Titulación
La mayor facultad de medicina del mundo”
Presentación
Con este Máster Título Propio 100% online, actualizarás tu capacidad para interpretar imágenes médicas con mayor precisión y rapidez, liderando proyectos de innovación en salud con Inteligencia Artificial”
La Inteligencia Artificial (IA) está revolucionando el campo del Diagnóstico por Imagen, facilitando diagnósticos más rápidos y precisos en áreas como la radiología y la medicina nuclear. De hecho, los algoritmos de aprendizaje profundo se han integrado cada vez más en las herramientas de diagnóstico, permitiendo la detección temprana de enfermedades como el Cáncer de Mama o la Neumonía.
Así nace este Máster Título Propio, gracias al cual los médicos se familiarizarán con las herramientas y plataformas líderes, como IBM Watson Imaging y DeepMind AI, que están transformando la interpretación de imágenes médicas. Además, se abordará el diseño experimental y el análisis de resultados, con un enfoque en la integración de redes neuronales y el Procesamiento de Lenguaje Natural, facilitando la documentación médica.
Asimismo, los profesionales se beneficiarán de una capacitación intensiva en aplicaciones avanzadas de IA en estudios clínicos, diseñando y validando modelos de Inteligencia Artificial para la interpretación precisa de imágenes médicas. Este enfoque práctico incluirá la integración de datos de diversas fuentes biomédicas, así como la utilización de tecnologías emergentes, como la Realidad Virtual y Aumentada.
Finalmente, se profundizará en la personalización y automatización de diagnósticos médicos mediante IA, explorando cómo la medicina de precisión está revolucionando el cuidado de la salud. Además, se podrá aplicar la Inteligencia Artificial en la secuenciación genómica y el análisis de imágenes del microbioma, mientras gestionan datos complejos en ensayos clínicos. Este enfoque integral mejorará la precisión diagnóstica y abordará los aspectos éticos y legales asociados al uso de IA en la medicina.
De este modo, TECH ha creado un detallado programa universitario totalmente en línea, que facilita a los egresados el acceso a los materiales educativos a través de cualquier dispositivo electrónico con conexión a Internet. Esto elimina la necesidad de desplazarse a un lugar físico y adaptarse a un horario específico. Adicionalmente, integra la revolucionaria metodología Relearning, que se fundamenta en la repetición de conceptos esenciales para mejorar la comprensión del contenido.
Adquirirás un conocimiento profundo sobre el manejo del Big Data, la automatización del diagnóstico y los aspectos éticos y legales en el uso de IA, gracias a una amplia biblioteca de innovadores recursos multimedia”
Este Máster Título Propio en Inteligencia Artificial en Diagnóstico por Imagen contiene el programa científico más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Inteligencia Artificial aplicada al Diagnóstico por Imagen
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información científica y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a Internet
Indagarás en la precisión diagnóstica y los beneficios clínicos que se derivan del uso de la IA, con un enfoque en el diseño de experimentos y el análisis de resultados utilizando recursos como Google Cloud Healthcare API”
El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Abordarás las innovaciones en Realidad Virtual y Aumentada, que están transformando la forma en que los médicos visualizan y analizan datos clínicos, mejorando la toma de decisiones. ¿A qué esperas para matricularte?"
Profundizarás en las aplicaciones de la IA en la correlación entre secuenciación genómica, la automatización del procesamiento de imágenes y la implementación de técnicas avanzadas en el diagnóstico asistido por IA”
Temario
El programa abarcará, desde las tecnologías más innovadoras en análisis de imágenes y plataformas de IA, hasta la aplicación práctica de algoritmos de aprendizaje profundo en estudios clínicos complejos. Además, los contenidos incluirán la integración de datos biomédicos con imágenes médicas, la personalización y automatización del diagnóstico, así como el manejo de grandes volúmenes de datos a través de técnicas de Big Data y análisis predictivo. También se abordarán cuestiones éticas y legales esenciales para garantizar una implementación segura y efectiva de estas tecnologías en la práctica clínica.
Este Máster Título Propio en Inteligencia Artificial en Diagnóstico por Imagen te ofrecerá un contenido integral, diseñado para equiparte con habilidades avanzadas en el uso de IA en la imagenología médica”
Módulo 1. Fundamentos de la Inteligencia Artificial
1.1. Historia de la Inteligencia artificial
1.1.1. ¿Cuándo se empieza a hablar de inteligencia artificial?
1.1.2. Referentes en el cine
1.1.3. Importancia de la inteligencia artificial
1.1.4. Tecnologías que habilitan y dan soporte a la inteligencia artificial
1.2. La Inteligencia Artificial en juegos
1.2.1. Teoría de Juegos
1.2.2. Minimax y poda Alfa-Beta
1.2.3. Simulación: Monte Carlo
1.3. Redes de neuronas
1.3.1. Fundamentos biológicos
1.3.2. Modelo computacional
1.3.3. Redes de neuronas supervisadas y no supervisadas
1.3.4. Perceptrón simple
1.3.5. Perceptrón multicapa
1.4. Algoritmos genéticos
1.4.1. Historia
1.4.2. Base biológica
1.4.3. Codificación de problemas
1.4.4. Generación de la población inicial
1.4.5. Algoritmo principal y operadores genéticos
1.4.6. Evaluación de individuos: Fitness
1.5. Tesauros, vocabularios, taxonomías
1.5.1. Vocabularios
1.5.2. Taxonomías
1.5.3. Tesauros
1.5.4. Ontologías
1.5.5. Representación del conocimiento: web semántica
1.6. Web semántica
1.6.1. Especificaciones: RDF, RDFS y OWL
1.6.2. Inferencia/razonamiento
1.6.3. Linked Data
1.7. Sistemas expertos y DSS
1.7.1. Sistemas expertos
1.7.2. Sistemas de soporte a la decisión
1.8. Chatbots y Asistentes Virtuales
1.8.1. Tipos de asistentes: asistentes por voz y por texto
1.8.2. Partes fundamentales para el desarrollo de un asistente: Intents, entidades y flujo de diálogo
1.8.3. Integraciones: web, Slack, Whatsapp, Facebook
1.8.4. Herramientas de desarrollo de asistentes: Dialog Flow, Watson Assistant
1.9. Estrategia de implantación de IA
1.10. Futuro de la inteligencia artificial
1.10.1. Entendemos cómo detectar emociones mediante algoritmos
1.10.2. Creación de una personalidad: lenguaje, expresiones y contenido
1.10.3. Tendencias de la inteligencia artificial
1.10.4. Reflexiones
Módulo. 2. Tipos y Ciclo de Vida del Dato
2.1. La Estadística
2.1.1. Estadística: estadística descriptiva, estadística inferencias
2.1.2. Población, muestra, individuo
2.1.3. Variables: definición, escalas de medida
2.2. Tipos de datos estadísticos
2.2.1. Según tipo
