Titulación
La mayor facultad de inteligencia artificial del mundo”
Presentación
Este Máster Título Propio 100% online, adquirirás habilidades tecnológicas avanzadas, a través de la IA, para optimizar la gestión del talento y mejorar la eficiencia operativa en tu organización”
La Inteligencia Artificial (IA) está revolucionando el Departamento de Recursos Humanos (RRHH), mejorando la eficiencia en la gestión del talento y la toma de decisiones. Herramientas basadas en IA, como chatbots y software de análisis de sentimientos, permiten una interacción más fluida con los empleados y ayudan a identificar necesidades antes de que se conviertan en problemas.
Así nace este Máster Título Propio, gracias al cual los profesionales podrán mejorar la eficiencia operativa en la administración de personal, mediante la automatización de tareas como la asignación de recursos y la gestión de nóminas. Además, se profundizará en el análisis predictivo para anticipar necesidades de personal y en la integración de sistemas que aseguren un cumplimiento normativo impecable.
Asimismo, se dominarán herramientas avanzadas para automatizar el análisis de currículums y la clasificación de candidatos, así como en la realización de entrevistas virtuales asistidas por Inteligencia Artificial. También se abordarán las técnicas para eliminar sesgos en la selección de personal, garantizando un proceso de reclutamiento más justo y preciso, incrementando la retención y adecuación de los candidatos seleccionados.
Finalmente, se indagará en cómo la Inteligencia Artificial puede optimizar la gestión del talento dentro de una organización, identificando y reteniendo a los empleados clave, personalizando trayectorias de desarrollo profesional, y realizando análisis de competencias para detectar brechas en habilidades. Además, se abarcará la implementación de programas de mentoría y coaching virtual, evaluaciones del potencial de liderazgo y estrategias para la gestión del cambio.
De este modo, TECH ha implementado un exhaustivo programa universitario, totalmente online, de forma que los egresados solo precisarán de un dispositivo electrónico con conexión a Internet para acceder a los materiales didácticos, evitando problemas como el desplazamiento hasta un centro físico y el ajuste a un horario preestablecido. Adicionalmente, incluye la revolucionaria metodología Relearning, consistente en la repetición de conceptos clave para una asimilación óptima de los contenidos.
Te prepararás para liderar la transformación digital en RRHH, implementando soluciones innovadoras que automatizan procesos, eliminan sesgos en la selección de personal y potencian el desarrollo profesional de los empleados”
Estos Máster Título Propio en Inteligencia Artificial en Departamento de Recursos Humanos contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:
- El desarrollo de casos prácticos presentados por expertos en Inteligencia Artificial enfocada al Departamento de RRHH
- Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
- Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
- Su especial hincapié en metodologías innovadoras
- Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
- La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet
Mejorarás la eficiencia operativa en la administración de personal y nóminas mediante la automatización de tareas cruciales, como la asignación de recursos y la gestión de beneficios. ¿A qué esperas para matricularte?”
El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.
Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.
El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.
Te familiarizarás con herramientas que te permitirán automatizar el análisis de currículums, filtrar y clasificar candidatos, y realizar entrevistas virtuales con el apoyo de IA. ¡Con todas las garantías de calidad de TECH!”
¡Apuesta por TECH! Identificarás y retendrás empleados clave, personalizarás trayectorias de desarrollo profesional, y aplicarás IA para realizar análisis de competencias y detectar brechas en habilidades”
Temario
A diferencia de otros programas, esta titulación combinará una sólida base teórica con capacitación práctica en la aplicación de tecnologías avanzadas. Así, se analizará cómo utilizar la IA para mejorar la administración de personal, optimizar los procesos de selección, gestionar el talento, realizar evaluaciones de desempeño precisas y monitorizar el clima laboral. Además, los profesionales podrán enfrentarse a los desafíos contemporáneos en RRHH, mejorando la eficiencia, la toma de decisiones y asegurando una gestión justa y transparente.
Con la rápida evolución de la IA en el ámbito laboral, te posicionarás a la vanguardia del cambio organizacional, equipándote para liderar la transformación digital en las organizaciones en las que trabajes”
Módulo 1. Fundamentos de la Inteligencia Artificial
1.1. Historia de la Inteligencia artificial
1.1.1. ¿Cuándo se empieza a hablar de inteligencia artificial?
