.6. Modelos Transformers 

12.6.1. Uso de los modelos Transformers para procesamiento de lenguaje natural 
12.6.2. Aplicación de los modelos Transformers para visión 
12.6.3. Ventajas de los modelos Transformers 

12.7. Transformers para visión 

12.7.1. Uso de los modelos Transformers para visión 
12.7.2. Preprocesamiento de los datos de imagen 
12.7.3. Entrenamiento de un modelo Transformers para visión 

12.8. Librería de Transformers de Hugging Face 

12.8.1. Uso de la librería de Transformers de Hugging Face 
12.8.2. Aplicación de la librería de Transformers de Hugging Face 
12.8.3. Ventajas de la librería de Transformers de Hugging Face 

12.9. Otras Librerías de Transformers. Comparativa 

12.9.1. Comparación entre las distintas librerías de Transformers 
12.9.2. Uso de las demás librerías de Transformers 
12.9.3. Ventajas de las demás librerías de Transformers 

12.10. Desarrollo de una Aplicación de NLP con RNN y Atención. Aplicación Práctica 

12.10.1. Desarrollo de una aplicación de procesamiento de lenguaje natural con RNN y atención 
12.10.2. Uso de RNN, mecanismos de atención y modelos Transformers en la aplicación 
12.10.3. Evaluación de la aplicación práctica 

Módulo 13. Autoencoders, GANs, y Modelos de Difusión 

13.1. Representaciones de datos eficientes 

13.1.1. Reducción de dimensionalidad 
13.1.2. Aprendizaje profundo 
13.1.3. Representaciones compactas 

13.2. Realización de PCA con un codificador automático lineal incompleto 

13.2.1. Proceso de entrenamiento 
13.2.2. Implementación en Python 
13.2.3. Utilización de datos de prueba 

13.3. Codificadores automáticos apilados 

13.3.1. Redes neuronales profundas 
13.3.2. Construcción de arquitecturas de codificación 
13.3.3. Uso de la regularización 

13.4. Autocodificadores convolucionales 

13.4.1. Diseño de modelos convolucionales 
13.4.2. Entrenamiento de modelos convolucionales 
13.4.3. Evaluación de los resultados 

13.5. Eliminación de ruido de codificadores automáticos 

13.5.1. Aplicación de filtros 
13.5.2. Diseño de modelos de codificación 
13.5.3. Uso de técnicas de regularización 

13.6. Codificadores automáticos dispersos 

13.6.1. Incrementar la eficiencia de la codificación 
13.6.2. Minimizando el número de parámetros 
13.6.3. Utilización de técnicas de regularización 

13.7. Codificadores automáticos variacionales 

13.7.1. Utilización de optimización variacional 
13.7.2. Aprendizaje profundo no supervisado 
13.7.3. Representaciones latentes profundas 

13.8. Generación de imágenes MNIST de moda 

13.8.1. Reconocimiento de patrones 
13.8.2. Generación de imágenes 
13.8.3. Entrenamiento de redes neuronales profundas 

13.9. Redes adversarias generativas y modelos de difusión 

13.9.1. Generación de contenido a partir de imágenes 
13.9.2. Modelado de distribuciones de datos 
13.9.3. Uso de redes adversarias 

13.10. Implementación de los Modelos 

13.10.1. Aplicación Práctica 
13.10.2. Implementación de los modelos 
13.10.3. Uso de datos reales 
13.10.4. Evaluación de los resultados 

Módulo 14. Computación bioinspirada

14.1. Introducción a la computación bioinspirada 

14.1.1. Introducción a la computación bioinspirada 

14.2. Algoritmos de adaptación social 

14.2.1. Computación bioinspirada basada en colonia de hormigas 
14.2.2. Variantes de los algoritmos de colonias de hormigas 
14.2.3. Computación basada en nubes de partículas 

14.3. Algoritmos genéticos 

14.3.1. Estructura general 
14.3.2. Implementaciones de los principales operadores 

14.4. Estrategias de exploración-explotación del espacio para algoritmos genéticos 

14.4.1. Algoritmo CHC 
14.4.2. Problemas multimodales 

14.5. Modelos de computación evolutiva (I) 

14.5.1. Estrategias evolutivas 
14.5.2. Programación evolutiva 
14.5.3. Algoritmos basados en evolución diferencial 

14.6. Modelos de computación evolutiva (II) 

14.6.1. Modelos de evolución basados en estimación de distribuciones (EDA) 
14.6.2. Programación genética 

14.7. Programación evolutiva aplicada a problemas de aprendizaje 

14.7.1. Aprendizaje basado en reglas 
14.7.2. Métodos evolutivos en problemas de selección de instancias 

14.8. Problemas multiobjetivo 

14.8.1. Concepto de dominancia 
14.8.2. Aplicación de algoritmos evolutivos a problemas multiobjetivo 

14.9. Redes neuronales (I) 

14.9.1. Introducción a las redes neuronales 
14.9.2. Ejemplo práctico con redes neuronales 

14.10. Redes neuronales (II) 

14.10.1. Casos de uso de las redes neuronales en la investigación médica 
14.10.2. Casos de uso de las redes neuronales en la economía 
14.10.3. Casos de uso de las redes neuronales en la visión artificial 