2.2.1.1. Cuantitativos: datos continuos y datos discretos
2.2.1.2. Cualitativos: datos binomiales, datos nominales y datos ordinales
2.2.2. Según su forma
2.2.2.1. Numérico
2.2.2.2. Texto
2.2.2.3. Lógico
2.2.3. Según su fuente
2.2.3.1. Primarios
2.2.3.2. Secundarios
2.3. Ciclo de vida de los datos
2.3.1. Etapas del ciclo
2.3.2. Hitos del ciclo
2.3.3. Principios FAIR
2.4. Etapas iniciales del ciclo
2.4.1. Definición de metas
2.4.2. Determinación de recursos necesarios
2.4.3. Diagrama de Gantt
2.4.4. Estructura de los datos
2.5. Recolección de datos
2.5.1. Metodología de recolección
2.5.2. Herramientas de recolección
2.5.3. Canales de recolección
2.6. Limpieza del dato
2.6.1. Fases de la limpieza de datos
2.6.2. Calidad del dato
2.6.3. Manipulación de datos (con R)
2.7. Análisis de datos, interpretación y valoración de resultados
2.7.1. Medidas estadísticas
2.7.2. Índices de relación
2.7.3. Minería de datos
2.8. Almacén del dato (Datawarehouse)
2.8.1. Elementos que lo integran
2.8.2. Diseño
2.8.3. Aspectos a considerar
2.9. Disponibilidad del dato
2.9.1. Acceso
2.9.2. Utilidad
2.9.3. Seguridad
2.10. Aspectos Normativos
2.10.1. Ley de protección de datos
2.10.2. Buenas prácticas
2.10.3. Otros aspectos normativos
Módulo 3. El dato en la Inteligencia Artificial
3.1. Ciencia de datos
3.1.1. La ciencia de datos
3.1.2. Herramientas avanzadas para el científico de datos
3.2. Datos, información y conocimiento
3.2.1. Datos, información y conocimiento
3.2.2. Tipos de datos
3.2.3. Fuentes de datos
3.3. De los datos a la información
3.3.1. Análisis de Datos
3.3.2. Tipos de análisis
3.3.3. Extracción de Información de un Dataset
3.4. Extracción de información mediante visualización
3.4.1. La visualización como herramienta de análisis
3.4.2. Métodos de visualización
3.4.3. Visualización de un conjunto de datos
3.5. Calidad de los datos
3.5.1. Datos de calidad
3.5.2. Limpieza de datos
3.5.3. Preprocesamiento básico de datos
3.6. Dataset
3.6.1. Enriquecimiento del Dataset
3.6.2. La maldición de la dimensionalidad
3.6.3. Modificación de nuestro conjunto de datos
3.7. Desbalanceo
3.7.1. Desbalanceo de clases
3.7.2. Técnicas de mitigación del desbalanceo
3.7.3. Balanceo de un Dataset
3.8. Modelos no supervisados
3.8.1. Modelo no supervisado
3.8.2. Métodos
3.8.3. Clasificación con modelos no supervisados
3.9. Modelos supervisados
3.9.1. Modelo supervisado
3.9.2. Métodos
3.9.3. Clasificación con modelos supervisados
3.10. Herramientas y buenas prácticas
3.10.1. Buenas prácticas para un científico de datos
3.10.2. El mejor modelo
3.10.3. Herramientas útiles
Módulo 4. Minería de Datos. Selección, preprocesamiento y transformación
4.1. La inferencia estadística
4.1.1. Estadística descriptiva vs Inferencia estadística
4.1.2. Procedimientos paramétricos
4.1.3. Procedimientos no paramétricos
4.2. Análisis exploratorio
4.2.1. Análisis descriptivo
4.2.2. Visualización
4.2.3. Preparación de datos
4.3. Preparación de datos
4.3.1. Integración y limpieza de datos
4.3.2. Normalización de datos
4.3.3. Transformando atributos
4.4. Los valores perdidos
4.4.1. Tratamiento de valores perdidos
4.4.2. Métodos de imputación de máxima verosimilitud
4.4.3. Imputación de valores perdidos usando aprendizaje automático
4.5. El ruido en los datos
4.5.1. Clases de ruido y atributos
4.5.2. Filtrado de ruido
4.5.3. El efecto del ruido
4.6. La maldición de la dimensionalidad
4.6.1. Oversampling
4.6.2. Undersampling
4.6.3. Reducción de datos multidimensionales
4.7. De atributos continuos a discretos
4.7.1. Datos continuos versus discretos
4.7.2. Proceso de discretización
4.8. Los datos
4.8.1. Selección de datos
4.8.2. Perspectivas y criterios de selección
4.8.3. Métodos de selección
4.9. Selección de instancias
4.9.1. Métodos para la selección de instancias
4.9.2. Selección de prototipos
4.9.3. Métodos avanzados para la selección de instancias
4.10. Preprocesamiento de datos en entornos Big Data
Módulo 5. Algoritmia y complejidad en Inteligencia Artificial
5.1. Introducción a las estrategias de diseño de algoritmos
5.1.1. Recursividad
5.1.2. Divide y conquista
5.1.3. Otras estrategias
5.2. Eficiencia y análisis de los algoritmos
5.2.1. Medidas de eficiencia
5.2.2. Medir el tamaño de la entrada
5.2.3. Medir el tiempo de ejecución
5.2.4. Caso peor, mejor y medio
5.2.5. Notación asintónica
5.2.6. Criterios de Análisis matemático de algoritmos no recursivos
5.2.7. Análisis matemático de algoritmos recursivos
5.2.8. Análisis empírico de algoritmos
5.3. Algoritmos de ordenación
5.3.1. Concepto de ordenación
5.3.2. Ordenación de la burbuja
5.3.3. Ordenación por selección
5.3.4. Ordenación por inserción
5.3.5. Ordenación por mezcla (Merge_Sort)
5.3.6. Ordenación rápida (Quick_Sort)
5.4. Algoritmos con árboles
5.4.1. Concepto de árbol
5.4.2. Árboles binarios
5.4.3. Recorridos de árbol
5.4.4. Representar expresiones
5.4.5. Árboles binarios ordenados
5.4.6. Árboles binarios balanceados
5.5. Algoritmos con Heaps
5.5.1. Los Heaps
5.5.2. El algoritmo Heapsort
5.5.3. Las colas de prioridad
5.6. Algoritmos con grafos
5.6.1. Representación
5.6.2. Recorrido en anchura
5.6.3. Recorrido en profundidad
5.6.4. Ordenación topológica
5.7. Algoritmos Greedy
5.7.1. La estrategia Greedy
5.7.2. Elementos de la estrategia Greedy
5.7.3. Cambio de monedas
5.7.4. Problema del viajante
5.7.5. Problema de la mochila
5.8. Búsqueda de caminos mínimos
5.8.1. El problema del camino mínimo
5.8.2. Arcos negativos y ciclos
5.8.3. Algoritmo de Dijkstra
5.9. Algoritmos Greedy sobre grafos
5.9.1. El árbol de recubrimiento mínimo
5.9.2. El algoritmo de Prim
5.9.3. El algoritmo de Kruskal
5.9.4. Análisis de complejidad
5.10. Backtracking
5.10.1. El Backtracking
5.10.2. Técnicas alternativas
Módulo 6. Sistemas inteligentes
6.1. Teoría de agentes
6.1.1. Historia del concepto
6.1.2. Definición de agente
6.1.3. Agentes en Inteligencia Artificial
6.1.4. Agentes en ingeniería de Software
6.2. Arquitecturas de agentes
6.2.1. El proceso de razonamiento de un agente
6.2.2. Agentes reactivos
6.2.3. Agentes deductivos
6.2.4. Agentes híbridos
6.2.5. Comparativa
6.3. Información y conocimiento
6.3.1. Distinción entre datos, información y conocimiento
6.3.2. Evaluación de la calidad de los datos
6.3.3. Métodos de captura de datos
6.3.4. Métodos de adquisición de información
6.3.5. Métodos de adquisición de conocimiento
6.4. Representación del conocimiento
6.4.1. La importancia de la representación del conocimiento
6.4.2. Definición de representación del conocimiento a través de sus roles
6.4.3. Características de una representación del conocimiento
6.5. Ontologías
6.5.1. Introducción a los metadatos
6.5.2. Concepto filosófico de ontología
6.5.3. Concepto informático de ontología
6.5.4. Ontologías de dominio y ontologías de nivel superior
6.5.5. ¿Cómo construir una ontología?