1.1.2. Referentes en el cine
1.1.3. Importancia de la inteligencia artificial
1.1.4. Tecnologías que habilitan y dan soporte a la inteligencia artificial
1.2. La Inteligencia Artificial en juegos
1.2.1. Teoría de Juegos
1.2.2. Minimax y poda Alfa-Beta
1.2.3. Simulación: Monte Carlo
1.3. Redes de neuronas
1.3.1. Fundamentos biológicos
1.3.2. Modelo computacional
1.3.3. Redes de neuronas supervisadas y no supervisadas
1.3.4. Perceptrón simple
1.3.5. Perceptrón multicapa
1.4. Algoritmos genéticos
1.4.1. Historia
1.4.2. Base biológica
1.4.3. Codificación de problemas
1.4.4. Generación de la población inicial
1.4.5. Algoritmo principal y operadores genéticos
1.4.6. Evaluación de individuos: Fitness
1.5. Tesauros, vocabularios, taxonomías
1.5.1. Vocabularios
1.5.2. Taxonomías
1.5.3. Tesauros
1.5.4. Ontologías
1.5.5. Representación del conocimiento: web semántica
1.6. Web semántica
1.6.1. Especificaciones: RDF, RDFS y OWL
1.6.2. Inferencia/razonamiento
1.6.3. Linked Data
1.7. Sistemas expertos y DSS
1.7.1. Sistemas expertos
1.7.2. Sistemas de soporte a la decisión
1.8. Chatbots y Asistentes Virtuales
1.8.1. Tipos de asistentes: asistentes por voz y por texto
1.8.2. Partes fundamentales para el desarrollo de un asistente: Intents, entidades y flujo de diálogo
1.8.3. Integraciones: web, Slack, Whatsapp, Facebook
1.8.4. Herramientas de desarrollo de asistentes: Dialog Flow, Watson Assistant
1.9. Estrategia de implantación de IA
1.10. Futuro de la inteligencia artificial
1.10.1. Entendemos cómo detectar emociones mediante algoritmos
1.10.2. Creación de una personalidad: lenguaje, expresiones y contenido
1.10.3. Tendencias de la inteligencia artificial
1.10.4. Reflexiones
Módulo 2. Tipos y Ciclo de Vida del Dato
2.1. La Estadística
2.1.1. Estadística: estadística descriptiva, estadística inferencias
2.1.2. Población, muestra, individuo
2.1.3. Variables: definición, escalas de medida
2.2. Tipos de datos estadísticos
2.2.1. Según tipo
2.2.1.1. Cuantitativos: datos continuos y datos discretos
2.2.1.2. Cualitativos: datos binomiales, datos nominales y datos ordinales
2.2.2. Según su forma
2.2.2.1. Numérico
2.2.2.2. Texto
2.2.2.3. Lógico
2.2.3. Según su fuente
2.2.3.1. Primarios
2.2.3.2. Secundarios
2.3. Ciclo de vida de los datos
2.3.1. Etapas del ciclo
2.3.2. Hitos del ciclo
2.3.3. Principios FAIR
2.4. Etapas iniciales del ciclo
2.4.1. Definición de metas
2.4.2. Determinación de recursos necesarios
2.4.3. Diagrama de Gantt
2.4.4. Estructura de los datos
2.5. Recolección de datos
2.5.1. Metodología de recolección
2.5.2. Herramientas de recolección
2.5.3. Canales de recolección
2.6. Limpieza del dato
2.6.1. Fases de la limpieza de datos
2.6.2. Calidad del dato
2.6.3. Manipulación de datos (con R)
2.7. Análisis de datos, interpretación y valoración de resultados
2.7.1. Medidas estadísticas
2.7.2. Índices de relación
2.7.3. Minería de datos
2.8. Almacén del dato (Datawarehouse)
2.8.1. Elementos que lo integran
2.8.2. Diseño
2.8.3. Aspectos a considerar
2.9. Disponibilidad del dato
2.9.1. Acceso
2.9.2. Utilidad
2.9.3. Seguridad
2.10. Aspectos Normativos
2.10.1. Ley de protección de datos
2.10.2. Buenas prácticas
2.10.3. Otros aspectos normativos
Módulo 3. El dato en la Inteligencia Artificial
3.1. Ciencia de datos
3.1.1. La ciencia de datos
3.1.2. Herramientas avanzadas para el científico de datos
3.2. Datos, información y conocimiento
3.2.1. Datos, información y conocimiento
3.2.2. Tipos de datos
3.2.3. Fuentes de datos
3.3. De los datos a la información
3.3.1. Análisis de Datos
3.3.2. Tipos de análisis
3.3.3. Extracción de Información de un Dataset
3.4. Extracción de información mediante visualización
3.4.1. La visualización como herramienta de análisis
3.4.2. Métodos de visualización
3.4.3. Visualización de un conjunto de datos
3.5. Calidad de los datos
3.5.1. Datos de calidad
3.5.2. Limpieza de datos
3.5.3. Preprocesamiento básico de datos
3.6. Dataset
3.6.1. Enriquecimiento del Dataset
3.6.2. La maldición de la dimensionalidad
3.6.3. Modificación de nuestro conjunto de datos
3.7. Desbalanceo
3.7.1. Desbalanceo de clases
3.7.2. Técnicas de mitigación del desbalanceo
3.7.3. Balanceo de un Dataset
3.8. Modelos no supervisados
3.8.1. Modelo no supervisado
3.8.2. Métodos
3.8.3. Clasificación con modelos no supervisados
3.9. Modelos supervisados
3.9.1. Modelo supervisado
3.9.2. Métodos
3.9.3. Clasificación con modelos supervisados