Módulo 15. Inteligencia Artificial: estrategias y aplicaciones

15.1. Servicios financieros 

15.1.1. Las implicaciones de la Inteligencia Artificial (IA) en los servicios financieros.Oportunidades y desafíos
15.1.2. Casos de uso
15.1.3. Riesgos potenciales relacionados con el uso de IA 
15.1.4. Potenciales desarrollos / usos futuros de la IA 

15.2. Implicaciones de la Inteligencia Artificial en el servicio sanitario

15.2.1. Implicaciones de la IA en el sector sanitario. Oportunidades y desafíos
15.2.2. Casos de uso 

15.3. Riesgos Relacionados con el uso de la IA en el servicio sanitario 

15.3.1. Riesgos potenciales relacionados con el uso de IA 
15.3.2. Potenciales desarrollos / usos futuros de la IA

15.4. Retail

15.4.1. Implicaciones de la IA en Retail. Oportunidades y desafíos
15.4.2. Casos de uso
15.4.3. Riesgos potenciales relacionados con el uso de IA
15.4.4. Potenciales desarrollos / usos futuros de la IA 

15.5. Industria 

15.5.1. Implicaciones de la IA en la Industria. Oportunidades y desafíos 
15.5.2. Casos de uso 

15.6. Riesgos potenciales relacionados con el uso de IA en la Industria 

15.6.1. Casos de uso 
15.6.2. Riesgos potenciales relacionados con el uso de IA 
15.6.3. Potenciales desarrollos / usos futuros de la IA

15.7. Administración Pública

15.7.1. Implicaciones de la IA en la Administración Pública. Oportunidades y desafíos 
15.7.2. Casos de uso
15.7.3. Riesgos potenciales relacionados con el uso de IA
15.7.4. Potenciales desarrollos / usos futuros de la IA

15.8. Educación

15.8.1. Implicaciones de la IA en la educación. Oportunidades y desafíos 
15.8.2. Casos de uso
15.8.3. Riesgos potenciales relacionados con el uso de IA
15.8.4. Potenciales desarrollos / usos futuros de la IA 

15.9. Silvicultura y agricultura

15.9.1. Implicaciones de la IA en la silvicultura y la agricultura. Oportunidades y desafíos
15.9.2. Casos de uso 
15.9.3. Riesgos potenciales relacionados con el uso de IA 
15.9.4. Potenciales desarrollos / usos futuros de la IA

15.10. Recursos Humanos

15.10.1. Implicaciones de la IA en los Recursos Humanos. Oportunidades y desafíos 
15.10.2. Casos de uso
15.10.3. Riesgos potenciales relacionados con el uso de IA
15.10.4. Potenciales desarrollos / usos futuros de la IA

##IMAGE##

Podrás acceder al campus virtual las 24 horas del día, sin restricciones horarias ni geográficas. Además, ¡todos los recursos son descargables!”

Máster en Inteligencia Artificial

Sumérgete en el futuro de los negocios con el Máster en Inteligencia Artificial (IA) de TECH Universidad Tecnológica. Este programa de vanguardia está diseñado para profesionales ambiciosos que buscan dominar las complejidades de la IA y su aplicación estratégica en el ámbito empresarial. Como líderes globales en educación superior y tecnología, comprendemos la creciente importancia de la Inteligencia Artificial en el mundo empresarial actual. Por esta razón, hemos desarrollado un programa único que combina la excelencia académica con un enfoque práctico y aplicado. Este Máster te proporcionará las habilidades y el conocimiento necesario para liderar la integración efectiva de la IA en cualquier organización. Una de las ventajas clave de nuestro posgrado es su modalidad en línea. Con la flexibilidad de estudiar desde cualquier lugar y en cualquier momento, podrás avanzar en tu educación sin comprometer tu carrera actual. Nuestra plataforma virtual te brinda acceso a recursos de alta calidad, interacción en tiempo real con profesores expertos y la oportunidad de colaborar con colegas de todo el mundo.

Conoce las complejidades de la inteligencia artificial y sus desafíos

¿Por qué elegir nuestro programa? Además de la reputación de TECH Universidad Tecnológica, nuestro Máster se centra en el impacto directo de la IA en los negocios. Aprenderás a desarrollar e implementar estrategias que aprovechen el potencial de la IA para mejorar la eficiencia operativa, tomar decisiones más informadas y generar ventajas competitivas sostenibles. El plan de estudios abarca desde los fundamentos de la IA hasta temas especializados en aplicaciones empresariales, machine learning, procesamiento de lenguaje natural y ética en en el campo. Estarás preparado para abordar desafíos empresariales complejos y capitalizar las oportunidades emergentes en el mundo de la inteligencia artificial. Conviértete en un líder visionario que impulsa el cambio positivo en el panorama empresarial. Únete al Máster en Inteligencia Artificial con Énfasis en Negocios de TECH Universidad Tecnológica y adquiere las habilidades para destacarte en el emocionante mundo empresarial.