6.6. Lenguajes para ontologías y Software para la creación de ontologías
6.6.1. Tripletas RDF, Turtle y N
6.6.2. RDF Schema
6.6.3. OWL
6.6.4. SPARQL
6.6.5. Introducción a las diferentes herramientas para la creación de ontologías
6.6.6. Instalación y uso de Protégé
6.7. La web semántica
6.7.1. El estado actual y futuro de la web semántica
6.7.2. Aplicaciones de la web semántica
6.8. Otros modelos de representación del conocimiento
6.8.1. Vocabularios
6.8.2. Visión global
6.8.3. Taxonomías
6.8.4. Tesauros
6.8.5. Folksonomías
6.8.6. Comparativa
6.8.7. Mapas mentales
6.9. Evaluación e integración de representaciones del conocimiento
6.9.1. Lógica de orden cero
6.9.2. Lógica de primer orden
6.9.3. Lógica descriptiva
6.9.4. Relación entre diferentes tipos de lógica
6.9.5. Prolog: programación basada en lógica de primer orden
6.10. Razonadores semánticos, sistemas basados en conocimiento y Sistemas Expertos
6.10.1. Concepto de razonador
6.10.2. Aplicaciones de un razonador
6.10.3. Sistemas basados en el conocimiento
6.10.4. MYCIN, historia de los Sistemas Expertos
6.10.5. Elementos y Arquitectura de Sistemas Expertos
6.10.6. Creación de Sistemas Expertos
Módulo 7. Aprendizaje automático y minería de datos
7.1. Introducción a los procesos de descubrimiento del conocimiento y conceptos básicos de aprendizaje automático
7.1.1. Conceptos clave de los procesos de descubrimiento del conocimiento
7.1.2. Perspectiva histórica de los procesos de descubrimiento del conocimiento
7.1.3. Etapas de los procesos de descubrimiento del conocimiento
7.1.4. Técnicas utilizadas en los procesos de descubrimiento del conocimiento
7.1.5. Características de los buenos modelos de aprendizaje automático
7.1.6. Tipos de información de aprendizaje automático
7.1.7. Conceptos básicos de aprendizaje
7.1.8. Conceptos básicos de aprendizaje no supervisado
7.2. Exploración y preprocesamiento de datos
7.2.1. Tratamiento de datos
7.2.2. Tratamiento de datos en el flujo de análisis de datos
7.2.3. Tipos de datos
7.2.4. Transformaciones de datos
7.2.5. Visualización y exploración de variables continuas
7.2.6. Visualización y exploración de variables categóricas
7.2.7. Medidas de correlación
7.2.8. Representaciones gráficas más habituales
7.2.9. Introducción al análisis multivariante y a la reducción de dimensiones
7.3. Árboles de decisión
7.3.1. Algoritmo ID
7.3.2. Algoritmo C
7.3.3. Sobreentrenamiento y poda
7.3.4. Análisis de resultados
7.4. Evaluación de clasificadores
7.4.1. Matrices de confusión
7.4.2. Matrices de evaluación numérica
7.4.3. Estadístico de Kappa
7.4.4. La curva ROC
7.5. Reglas de clasificación
7.5.1. Medidas de evaluación de reglas
7.5.2. Introducción a la representación gráfica
7.5.3. Algoritmo de recubrimiento secuencial
7.6. Redes neuronales
7.6.1. Conceptos básicos
7.6.2. Redes de neuronas simples
7.6.3. Algoritmo de Backpropagation
7.6.4. Introducción a las redes neuronales recurrentes
7.7. Métodos bayesianos
7.7.1. Conceptos básicos de probabilidad
7.7.2. Teorema de Bayes
7.7.3. Naive Bayes
7.7.4. Introducción a las redes bayesianas
7.8. Modelos de regresión y de respuesta continua
7.8.1. Regresión lineal simple
7.8.2. Regresión lineal múltiple
7.8.3. Regresión logística
7.8.4. Árboles de regresión
7.8.5. Introducción a las máquinas de soporte vectorial (SVM)
7.8.6. Medidas de bondad de ajuste
7.9. Clustering
7.9.1. Conceptos básicos
7.9.2. Clustering jerárquico
7.9.3. Métodos probabilistas
7.9.4. Algoritmo EM
7.9.5. Método B-Cubed
7.9.6. Métodos implícitos
7.10. Minería de textos y procesamiento de lenguaje natural (NLP)
7.10.1. Conceptos básicos
7.10.2. Creación del corpus
7.10.3. Análisis descriptivo
7.10.4. Introducción al análisis de sentimientos
Módulo 8. Las redes neuronales, base de Deep Learning
8.1. Aprendizaje Profundo
8.1.1. Tipos de aprendizaje profundo
8.1.2. Aplicaciones del aprendizaje profundo
8.1.3. Ventajas y desventajas del aprendizaje profundo
8.2. Operaciones
8.2.1. Suma
8.2.2. Producto
8.2.3. Traslado
8.3. Capas
8.3.1. Capa de entrada
8.3.2. Capa oculta
8.3.3. Capa de salida
8.4. Unión de Capas y Operaciones
8.4.1. Diseño de arquitecturas
8.4.2. Conexión entre capas
8.4.3. Propagación hacia adelante
8.5. Construcción de la primera red neuronal
8.5.1. Diseño de la red
8.5.2. Establecer los pesos
8.5.3. Entrenamiento de la red
8.6. Entrenador y Optimizador
8.6.1. Selección del optimizador
8.6.2. Establecimiento de una función de pérdida
8.6.3. Establecimiento de una métrica
8.7. Aplicación de los Principios de las Redes Neuronales
8.7.1. Funciones de activación
8.7.2. Propagación hacia atrás
8.7.3. Ajuste de los parámetros
8.8. De las neuronas biológicas a las artificiales
8.8.1. Funcionamiento de una neurona biológica
8.8.2. Transferencia de conocimiento a las neuronas artificiales
8.8.3. Establecer relaciones entre ambas
8.9. Implementación de MLP (Perceptrón multicapa) con Keras
8.9.1. Definición de la estructura de la red
8.9.2. Compilación del modelo
8.9.3. Entrenamiento del modelo
8.10. Hiperparámetros de Fine tuning de Redes Neuronales
8.10.1. Selección de la función de activación
8.10.2. Establecer el Learning Rate
8.10. 3. Ajuste de los pesos
Módulo 9. Entrenamiento de redes neuronales profundas
9.1. Problemas de Gradientes
9.1.1. Técnicas de optimización de gradiente
9.1.2. Gradientes Estocásticos
9.1.3. Técnicas de inicialización de pesos
9.2. Reutilización de capas preentrenadas
9.2.1. Entrenamiento de transferencia de aprendizaje
9.2.2. Extracción de características
9.2.3. Aprendizaje profundo
9.3. Optimizadores
9.3.1. Optimizadores de descenso de gradiente estocástico
9.3.2. Optimizadores Adam y RMSprop
9.3.3. Optimizadores de momento
9.4. Programación de la tasa de aprendizaje
9.4.1. Control de tasa de aprendizaje automático
9.4.2. Ciclos de aprendizaje
9.4.3. Términos de suavizado
9.5. Sobreajuste
9.5.1. Validación cruzada
9.5.2. Regularización
9.5.3. Métricas de evaluación
9.6. Directrices Prácticas
9.6.1. Diseño de modelos
9.6.2. Selección de métricas y parámetros de evaluación
9.6.3. Pruebas de hipótesis
9.7. Transfer Learning
9.7.1. Entrenamiento de transferencia de aprendizaje
9.7.2. Extracción de características
9.7.3. Aprendizaje profundo
9.8. Data Augmentation
9.8.1. Transformaciones de imagen
9.8.2. Generación de datos sintéticos
9.8.3. Transformación de texto
9.9. Aplicación Práctica de Transfer Learning
9.9.1. Entrenamiento de transferencia de aprendizaje
9.9.2. Extracción de características
9.9.3. Aprendizaje profundo
9.10. Regularización
9.10.1. L y L
9.10.2. Regularización por máxima entropía
9.10.3. Dropout
Módulo 10. Personalización de Modelos y entrenamiento con TensorFlow
10.1. TensorFlow
10.1.1. Uso de la biblioteca TensorFlow
10.1.2. Entrenamiento de modelos con TensorFlow
10.1.3. Operaciones con gráficos en TensorFlow
10.2. TensorFlow y NumPy
10.2.1. Entorno computacional NumPy para TensorFlow
10.2.2. Utilización de los arrays NumPy con TensorFlow
10.2.3. Operaciones NumPy para los gráficos de TensorFlow
10.3. Personalización de modelos y algoritmos de entrenamiento
10.3.1. Construcción de modelos personalizados con TensorFlow
10.3.2. Gestión de parámetros de entrenamiento
10.3.3. Utilización de técnicas de optimización para el entrenamiento
10.4. Funciones y gráficos de TensorFlow