3.10. Herramientas y buenas prácticas
3.10.1. Buenas prácticas para un científico de datos
3.10.2. El mejor modelo
3.10.3. Herramientas útiles
Módulo 4. Minería de Datos. Selección, preprocesamiento y transformación
4.1. La inferencia estadística
4.1.1. Estadística descriptiva vs Inferencia estadística
4.1.2. Procedimientos paramétricos
4.1.3. Procedimientos no paramétricos
4.2. Análisis exploratorio
4.2.1. Análisis descriptivo
4.2.2. Visualización
4.2.3. Preparación de datos
4.3. Preparación de datos
4.3.1. Integración y limpieza de datos
4.3.2. Normalización de datos
4.3.3. Transformando atributos
4.4. Los valores perdidos
4.4.1. Tratamiento de valores perdidos
4.4.2. Métodos de imputación de máxima verosimilitud
4.4.3. Imputación de valores perdidos usando aprendizaje automático
4.5. El ruido en los datos
4.5.1. Clases de ruido y atributos
4.5.2. Filtrado de ruido
4.5.3. El efecto del ruido
4.6. La maldición de la dimensionalidad
4.6.1. Oversampling
4.6.2. Undersampling
4.6.3. Reducción de datos multidimensionales
4.7. De atributos continuos a discretos
4.7.1. Datos continuos versus discretos
4.7.2. Proceso de discretización
4.8. Los datos
4.8.1. Selección de datos
4.8.2. Perspectivas y criterios de selección
4.8.3. Métodos de selección
4.9. Selección de instancias
4.9.1. Métodos para la selección de instancias
4.9.2. Selección de prototipos
4.9.3. Métodos avanzados para la selección de instancias
4.10. Preprocesamiento de datos en entornos Big Data
Módulo 5. Algoritmia y complejidad en Inteligencia Artificial
5.1. Introducción a las estrategias de diseño de algoritmos
5.1.1. Recursividad
5.1.2. Divide y conquista
5.1.3. Otras estrategias
5.2. Eficiencia y análisis de los algoritmos
5.2.1. Medidas de eficiencia
5.2.2. Medir el tamaño de la entrada
5.2.3. Medir el tiempo de ejecución
5.2.4. Caso peor, mejor y medio
5.2.5. Notación asintónica
5.2.6. Criterios de Análisis matemático de algoritmos no recursivos
5.2.7. Análisis matemático de algoritmos recursivos
5.2.8. Análisis empírico de algoritmos
5.3. Algoritmos de ordenación
5.3.1. Concepto de ordenación
5.3.2. Ordenación de la burbuja
5.3.3. Ordenación por selección
5.3.4. Ordenación por inserción
5.3.5. Ordenación por mezcla (Merge_Sort)
5.3.6. Ordenación rápida (Quick_Sort)
5.4. Algoritmos con árboles
5.4.1. Concepto de árbol
5.4.2. Árboles binarios
5.4.3. Recorridos de árbol
5.4.4. Representar expresiones
5.4.5. Árboles binarios ordenados
5.4.6. Árboles binarios balanceados
5.5. Algoritmos con Heaps
5.5.1. Los Heaps
5.5.2. El algoritmo Heapsort
5.5.3. Las colas de prioridad
5.6. Algoritmos con grafos
5.6.1. Representación
5.6.2. Recorrido en anchura
5.6.3. Recorrido en profundidad
5.6.4. Ordenación topológica
5.7. Algoritmos Greedy
5.7.1. La estrategia Greedy
5.7.2. Elementos de la estrategia Greedy
5.7.3. Cambio de monedas
5.7.4. Problema del viajante
5.7.5. Problema de la mochila
5.8. Búsqueda de caminos mínimos
5.8.1. El problema del camino mínimo
5.8.2. Arcos negativos y ciclos
5.8.3. Algoritmo de Dijkstra
5.9. Algoritmos Greedy sobre grafos
5.9.1. El árbol de recubrimiento mínimo
5.9.2. El algoritmo de Prim
5.9.3. El algoritmo de Kruskal
5.9.4. Análisis de complejidad
5.10. Backtracking
5.10.1. El Backtracking
5.10.2. Técnicas alternativas
Módulo 6. Sistemas inteligentes
6.1. Teoría de agentes
6.1.1. Historia del concepto
6.1.2. Definición de agente
6.1.3. Agentes en Inteligencia Artificial
6.1.4. Agentes en ingeniería de Software
6.2. Arquitecturas de agentes
6.2.1. El proceso de razonamiento de un agente
6.2.2. Agentes reactivos
6.2.3. Agentes deductivos
6.2.4. Agentes híbridos
6.2.5. Comparativa
6.3. Información y conocimiento
6.3.1. Distinción entre datos, información y conocimiento
6.3.2. Evaluación de la calidad de los datos
6.3.3. Métodos de captura de datos
6.3.4. Métodos de adquisición de información
6.3.5. Métodos de adquisición de conocimiento
6.4. Representación del conocimiento
6.4.1. La importancia de la representación del conocimiento
6.4.2. Definición de representación del conocimiento a través de sus roles
6.4.3. Características de una representación del conocimiento
6.5. Ontologías
6.5.1. Introducción a los metadatos
6.5.2. Concepto filosófico de ontología
6.5.3. Concepto informático de ontología
6.5.4. Ontologías de dominio y ontologías de nivel superior
6.5.5. ¿Cómo construir una ontología?