10.4.1. Funciones con TensorFlow
10.4.2. Utilización de gráficos para el entrenamiento de modelos
10.4.3. Optimización de gráficos con operaciones de TensorFlow
10.5. Carga y preprocesamiento de datos con TensorFlow
10.5.1. Carga de conjuntos de datos con TensorFlow
10.5.2. Preprocesamiento de datos con TensorFlow
10.5.3. Utilización de herramientas de TensorFlow para la manipulación de datos
10.6. La API tfdata
10.6.1. Utilización de la API tfdata para el procesamiento de datos
10.6.2. Construcción de flujos de datos con tfdata
10.6.3. Uso de la API tfdata para el entrenamiento de modelos
10.7. El formato TFRecord
10.7.1. Utilización de la API TFRecord para la serialización de datos
10.7.2. Carga de archivos TFRecord con TensorFlow
10.7.3. Utilización de archivos TFRecord para el entrenamiento de modelos
10.8. Capas de preprocesamiento de Keras
10.8.1. Utilización de la API de preprocesamiento de Keras
10.8.2. Construcción de pipelined de preprocesamiento con Keras
10.8.3. Uso de la API de preprocesamiento de Keras para el entrenamiento de modelos
10.9. El proyecto TensorFlow Datasets
10.9.1. Utilización de TensorFlow Datasets para la carga de datos
10.9.2. Preprocesamiento de datos con TensorFlow Datasets
10.9.3. Uso de TensorFlow Datasets para el entrenamiento de modelos
10.10. Construcción de una Aplicación de Deep Learning con TensorFlow
10.10.1. Aplicación Práctica
10.10.2. Construcción de una aplicación de Deep Learning con TensorFlow
10.10.3. Entrenamiento de un modelo con TensorFlow
10.10.4. Utilización de la aplicación para la predicción de resultados
Módulo 11. Deep Computer Vision con Redes Neuronales Convolucionales
11.1. La Arquitectura Visual Cortex
11.1.1. Funciones de la corteza visual
11.1.2. Teorías de la visión computacional
11.1.3. Modelos de procesamiento de imágenes
11.2. Capas convolucionales
11.2.1. Reutilización de pesos en la convolución
11.2.2. Convolución D
11.2.3. Funciones de activación
11.3. Capas de agrupación e implementación de capas de agrupación con Keras
11.3.1. Pooling y Striding
11.3.2. Flattening
11.3.3. Tipos de Pooling
11.4. Arquitecturas CNN
11.4.1. Arquitectura VGG
11.4.2. Arquitectura AlexNet
11.4.3. Arquitectura ResNet
11.5. Implementación de una CNN ResNet- usando Keras
11.5.1. Inicialización de pesos
11.5.2. Definición de la capa de entrada
11.5.3. Definición de la salida
11.6. Uso de modelos preentrenados de Keras
11.6.1. Características de los modelos preentrenados
11.6.2. Usos de los modelos preentrenados
11.6.3. Ventajas de los modelos preentrenados
11.7. Modelos preentrenados para el aprendizaje por transferencia
11.7.1. El Aprendizaje por transferencia
11.7.2. Proceso de aprendizaje por transferencia
11.7.3. Ventajas del aprendizaje por transferencia
11.8. Clasificación y Localización en Deep Computer Vision
11.8.1. Clasificación de imágenes
11.8.2. Localización de objetos en imágenes
11.8.3. Detección de objetos
11.9. Detección de objetos y seguimiento de objetos
11.9.1. Métodos de detección de objetos
11.9.2. Algoritmos de seguimiento de objetos
11.9.3. Técnicas de rastreo y localización
11.10. Segmentación semántica
11.10.1. Aprendizaje profundo para segmentación semántica
11.10.1. Detección de bordes
11.10.1. Métodos de segmentación basados en reglas
Módulo 12. Procesamiento del Lenguaje Natural (NLP) con Redes Naturales Recurrentes (RNN) y Atención
12.1. Generación de texto utilizando RNN
12.1.1. Entrenamiento de una RNN para generación de texto
12.1.2. Generación de lenguaje natural con RNN
12.1.3. Aplicaciones de generación de texto con RNN
12.2. Creación del conjunto de datos de entrenamiento
12.2.1. Preparación de los datos para el entrenamiento de una RNN
12.2.2. Almacenamiento del conjunto de datos de entrenamiento
12.2.3. Limpieza y transformación de los datos
12.2.4. Análisis de Sentimiento
12.3. Clasificación de opiniones con RNN
12.3.1. Detección de temas en los comentarios
12.3.2. Análisis de sentimiento con algoritmos de aprendizaje profundo
12.4. Red de codificador-decodificador para la traducción automática neuronal
12.4.1. Entrenamiento de una RNN para la traducción automática
12.4.2. Uso de una red encoder-decoder para la traducción automática
12.4.3. Mejora de la precisión de la traducción automática con RNN
12.5. Mecanismos de atención
12.5.1. Aplicación de mecanismos de atención en RNN
12.5.2. Uso de mecanismos de atención para mejorar la precisión de los modelos
12.5.3. Ventajas de los mecanismos de atención en las redes neuronales
12.6. Modelos Transformers
12.6.1. Uso de los modelos Transformers para procesamiento de lenguaje natural
12.6.2. Aplicación de los modelos Transformers para visión
12.6.3. Ventajas de los modelos Transformers
12.7. Transformers para visión
12.7.1. Uso de los modelos Transformers para visión
12.7.2. Preprocesamiento de los datos de imagen
12.7.3. Entrenamiento de un modelo Transformers para visión
12.8. Librería de Transformers de Hugging Face
12.8.1. Uso de la librería de Transformers de Hugging Face
12.8.2. Aplicación de la librería de Transformers de Hugging Face
12.8.3. Ventajas de la librería de Transformers de Hugging Face
12.9. Otras Librerías de Transformers. Comparativa
12.9.1. Comparación entre las distintas librerías de Transformers
12.9.2. Uso de las demás librerías de Transformers
12.9.3. Ventajas de las demás librerías de Transformers
12.10. Desarrollo de una Aplicación de NLP con RNN y Atención. Aplicación Práctica
12.10.1. Desarrollo de una aplicación de procesamiento de lenguaje natural con RNN y atención
12.10.2. Uso de RNN, mecanismos de atención y modelos Transformers en la aplicación
12.10.3. Evaluación de la aplicación práctica
Módulo 13. Autoencoders, GANs, y Modelos de Difusión
13.1. Representaciones de datos eficientes
13.1.1. Reducción de dimensionalidad
13.1.2. Aprendizaje profundo
13.1.3. Representaciones compactas
13.2. Realización de PCA con un codificador automático lineal incompleto
13.2.1. Proceso de entrenamiento
13.2.2. Implementación en Python
13.2.3. Utilización de datos de prueba
13.3. Codificadores automáticos apilados
13.3.1. Redes neuronales profundas
13.3.2. Construcción de arquitecturas de codificación
13.3.3. Uso de la regularización
13.4. Autocodificadores convolucionales
13.4.1. Diseño de modelos convolucionales
13.4.2. Entrenamiento de modelos convolucionales
13.4.3. Evaluación de los resultados
13.5. Eliminación de ruido de codificadores automáticos
13.5.1. Aplicación de filtros
13.5.2. Diseño de modelos de codificación
13.5.3. Uso de técnicas de regularización
13.6. Codificadores automáticos dispersos
13.6.1. Incrementar la eficiencia de la codificación
13.6.2 Minimizando el número de parámetros
13.6.3. Utilización de técnicas de regularización
13.7. Codificadores automáticos variacionales
13.7.1. Utilización de optimización variacional
13.7.2. Aprendizaje profundo no supervisado
13.7.3. Representaciones latentes profundas
13.8. Generación de imágenes MNIST de moda
13.8.1. Reconocimiento de patrones
13.8.2. Generación de imágenes
13.8.3. Entrenamiento de redes neuronales profundas
13.9. Redes adversarias generativas y modelos de difusión
13.9.1. Generación de contenido a partir de imágenes
13.9.2. Modelado de distribuciones de datos
13.9.3. Uso de redes adversarias
13.10 Implementación de los Modelos
13.10.1. Aplicación Práctica
13.10.2. Implementación de los modelos
13.10.3. Uso de datos reales
13.10.4. Evaluación de los resultados
Módulo 14. Computación bioinspirada
14.1. Introducción a la computación bioinspirada
14.1.1. Introducción a la computación bioinspirada
14.2. Algoritmos de adaptación social
14.2.1. Computación bioinspirada basada en colonia de hormigas
14.2.2. Variantes de los algoritmos de colonias de hormigas
14.2.3. Computación basada en nubes de partículas
14.3. Algoritmos genéticos
14.3.1. Estructura general
14.3.2. Implementaciones de los principales operadores
14.4. Estrategias de exploración-explotación del espacio para algoritmos genéticos
14.4.1. Algoritmo CHC
14.4.2. Problemas multimodales
14.5. Modelos de computación evolutiva (I)
14.5.1. Estrategias evolutivas
14.5.2. Programación evolutiva
14.5.3. Algoritmos basados en evolución diferencial
14.6. Modelos de computación evolutiva (II)
14.6.1. Modelos de evolución basados en estimación de distribuciones (EDA)
14.6.2. Programación genética
14.7. Programación evolutiva aplicada a problemas de aprendizaje
14.7.1. Aprendizaje basado en reglas
14.7.2. Métodos evolutivos en problemas de selección de instancias
14.8. Problemas multiobjetivo
14.8.1. Concepto de dominancia
14.8.2. Aplicación de algoritmos evolutivos a problemas multiobjetivo
14.9. Redes neuronales (I)
14.9.1. Introducción a las redes neuronales
14.9.2. Ejemplo práctico con redes neuronales
14.10. Redes neuronales (II)
14.10.1. Casos de uso de las redes neuronales en la investigación médica
14.10.2. Casos de uso de las redes neuronales en la economía
14.10.3. Casos de uso de las redes neuronales en la visión artificial
Módulo 15. Inteligencia Artificial: estrategias y aplicaciones
15.1. Servicios financieros
15.1.1. Las implicaciones de la Inteligencia Artificial (IA) en los servicios financieros. Oportunidades y desafíos
15.1.2. Casos de uso
15.1.3. Riesgos potenciales relacionados con el uso de IA
15.1.4. Potenciales desarrollos / usos futuros de la IA
15.2. Implicaciones de la Inteligencia Artificial en el servicio sanitario
15.2.1. Implicaciones de la IA en el sector sanitario. Oportunidades y desafíos
15.2.2. Casos de uso
15.3. Riesgos Relacionados con el uso de la IA en el servicio sanitario
15.3.1. Riesgos potenciales relacionados con el uso de IA
15.3.2. Potenciales desarrollos / usos futuros de la IA
15.4. Retail
15.4.1. Implicaciones de la IA en Retail. Oportunidades y desafíos
15.4.2. Casos de uso
15.4.3. Riesgos potenciales relacionados con el uso de IA
15.4.4. Potenciales desarrollos / usos futuros de la IA
15.5. Industria
15.5.1. Implicaciones de la IA en la Industria. Oportunidades y desafíos
15.5.2. Casos de uso
15.6. Riesgos potenciales relacionados con el uso de IA en la Industria
15.6.1. Casos de uso
15.6.2. Riesgos potenciales relacionados con el uso de IA
15.6.3. Potenciales desarrollos / usos futuros de la IA
15.7. Administración Pública
15.7.1. Implicaciones de la IA en la Administración Pública.Oportunidades y desafíos
15.7.2. Casos de uso
15.7.3. Riesgos potenciales relacionados con el uso de IA
15.7.4. Potenciales desarrollos / usos futuros de la IA
15.8. Educación
15.8.1. Implicaciones de la IA en la educación. Oportunidades y desafíos
15.8.2. Casos de uso
15.8.3. Riesgos potenciales relacionados con el uso de IA
15.8.4. Potenciales desarrollos / usos futuros de la IA
15.9. Silvicultura y agricultura
15.9.1. Implicaciones de la IA en la silvicultura y la agricultura. Oportunidades y desafíos
15.9.2. Casos de uso
15.9.3. Riesgos potenciales relacionados con el uso de IA
15.9.4. Potenciales desarrollos / usos futuros de la IA
15.10. Recursos Humanos
15.10.1. Implicaciones de la IA en los Recursos Humanos. Oportunidades y desafíos
15.10.2. Casos de uso
15.10.3. Riesgos potenciales relacionados con el uso de IA
15.10.4. Potenciales desarrollos / usos futuros de la IA
Módulo 16. Innovaciones de Inteligencia Artificial en Diagnóstico por Imagen
16.1. Tecnologías y herramientas de Inteligencia Artificial en Diagnóstico por Imagen con IBM Watson Imaging Clinical Review
16.1.1. Plataformas de sofware líderes para análisis de imágenes médicas
16.1.2. Herramientas de Deep Learning específicas para Radiología
16.1.3. Innovaciones en hardware para acelerar el procesamiento de imágenes
16.1.4. Integración de sistemas de Inteligencia Artificial en infraestructuvas hospitalarias existentes
16.2. Métodos estadísticos y algoritmos para interpretación de imágenes médicas con DeepMind AI for Breast Cancer Analysis
16.2.1. Algoritmos de segmentación de imágenes
16.2.2. Técnicas de clasificación y detección en imágenes médicas
16.2.3. Uso de Redes Neuronales Convolucionales en Radiología
16.2.4. Métodos de reducción de ruido y mejora de la calidad de imagen
16.3. Diseño de experimentos y análisis de resultados en Diagnóstico por Imagen con Google Cloud Healthcare API
16.3.1. Diseño de protocolos de validación para algoritmos de Inteligencia Artificial
16.3.2. Métodos estadísticos para comparar desempeños de Inteligencia Artificial y radiólogos
16.3.3. Configuración de estudios multicéntricos para pruebas de Inteligencia Artificial
16.3.4. Interpretación y presentación de resultados de pruebas de eficacia
16.4. Detección de patrones sutiles en imágenes de baja resolución
16.4.1. Inteligencia Artificial para diagnóstico precoz de Enfermedades Neurodegenerativas
16.4.2. Aplicaciones de Inteligencia Artificial en Cardiología Intervencionista
16.4.3. Uso de Inteligencia Artificial para la optimización de protocolos de toma de imágenes
16.5. Análisis y procesamiento de imágenes biomédicas
16.5.1. Técnicas de procesamiento previo para mejorar la interpretación automática
16.5.2. Análisis de texturas y patrones en imágenes histológicas
16.5.3. Extracción de características clínicas de imágenes de ultrasonido
16.5.4. Métodos para el análisis longitudinal de imágenes en estudios clínicos
16.6. Visualización avanzada de datos en Diagnóstico por Imagen con OsiriX MD
16.6.1. Desarrollo de interfaces gráficas para la exploración de imágenes 3D
16.6.2. Herramientas de visualización de cambios temporales en imágenes médicas
16.6.3. Técnicas de realidad aumentada para la enseñanza de anatomía
16.6.4. Sistemas de visualización en tiempo real para procedimientos quirúrgicos
16.7. Procesamiento de lenguaje natural en la documentación y reportes de imágenesmédicas con Nuance PowerScribe 360
16.7.1. Generación automática de reportes radiológicos
16.7.2. Extracción de información relevante de historiales médicos electrónicos
16.7.3. Análisis semántico para la correlación de hallazgos imagenológicos y clínicos
16.7.4. Herramientas de búsqueda y recuperación de imágenes basadas en descripciones textuales
16.8. Integración y procesamiento de datos heterogéneos en imágenes médicas
16.8.1. Fusiones de modalidades de imágenes para diagnósticos completos
16.8.2. Integración de datos de laboratorio y genéticos en el análisis de imágenes
16.8.3. Sistemas para el manejo de grandes volúmenes de datos de imágenes
16.8.4. Estrategias para la normalización de datasets provenientes de múltiples fuentes
16.9. Aplicaciones de Redes Neuronales en la interpretación de imágenes médicas con Zebra Medical Vision