6.6. Lenguajes para ontologías y Software para la creación de ontologías
6.6.1. Tripletas RDF, Turtle y N
6.6.2. RDF Schema
6.6.3. OWL
6.6.4. SPARQL
6.6.5. Introducción a las diferentes herramientas para la creación de ontologías
6.6.6. Instalación y uso de Protégé
6.7. La web semántica
6.7.1. El estado actual y futuro de la web semántica
6.7.2. Aplicaciones de la web semántica
6.8. Otros modelos de representación del conocimiento
6.8.1. Vocabularios
6.8.2. Visión global
6.8.3. Taxonomías
6.8.4. Tesauros
6.8.5. Folksonomías
6.8.6. Comparativa
6.8.7. Mapas mentales
6.9. Evaluación e integración de representaciones del conocimiento
6.9.1. Lógica de orden cero
6.9.2. Lógica de primer orden
6.9.3. Lógica descriptiva
6.9.4. Relación entre diferentes tipos de lógica
6.9.5. Prolog: programación basada en lógica de primer orden
6.10. Razonadores semánticos, sistemas basados en conocimiento y Sistemas Expertos
6.10.1. Concepto de razonador
6.10.2. Aplicaciones de un razonador
6.10.3. Sistemas basados en el conocimiento
6.10.4. MYCIN, historia de los Sistemas Expertos
6.10.5. Elementos y Arquitectura de Sistemas Expertos
6.10.6. Creación de Sistemas Expertos
Módulo 7. Aprendizaje automático y minería de datos
7.1. Introducción a los procesos de descubrimiento del conocimiento y conceptos básicos de aprendizaje automático
7.1.1. Conceptos clave de los procesos de descubrimiento del conocimiento
7.1.2. Perspectiva histórica de los procesos de descubrimiento del conocimiento
7.1.3. Etapas de los procesos de descubrimiento del conocimiento
7.1.4. Técnicas utilizadas en los procesos de descubrimiento del conocimiento
7.1.5. Características de los buenos modelos de aprendizaje automático
7.1.6. Tipos de información de aprendizaje automático
7.1.7. Conceptos básicos de aprendizaje
7.1.8. Conceptos básicos de aprendizaje no supervisado
7.2. Exploración y preprocesamiento de datos
7.2.1. Tratamiento de datos
7.2.2. Tratamiento de datos en el flujo de análisis de datos
7.2.3. Tipos de datos
7.2.4. Transformaciones de datos
7.2.5. Visualización y exploración de variables continuas
7.2.6. Visualización y exploración de variables categóricas
7.2.7. Medidas de correlación
7.2.8. Representaciones gráficas más habituales
7.2.9. Introducción al análisis multivariante y a la reducción de dimensiones
7.3. Árboles de decisión
7.3.1. Algoritmo ID
7.3.2. Algoritmo C
7.3.3. Sobreentrenamiento y poda
7.3.4. Análisis de resultados
7.4. Evaluación de clasificadores
7.4.1. Matrices de confusión
7.4.2. Matrices de evaluación numérica
7.4.3. Estadístico de Kappa
7.4.4. La curva ROC
7.5. Reglas de clasificación
7.5.1. Medidas de evaluación de reglas
7.5.2. Introducción a la representación gráfica
7.5.3. Algoritmo de recubrimiento secuencial
7.6. Redes neuronales
7.6.1. Conceptos básicos
7.6.2. Redes de neuronas simples
7.6.3. Algoritmo de Backpropagation
7.6.4. Introducción a las redes neuronales recurrentes
7.7. Métodos bayesianos
7.7.1. Conceptos básicos de probabilidad
7.7.2. Teorema de Bayes
7.7.3. Naive Bayes
7.7.4. Introducción a las redes bayesianas
7.8. Modelos de regresión y de respuesta continua
7.8.1. Regresión lineal simple
7.8.2. Regresión lineal múltiple
7.8.3. Regresión logística
7.8.4. Árboles de regresión
7.8.5. Introducción a las máquinas de soporte vectorial (SVM)
7.8.6. Medidas de bondad de ajuste
7.9. Clustering
7.9.1. Conceptos básicos
7.9.2. Clustering jerárquico
7.9.3. Métodos probabilistas
7.9.4. Algoritmo EM
7.9.5. Método B-Cubed
7.9.6. Métodos implícitos
7.10 Minería de textos y procesamiento de lenguaje natural (NLP)
7.10.1. Conceptos básicos
7.10.2. Creación del corpus
7.10.3. Análisis descriptivo
7.10.4. Introducción al análisis de sentimientos
Módulo 8. Las redes neuronales, base de Deep Learning
8.1. Aprendizaje Profundo
8.1.1. Tipos de aprendizaje profundo
8.1.2. Aplicaciones del aprendizaje profundo
8.1.3. Ventajas y desventajas del aprendizaje profundo
8.2. Operaciones
8.2.1. Suma
8.2.2. Producto
8.2.3. Traslado
8.3. Capas
8.3.1. Capa de entrada
8.3.2. Capa oculta
8.3.3. Capa de salida
8.4. Unión de Capas y Operaciones
8.4.1. Diseño de arquitecturas
8.4.2. Conexión entre capas
8.4.3. Propagación hacia adelante
8.5. Construcción de la primera red neuronal
8.5.1. Diseño de la red
8.5.2. Establecer los pesos
8.5.3. Entrenamiento de la red
8.6. Entrenador y Optimizador
8.6.1. Selección del optimizador
8.6.2. Establecimiento de una función de pérdida
8.6.3. Establecimiento de una métrica
8.7. Aplicación de los Principios de las Redes Neuronales
8.7.1. Funciones de activación
8.7.2. Propagación hacia atrás
8.7.3. Ajuste de los parámetros
8.8. De las neuronas biológicas a las artificiales
8.8.1. Funcionamiento de una neurona biológica
8.8.2. Transferencia de conocimiento a las neuronas artificiales
8.8.3. Establecer relaciones entre ambas
8.9. Implementación de MLP (Perceptrón multicapa) con Keras
8.9.1. Definición de la estructura de la red
8.9.2. Compilación del modelo
8.9.3. Entrenamiento del modelo
8.10. Hiperparámetros de Fine tuning de Redes Neuronales
8.10.1. Selección de la función de activación
8.10.2. Establecer el Learning rate
8.10. 3. Ajuste de los pesos
Módulo 9. Entrenamiento de redes neuronales profundas
9.1. Problemas de Gradientes
9.1.1. Técnicas de optimización de gradiente
9.1.2. Gradientes Estocásticos
9.1.3. Técnicas de inicialización de pesos
9.2. Reutilización de capas preentrenadas
9.2.1. Entrenamiento de transferencia de aprendizaje
9.2.2. Extracción de características
9.2.3. Aprendizaje profundo
9.3. Optimizadores
9.3.1. Optimizadores de descenso de gradiente estocástico
9.3.2. Optimizadores Adam y RMSprop
9.3.3. Optimizadores de momento
9.4. Programación de la tasa de aprendizaje
9.4.1. Control de tasa de aprendizaje automático
9.4.2. Ciclos de aprendizaje
9.4.3. Términos de suavizado
9.5. Sobreajuste
9.5.1. Validación cruzada
9.5.2. Regularización
9.5.3. Métricas de evaluación
9.6. Directrices Prácticas
9.6.1. Diseño de modelos
9.6.2. Selección de métricas y parámetros de evaluación
9.6.3. Pruebas de hipótesis
9.7. Transfer Learning
9.7.1. Entrenamiento de transferencia de aprendizaje
9.7.2. Extracción de características
9.7.3. Aprendizaje profundo
9.8. Data Augmentation
9.8.1. Transformaciones de imagen
9.8.2. Generación de datos sintéticos
9.8.3. Transformación de texto
9.9. Aplicación Práctica de Transfer Learning
9.9.1. Entrenamiento de transferencia de aprendizaje
9.9.2. Extracción de características
9.9.3. Aprendizaje profundo
9.10. Regularización
9.10.1. L y L
9.10.2. Regularización por máxima entropía
9.10.3. Dropout
Módulo 10. Personalización de Modelos y entrenamiento con TensorFlow
10.1. TensorFlow
10.1.1. Uso de la biblioteca TensorFlow
10.1.2. Entrenamiento de modelos con TensorFlow
10.1.3. Operaciones con gráficos en TensorFlow
10.2. TensorFlow y NumPy
10.2.1. Entorno computacional NumPy para TensorFlow
10.2.2. Utilización de los arrays NumPy con TensorFlow
10.2.3. Operaciones NumPy para los gráficos de TensorFlow
10.3. Personalización de modelos y algoritmos de entrenamiento
10.3.1. Construcción de modelos personalizados con TensorFlow
10.3.2. Gestión de parámetros de entrenamiento
10.3.3. Utilización de técnicas de optimización para el entrenamiento
10.4. Funciones y gráficos de TensorFlow
10.4.1. Funciones con TensorFlow
10.4.2. Utilización de gráficos para el entrenamiento de modelos
10.4.3. Optimización de gráficos con operaciones de TensorFlow
10.5. Carga y preprocesamiento de datos con TensorFlow
10.5.1. Carga de conjuntos de datos con TensorFlow
10.5.2. Preprocesamiento de datos con TensorFlow