16.9.1. Uso de Redes Generativas para la creación de imágenes médicas sintéticas
16.9.2. Redes Neuronales para la clasificación automática de Tumores
16.9.3. Deep Learning para el análisis de series temporales en imágenes funcionales
16.9.4. Adaptación de modelos preentrenados en datasets específicos de imágenes médicas
16.10. Modelado predictivo y su impacto en el diagnóstico por imágenes con IBM Watson Oncology
16.10.1. Modelos predictivos para la evaluación de riesgos en pacientes oncológicos
16.10.2. Herramientas predictivas para el seguimiento de Enfermedades Crónicas
16.10.3. Análisis de supervivencia utilizando datos de imágenes médicas
16.10.4. Predicción de la progresión de la enfermedad mediante técnicas de Machine Learning
Módulo 17. Aplicaciones avanzadas de IA en estudios y análisis de imágenes médicas
17.1. Diseño y ejecución de estudios observacionales usando Inteligencia Artificial en imágenes médicas con Flatiron Health
17.1.1. Criterios para la selección de poblaciones en estudios observacionales de Inteligencia Artificial
17.1.2. Métodos para el control de variables de confusión en estudios de imágenes
17.1.3. Estrategias para el seguimiento a largo plazo en estudios observacionales
17.1.4. Análisis de resultados y validación de modelos de Inteligencia Artificial en contextos clínicos reales
17.2. Validación y calibración de modelos de IA en interpretación de imágenes con Arterys Cardio AI
17.2.1. Técnicas de validación cruzada aplicadas a modelos de Diagnóstico por Imagen
17.2.2. Métodos para la calibración de probabilidades en predicciones de Inteligencia Artificial
17.2.3. Estándares de rendimiento y métricas de precisión para evaluación de Inteligencia Artificial
17.2.4. Implementación de pruebas de robustez en diferentes poblaciones y condiciones
17.3. Métodos de integración de datos de imágenes con otras fuentes biomédicas
17.3.1. Técnicas de fusión de datos para mejorar la interpretación de imágenes
17.3.2. Análisis conjunto de imágenes y datos genómicos para diagnósticos precisos
17.3.3. Integración de información clínica y de laboratorio en sistemas de Inteligencia Artificial
17.3.4. Desarrollo de interfaces de usuario para la visualización integrada de datos multidisciplinarios
17.4. Uso de datos de imágenes médicas en investigaciones multidisciplinarias con Enlitic Curie
17.4.1. Colaboración interdisciplinaria para el análisis avanzado de imágenes
17.4.2. Aplicación de técnicas de Inteligencia Artificial de otros campos en el Diagnóstico por Imagen
17.4.3. Desafíos y soluciones en la gestión de datos grandes y heterogéneos
17.4.4. Estudios de caso de aplicaciones multidisciplinarias exitosas
17.5. Algoritmos de Aprendizaje Profundo específicos para imágenes médicas con Aidoc
17.5.1. Desarrollo de arquitecturas de Redes Neuronales para imágenes específicas
17.5.2. Optimización de hiperparámetros para modelos en imágenes médicas
17.5.3. Transferencia de Aprendizaje y su aplicabilidad en Radiología
17.6. Retos en la interpretación y visualización de características aprendidas por modelos profundos
17.6.1. Optimización de la interpretación de imágenes médicas mediante automatización con Viz.ai
17.6.2. Automatización de rutinas de diagnóstico para eficiencia operativa
17.6.3. Sistemas de alerta temprana en la detección de anomalías
17.6.4. Reducción de la carga de trabajo en radiólogos mediante herramientas de Inteligencia Artificial
17.6.5. Impacto de la automatización en la precisión y rapidez de los diagnósticos
17.7. Simulación y modelado computacional en Diagnóstico por Imagen
17.7.1. Simulaciones para el entrenamiento y validación de algoritmos de Inteligencia Artificial
17.7.2. Modelado de enfermedades y su representación en imágenes sintéticas
17.7.3. Uso de simulaciones para la planificación de tratamientos y cirugías
17.7.4. Avances en técnicas computacionales para el procesamiento de imágenes en tiempo real
17.8. Realidad Virtual y Aumentada en la visualización y análisis de imágenes médicas
17.8.1. Aplicaciones de Realidad Virtual para la educación en Diagnóstico por Imagen
17.8.2. Uso de Realidad Aumentada en procedimientos quirúrgicos guiados por imagen
17.8.3. Herramientas de visualización avanzada para la planificación terapéutica
17.8.4. Desarrollo de interfaces inmersivas para la revisión de estudios radiológicos
17.9. Herramientas de minería de datos aplicadas al diagnóstico por Imagen con Radiomics
17.9.1. Técnicas de extracción de datos de grandes repositorios de imágenes médicas
17.9.2. Aplicaciones de análisis de patrones en colecciones de datos de imagen
17.9.3. Identificación de biomarcadores a través de la Minería de Datos de imágenes
17.9.4. Integración de Minería de Datos y Aprendizaje Automático para descubrimientos clínicos
17.10. Desarrollo y validación de biomarcadores utilizando análisis de imágenes con Oncimmune
17.10.1. Estrategias para identificar biomarcadores de imagen en diversas enfermedades
17.10.2. Validación clínica de biomarcadores de imagen para uso diagnóstico
17.10.3. Impacto de los biomarcadores de imagen en la personalización de tratamientos
17.10.4. Tecnologías emergentes en la detección y análisis de biomarcadores mediante Inteligencia Artificial
Módulo 18. Personalización y automatización en diagnóstico médico mediante Inteligencia Artificial
18.1. Aplicación de Inteligencia Artificial en secuenciación genómica y correlación con hallazgos imagenológicos con Fabric Genomics
18.1.1. Técnicas de Inteligencia Artificial para la integración de datos genómicos e imagenológicos
18.1.2. Modelos predictivos para correlacionar variantes genéticas con patologías visibles en imágenes
18.1.3. Desarrollo de algoritmos para el análisis automático de secuencias y su representación en imágenes
18.1.4. Estudios de caso sobre el impacto clínico de la fusión de genómica e imagenología
18.2. Avances en Inteligencia Artificial para el análisis detallado de imágenes biomédicas con PathAI
18.2.1. Innovaciones en técnicas de procesamiento y análisis de imágenes a nivel celular
18.2.2. Aplicación de Inteligencia Artificial para la mejora de resolución en imágenes de microscopía
18.2.3. Algoritmos de Deep Learning especializados en la detección de patrones submicroscópicos
18.2.4. Impacto de los avances en Inteligencia Artificial en la investigación biomédica y diagnóstico clínico
18.3. Automatización en la adquisición y procesamiento de imágenes médicas con Butterfly Network
18.3.1. Sistemas automatizados para la optimización de parámetros de adquisición de imágenes
18.3.2. Inteligencia Artificial en la gestión y mantenimiento de equipos de imagenología
18.3.3. Algoritmos para el procesamiento en tiempo real de imágenes durante procedimientos médicos
18.3.4. Casos de éxito en la implementación de sistemas automatizados en hospitales y clínicas
18.4. Personalización de diagnósticos mediante Inteligencia Artificial y medicina de precisión con Tempus AI
18.4.1. Modelos de Inteligencia Artificial para diagnósticos personalizados basados en perfiles genéticos y de imagen
18.4.2. Estrategias para la integración de datos clínicos y de imagen en la planificación terapéutica
18.4.3. Impacto de la medicina de precisión en los resultados clínicos a través de la IA
18.4.4. Desafíos éticos y prácticos en la implementación de la medicina personalizada