10.5.3. Utilización de herramientas de TensorFlow para la manipulación de datos
10.6. La API tfdata
10.6.1. Utilización de la API tfdata para el procesamiento de datos
10.6.2. Construcción de flujos de datos con tfdata
10.6.3. Uso de la API tfdata para el entrenamiento de modelos
10.7. El formato TFRecord
10.7.1. Utilización de la API TFRecord para la serialización de datos
10.7.2. Carga de archivos TFRecord con TensorFlow
10.7.3. Utilización de archivos TFRecord para el entrenamiento de modelos
10.8. Capas de preprocesamiento de Keras
10.8.1. Utilización de la API de preprocesamiento de Keras
10.8.2. Construcción de pipelined de preprocesamiento con Keras
10.8.3. Uso de la API de preprocesamiento de Keras para el entrenamiento de modelos
10.9. El proyecto TensorFlow Datasets
10.9.1. Utilización de TensorFlow Datasets para la carga de datos
10.9.2. Preprocesamiento de datos con TensorFlow Datasets
10.9.3. Uso de TensorFlow Datasets para el entrenamiento de modelos
10.10. Construcción de una Aplicación de Deep Learning con TensorFlow
10.10.1. Aplicación Práctica
10.10.2. Construcción de una aplicación de Deep Learning con TensorFlow
10.10.3. Entrenamiento de un modelo con TensorFlow
10.10.4. Utilización de la aplicación para la predicción de resultados
Módulo 11. Deep Computer Vision con Redes Neuronales Convolucionales
11.1. La Arquitectura Visual Cortex
11.1.1. Funciones de la corteza visual
11.1.2. Teorías de la visión computacional
11.1.3. Modelos de procesamiento de imágenes
11.2. Capas convolucionales
11.2.1 Reutilización de pesos en la convolución
11.2.2. Convolución D
11.2.3. Funciones de activación
11.3. Capas de agrupación e implementación de capas de agrupación con Keras
11.3.1. Pooling y Striding
11.3.2. Flattening
11.3.3. Tipos de Pooling
11.4. Arquitecturas CNN
11.4.1. Arquitectura VGG
11.4.2. Arquitectura AlexNet
11.4.3. Arquitectura ResNet
11.5. Implementación de una CNN ResNet- usando Keras
11.5.1. Inicialización de pesos
11.5.2. Definición de la capa de entrada
11.5.3. Definición de la salida
11.6. Uso de modelos preentrenados de Keras
11.6.1. Características de los modelos preentrenados
11.6.2. Usos de los modelos preentrenados
11.6.3. Ventajas de los modelos preentrenados
11.7. Modelos preentrenados para el aprendizaje por transferencia
11.7.1. El Aprendizaje por transferencia
11.7.2. Proceso de aprendizaje por transferencia
11.7.3. Ventajas del aprendizaje por transferencia
11.8. Clasificación y Localización en Deep Computer Vision
11.8.1. Clasificación de imágenes
11.8.2. Localización de objetos en imágenes
11.8.3. Detección de objetos
11.9. Detección de objetos y seguimiento de objetos
11.9.1. Métodos de detección de objetos
11.9.2. Algoritmos de seguimiento de objetos
11.9.3. Técnicas de rastreo y localización
11.10. Segmentación semántica
11.10.1. Aprendizaje profundo para segmentación semántica
11.10.2. Detección de bordes
11.10.3. Métodos de segmentación basados en reglas
Módulo 12. Procesamiento del lenguaje natural (NLP) con Redes Naturales Recurrentes (RNN) y Atención
12.1. Generación de texto utilizando RNN
12.1.1. Entrenamiento de una RNN para generación de texto
12.1.2. Generación de lenguaje natural con RNN
12.1.3. Aplicaciones de generación de texto con RNN
12.2. Creación del conjunto de datos de entrenamiento
12.2.1. Preparación de los datos para el entrenamiento de una RNN
12.2.2. Almacenamiento del conjunto de datos de entrenamiento
12.2.3. Limpieza y transformación de los datos
12.2.4. Análisis de Sentimiento
12.3. Clasificación de opiniones con RNN
12.3.1. Detección de temas en los comentarios
12.3.2. Análisis de sentimiento con algoritmos de aprendizaje profundo
12.4. Red de codificador-decodificador para la traducción automática neuronal
12.4.1. Entrenamiento de una RNN para la traducción automática
12.4.2. Uso de una red encoder-decoder para la traducción automática
12.4.3. Mejora de la precisión de la traducción automática con RNN
12.5. Mecanismos de atención
12.5.1. Aplicación de mecanismos de atención en RNN
12.5.2. Uso de mecanismos de atención para mejorar la precisión de los modelos
12.5.3. Ventajas de los mecanismos de atención en las redes neuronales
12.6. Modelos Transformers
12.6.1. Uso de los modelos Transformers para procesamiento de lenguaje natural
12.6.2. Aplicación de los modelos Transformers para visión
12.6.3. Ventajas de los modelos Transformers
12.7. Transformers para visión
12.7.1. Uso de los modelos Transformers para visión
12.7.2. Preprocesamiento de los datos de imagen
12.7.3. Entrenamiento de un modelo Transformers para visión
12.8. Librería de Transformers de Hugging Face
12.8.1. Uso de la librería de Transformers de Hugging Face
12.8.2. Aplicación de la librería de Transformers de Hugging Face
12.8.3. Ventajas de la librería de Transformers de Hugging Face
12.9. Otras Librerías de Transformers. Comparativa
12.9.1. Comparación entre las distintas librerías de Transformers
12.9.2. Uso de las demás librerías de Transformers
12.9.3. Ventajas de las demás librerías de Transformers
12.10. Desarrollo de una Aplicación de NLP con RNN y Atención. Aplicación Práctica
12.10.1. Desarrollo de una aplicación de procesamiento de lenguaje natural con RNN y atención
12.10.2. Uso de RNN, mecanismos de atención y modelos Transformers en la aplicación
12.10.3. Evaluación de la aplicación práctica
Módulo 13. Autoencoders, GANs, y Modelos de Difusión
13.1. Representaciones de datos eficientes
13.1.1. Reducción de dimensionalidad
13.1.2. Aprendizaje profundo
13.1.3. Representaciones compactas
13.2. Realización de PCA con un codificador automático lineal incompleto
13.2.1. Proceso de entrenamiento
13.2.2. Implementación en Python
13.2.3. Utilización de datos de prueba
13.3. Codificadores automáticos apilados
13.3.1. Redes neuronales profundas
13.3.2. Construcción de arquitecturas de codificación
13.3.3. Uso de la regularización
13.4. Autocodificadores convolucionales
13.4.1. Diseño de modelos convolucionales
13.4.2. Entrenamiento de modelos convolucionales
13.4.3. Evaluación de los resultados
13.5. Eliminación de ruido de codificadores automáticos
13.5.1. Aplicación de filtros
13.5.2. Diseño de modelos de codificación
13.5.3. Uso de técnicas de regularización
13.6. Codificadores automáticos dispersos
13.6.1. Incrementar la eficiencia de la codificación
13.6.2. Minimizando el número de parámetros
13.6.3. Utilización de técnicas de regularización
13.7. Codificadores automáticos variacionales
13.7.1. Utilización de optimización variacional
13.7.2. Aprendizaje profundo no supervisado
13.7.3. Representaciones latentes profundas
13.8. Generación de imágenes MNIST de moda
13.8.1. Reconocimiento de patrones
13.8.2. Generación de imágenes
13.8.3. Entrenamiento de redes neuronales profundas
13.9. Redes adversarias generativas y modelos de difusión
13.9.1. Generación de contenido a partir de imágenes
13.9.2. Modelado de distribuciones de datos
13.9.3. Uso de redes adversarias
13.10 Implementación de los Modelos
13.10.1. Aplicación Práctica
13.10.2. Implementación de los modelos
13.10.3. Uso de datos reales
13.10.4. Evaluación de los resultados
Módulo 14. Computación bioinspirada
14.1. Introducción a la computación bioinspirada
14.1.1. Introducción a la computación bioinspirada
14.2. Algoritmos de adaptación social
14.2.1. Computación bioinspirada basada en colonia de hormigas
14.2.2. Variantes de los algoritmos de colonias de hormigas
14.2.3. Computación basada en nubes de partículas
14.3. Algoritmos genéticos
14.3.1. Estructura general
14.3.2. Implementaciones de los principales operadores