18.5. Innovaciones en diagnóstico asistido por Inteligencia Artificial con Caption Health
18.5.1. Desarrollo de nuevas herramientas de Inteligencia Artificial para la detección precoz de enfermedades
18.5.2. Avances en algoritmos de Inteligencia Artificial para la interpretación de patologías complejas
18.5.3. Integración de diagnósticos asistidos por Integración de diagnósticos asistidos por IA en la práctica clínica rutinaria
18.5.4. Evaluación de la efectividad y la aceptación de la Inteligencia Artificial diagnóstica por profesionales de la salud
18.6. Aplicaciones de Inteligencia Artificial en análisis de imágenes del microbioma con DayTwo AI
18.6.1. Técnicas de Inteligencia Artificial para el análisis de imágenes en estudios del microbioma
18.6.2. Correlación de datos imagenológicos del microbioma con indicadores de salud
18.6.3. Impacto de los hallazgos en microbioma sobre las decisiones terapéuticas
18.6.4. Desafíos en la estandarización y validación de imágenes del microbioma
18.7. Uso de wearables para mejorar la interpretación de imágenes diagnósticas con AliveCor
18.7.1. Integración de datos de wearables con imágenes médicas para diagnósticos completos
18.7.2. Algoritmos de IA para el análisis de datos continuos y su representación en imágenes
18.7.3. Innovaciones tecnológicas en wearables para la monitorización de salud
18.7.4. Estudios de caso sobre la mejora en la calidad de vida a través de wearables y diagnósticos por imagen
18.8. Gestión de datos de diagnóstico por imagen en ensayos clínicos mediante Inteligencia Artificial
18.8.1. Herramientas de IA para la gestión eficiente de grandes volúmenes de datos de imagen
18.8.2. Estrategias para asegurar la calidad y la integridad de los datos en estudios multicéntricos
18.8.3. Aplicaciones de Inteligencia Artificial para el análisis predictivo en ensayos clínicos
18.8.4. Retos y oportunidades en la estandarización de protocolos de imagen en ensayos globales
18.9. Desarrollo de tratamientos y vacunas asistidos por diagnósticos Inteligencia Artificial avanzados
18.9.1. Uso de Inteligencia Artificial para el diseño de tratamientos personalizados basados en imágenes y datos clínicos
18.9.2. Modelos de Inteligencia Artificial en el desarrollo acelerado de vacunas con apoyo de Diagnósticos por Imagen
18.9.3. Evaluación de la efectividad de tratamientos mediante seguimiento por imagen
18.9.4. Impacto de la Inteligencia Artificial en la reducción de tiempos y costos en el desarrollo de nuevas terapias
18.10. Aplicaciones de IA en inmunología y estudios de respuesta inmune con ImmunoMind
18.10.1. Modelos de IA para la interpretación de imágenes relacionadas con la respuesta inmune
18.10.2. Integración de datos de imagenología y análisis inmunológico para diagnósticos precisos
18.10.3. Desarrollo de biomarcadores de imagen para Enfermedades Autoinmunes
18.10.4. Avances en la personalización de tratamientos inmunológicos mediante el uso de Inteligencia Artificial
Módulo 19. Big Data y Análisis Predictivo en Imagenología Médica
19.1. Big Data en diagnóstico por imagen: conceptos y herramientas con GE Healthcare Edison
19.1.1. Fundamentos de Big Data aplicados a la Imagenología
19.1.2. Herramientas y plataformas tecnológicas para el manejo de grandes volúmenes de datos de imágenes
19.1.3. Desafíos en la integración y análisis de Big Data en Imagenología
19.1.4. Casos de uso de Big Data en el Diagnóstico por Imagen
19.2. Minería de Datos en registros de imágenes biomédicas con IBM Watson Imaging
19.2.1. Técnicas avanzadas de Minería de Datos para identificar patrones en imágenes médicas
19.2.2. Estrategias para la extracción de características relevantes en grandes bases de datos de imágenes
19.2.3. Aplicaciones de técnicas de clustering y clasificación en registros de imágenes
19.2.4. Impacto de la Minería de Datos en la mejora de diagnósticos y tratamientos
19.3. Algoritmos de Aprendizaje Automático en análisis de imágenes con Google DeepMind Health
19.3.1. Desarrollo de algoritmos supervisados y no supervisados para imágenes médicas
19.3.2. Innovaciones en técnicas de aprendizaje automático para el reconocimiento de patrones de enfermedad
19.3.3. Aplicaciones de Aprendizaje Profundo en la segmentación y clasificación de imágenes
19.3.4. Evaluación de la eficacia y la precisión de los algoritmos de aprendizaje automático en estudios clínicos
19.4. Técnicas de análisis predictivo aplicadas a diagnóstico por imagen con Predictive Oncology
19.4.1. Modelos predictivos para la identificación precoz de enfermedades a partir de imágenes
19.4.2. Uso de análisis predictivo para el seguimiento y evaluación de tratamientos
19.4.3. Integración de datos clínicos y de imagen para enriquecer los modelos predictivos
19.4.4. Desafíos en la implementación de técnicas predictivas en la práctica clínica
19.5. Modelos de Inteligencia Artificial para Epidemiología basados en imágenes con BlueDot
19.5.1. Aplicación de Inteligencia Artificial en el análisis de brotes epidémicos mediante imágenes
19.5.2. Modelos de propagación de enfermedades visualizadas por técnicas de Imagenología
19.5.3. Correlación entre datos epidemiológicos y hallazgos imagenológicos
19.5.4. Contribución de la Inteligencia Artificial al estudio y control de pandemias
19.6. Análisis de redes biológicas y patrones de enfermedad desde imágenes
19.6.1. Aplicación de teoría de redes en el análisis de imágenes para entender patologías
19.6.2. Modelos computacionales para simular redes biológicas visibles en imágenes
19.6.3. Integración de análisis de imagen y datos moleculares para mapear enfermedades
19.6.4. Impacto de estos análisis en el desarrollo de terapias personalizadas
19.7. Desarrollo de herramientas para pronóstico clínico basadas en imágenes
19.7.1. Herramientas de Inteligencia Artificial para la predicción de evolución clínica a partir de imágenes diagnósticas
19.7.2. Avances en la generación de reportes pronósticos automatizados
19.7.3. Integración de modelos de pronóstico en sistemas clínicos
19.7.4. Validación y aceptación clínica de herramientas pronósticas basadas en Inteligencia Artificial
19.8. Visualización avanzada y comunicación de datos complejos con Tableau
19.8.1. Técnicas de visualización para la representación multidimensional de datos de imagen
19.8.2. Herramientas interactivas para la exploración de grandes datasets de imágenes
19.8.3. Estrategias para la comunicación efectiva de hallazgos complejos a través de visualizaciones
19.8.4. Impacto de la visualización avanzada en la educación médica y la toma de decisiones
19.9. Seguridad de datos y desafíos en la gestión de Big Data
19.9.1. Medidas de seguridad para proteger los grandes volúmenes de datos de imágenes médicas
19.9.2. Desafíos en la privacidad y la ética de la gestión de datos de imagen a gran escala
19.9.3. Soluciones tecnológicas para la gestión segura de Big Data de salud
19.9.4. Casos de estudio sobre brechas de seguridad y cómo se abordaron
19.10. Aplicaciones prácticas y casos de estudio en Big Data biomédico
19.10.1. Ejemplos de aplicaciones exitosas de Big Data en el diagnóstico y tratamiento de enfermedades
19.10.2. Estudios de caso sobre la integración de Big Data en sistemas de salud
19.10.3. Lecciones aprendidas de proyectos de Big Data en el ámbito biomédico
19.10.4. Futuras direcciones y potenciales de Big Data en la medicina
Módulo 20. Aspectos éticos y legales de la Inteligencia Artificial en Diagnóstico por Imagen
20.1. Ética en la aplicación de Inteligencia Artificial en Diagnóstico por Imagen con Ethics and Algorithms Toolkit
20.1.1. Principios éticos fundamentales en el uso de Inteligencia Artificial para diagnóstico
20.1.2. Gestión de sesgos algorítmicos y su impacto en la equidad del diagnóstico
20.1.3. Consentimiento informado en la era de la Inteligencia Artificial diagnóstica
20.1.4. Desafíos éticos en la implementación internacional de tecnologías de Inteligencia Artificial
20.2. Consideraciones legales y regulatorias en Inteligencia Artificial aplicada a imágenes médicas con Compliance.ai
20.2.1. Marco regulatorio actual para Inteligencia Artificial en diagnóstico por imagen
20.2.2. Cumplimiento de normativas de privacidad y protección de datos
20.2.3. Requisitos de validación y certificación para algoritmos de Inteligencia Artificial en salud
20.2.4. Responsabilidad legal en caso de errores de diagnóstico por Inteligencia Artificial
20.3. Consentimiento informado y aspectos éticos en el uso de datos clínicos
20.3.1. Revisión de los procesos de consentimiento informado adaptados a la Inteligencia Artificial
20.3.2. Educación del paciente sobre el uso de Inteligencia Artificial en su atención médica
20.3.3. Transparencia en el uso de datos clínicos para entrenamiento de Inteligencia Artificial
20.3.4. Respeto por la autonomía del paciente en decisiones basadas en Inteligencia Artificial
20.4. Inteligencia Artificial y responsabilidad en la Investigación Clínica
20.4.1. Asignación de responsabilidades en el uso de Inteligencia Artificial para diagnóstico
20.4.2. Implicaciones de los errores de Inteligencia Artificial en la práctica clínica
20.4.3. Seguros y coberturas para riesgos asociados al uso de Inteligencia Artificial
20.4.4. Estrategias para la gestión de incidentes relacionados con Inteligencia Artificial
20.5. Impacto de la Inteligencia Artificial en la equidad y acceso a la atención de salud con AI for Good
20.5.1. Evaluación del impacto de la Inteligencia Artificial en la distribución de servicios médicos
20.5.2. Estrategias para garantizar un acceso equitativo a la tecnología de Inteligencia Artificial
20.5.3. Inteligencia Artificial como herramienta para reducir disparidades en salud
20.5.4. Casos de estudio sobre la implementación de Inteligencia Artificial en entornos de recursos limitados
20.6. Privacidad y protección de datos en proyectos de investigación con Duality SecurePlus
20.6.1. Estrategias para asegurar la confidencialidad de los datos en proyectos de Inteligencia Artificial
20.6.2. Técnicas avanzadas para la anonimización de datos de pacientes
20.6.3. Desafíos legales y éticos en la protección de datos personales
20.6.4. Impacto de las brechas de seguridad en la confianza pública
20.7. Inteligencia Artificial y sostenibilidad en investigaciones biomédicas con Green Algorithm
20.7.1. Uso de Inteligencia Artificial para mejorar la eficiencia y sostenibilidad en investigación
20.7.2. Evaluación del ciclo de vida de las tecnologías de Inteligencia Artificial en salud
20.7.3. Impacto ambiental de la infraestructura tecnológica de Inteligencia Artificial
20.7.4. Prácticas sostenibles en el desarrollo y despliegue de Inteligencia Artificial
20.8. Auditoría y explicabilidad de modelos de Inteligencia Artificial en el ámbito clínico con IBM AI Fairness 360
20.8.1. Importancia de la auditoría regular de algoritmos de Inteligencia Artificial
20.8.2. Técnicas para mejorar la explicabilidad de los modelos de Inteligencia Artificial
20.8.3. Desafíos en la comunicación de decisiones basadas en Inteligencia Artificial a pacientes y médicos
20.8.4. Regulaciones sobre la transparencia de los algoritmos de Inteligencia Artificial en salud
20.9. Innovación y emprendimiento en el ámbito de la Inteligencia Artificial clínica con Hindsait
20.9.1. Oportunidades para startups en tecnologías de Inteligencia Artificial para salud
20.9.2. Colaboración entre el sector público y privado en el desarrollo de Inteligencia Artificial
20.9.3. Desafíos para emprendedores en el entorno regulativo de la salud
20.9.4. Casos de éxito y aprendizajes en el emprendimiento de Inteligencia Artificial clínica
20.10. Consideraciones éticas en la colaboración internacional en investigación clínica con Global Alliance for Genomics and Health con GA4GH
20.10.1. Coordinación ética en proyectos internacionales de IA
20.10.2. Gestión de diferencias culturales y normativas en colaboraciones internacionales
20.10.3. Estrategias para la inclusión equitativa en estudios globales
20.10.4. Desafíos y soluciones en el intercambio de datos
Este enfoque integral te preparará para enfrentar los desafíos del futuro y liderar la evolución de la Medicina asistida por Inteligencia Artificial, de la mano de la mejor universidad digital del mundo, según Forbes: TECH”
Máster en Inteligencia Artificial en Diagnóstico por Imagen
La Inteligencia Artificial está revolucionando el ámbito del diagnóstico por imagen, ofreciendo nuevas y avanzadas soluciones para la medicina moderna. La integración de IA en el análisis de imágenes médicas está optimizando la precisión y rapidez en la identificación de condiciones patológicas, lo que mejora significativamente la calidad de atención al paciente. En este contexto, el Máster en Inteligencia Artificial en Diagnóstico por Imagen, impartido por TECH Global University, se convierte en una herramienta esencial para profesionales que desean estar a la vanguardia de esta transformación tecnológica. A través de un currículo innovador, el Máster aborda temas cruciales como el procesamiento de imágenes médicas mediante algoritmos avanzados, la aplicación de redes neuronales en diagnóstico por imagen, y la integración de IA con tecnologías de imágenes médicas como la tomografía y resonancia magnética. Estos conocimientos te proporcionarán una comprensión integral y práctica sobre cómo la IA puede mejorar el análisis y la interpretación de imágenes médicas.
Avanza en el mundo de la tecnología médica con este posgrado
Este programa ofrece clases online, permitiéndote acceder a contenido especializado y actualizado desde cualquier lugar y en el horario que más te convenga. Además, TECH Global University utiliza una metodología de aprendizaje basada en Relearning, que te permite consolidar conocimientos de manera efectiva y adaptada a tu ritmo. Este enfoque garantiza que no solo adquieras los conceptos fundamentales, sino que también los apliques de manera práctica en escenarios reales, asegurando que estés preparado para enfrentar los desafíos del diagnóstico por imagen en el entorno médico actual. Con este posgrado, impartido por la mayor universidad digital del mundo, estarás capacitado para implementar soluciones avanzadas de IA en el diagnóstico médico. Así, mejorarás tus habilidades profesionales y contribuir significativamente a la evolución de la medicina moderna. Aprovecha esta oportunidad para destacar en el campo de la inteligencia artificial y el diagnóstico por imagen con un título de prestigio y relevancia en el mercado laboral.