14.4. Estrategias de exploración-explotación del espacio para algoritmos genéticos
14.4.1. Algoritmo CHC
14.4.2. Problemas multimodales
14.5. Modelos de computación evolutiva (I)
14.5.1. Estrategias evolutivas
14.5.2. Programación evolutiva
14.5.3. Algoritmos basados en evolución diferencial
14.6. Modelos de computación evolutiva (II)
14.6.1. Modelos de evolución basados en estimación de distribuciones (EDA)
14.6.2. Programación genética
14.7. Programación evolutiva aplicada a problemas de aprendizaje
14.7.1. Aprendizaje basado en reglas
14.7.2. Métodos evolutivos en problemas de selección de instancias
14.8. Problemas multiobjetivo
14.8.1. Concepto de dominancia
14.8.2. Aplicación de algoritmos evolutivos a problemas multiobjetivo
14.9. Redes neuronales (I)
14.9.1. Introducción a las redes neuronales
14.9.2. Ejemplo práctico con redes neuronales
14.10. Redes neuronales (II)
14.10.1. Casos de uso de las redes neuronales en la investigación médica
14.10.2. Casos de uso de las redes neuronales en la economía
14.10.3. Casos de uso de las redes neuronales en la visión artificial
Módulo 15. Inteligencia Artificial: estrategias y aplicaciones
15.1. Servicios financieros
15.1.1. Las implicaciones de la Inteligencia Artificial (IA) en los servicios financieros. Oportunidades y desafíos
15.1.2. Casos de uso
15.1.3. Riesgos potenciales relacionados con el uso de IA
15.1.4. Potenciales desarrollos / usos futuros de la IA
15.2. Implicaciones de la Inteligencia Artificial en el servicio sanitario
15.2.1. Implicaciones de la IA en el sector sanitario. Oportunidades y desafíos
15.2.2. Casos de uso
15.3. Riesgos Relacionados con el uso de la IA en el servicio sanitario
15.3.1. Riesgos potenciales relacionados con el uso de IA
15.3.2. Potenciales desarrollos / usos futuros de la IA
15.4. Retail
15.4.1. Implicaciones de la IA en Retail. Oportunidades y desafíos
15.4.2. Casos de uso
15.4.3. Riesgos potenciales relacionados con el uso de IA
15.4.4. Potenciales desarrollos / usos futuros de la IA
15.5. Industria
15.5.1. Implicaciones de la IA en la Industria. Oportunidades y desafíos
15.5.2. Casos de uso
15.6. Riesgos potenciales relacionados con el uso de IA en la Industria
15.6.1. Casos de uso
15.6.2. Riesgos potenciales relacionados con el uso de IA
15.6.3. Potenciales desarrollos / usos futuros de la IA
15.7. Administración Pública
15.7.1. Implicaciones de la IA en la Administración Pública. Oportunidades y desafíos
15.7.2. Casos de uso
15.7.3. Riesgos potenciales relacionados con el uso de IA
15.7.4. Potenciales desarrollos / usos futuros de la IA
15.8. Educación
15.8.1. Implicaciones de la IA en la educación. Oportunidades y desafíos
15.8.2. Casos de uso
15.8.3. Riesgos potenciales relacionados con el uso de IA
15.8.4. Potenciales desarrollos / usos futuros de la IA
15.9. Silvicultura y agricultura
15.9.1. Implicaciones de la IA en la silvicultura y la agricultura. Oportunidades y desafíos
15.9.2. Casos de uso
15.9.3. Riesgos potenciales relacionados con el uso de IA
15.9.4. Potenciales desarrollos / usos futuros de la IA
15.10 Recursos Humanos
15.10.1. Implicaciones de la IA en los Recursos Humanos. Oportunidades y desafíos
15.10.2. Casos de uso
15.10.3. Riesgos potenciales relacionados con el uso de IA
15.10.4. Potenciales desarrollos / usos futuros de la IA
Módulo 16. Administración de Personal y Nóminas con IA
16.1. Inteligencia Artificial para la diversidad y la inclusión en el lugar de trabajo
16.1.1. Análisis de diversidad utilizando IBM Watson para detectar tendencias y sesgos
16.1.2. Herramientas de IA para la detección y corrección de sesgos en procesos de RRHH
16.1.3. Evaluación del impacto de las políticas de inclusión mediante análisis de datos
16.2. Fundamentos de la administración de personal con IA
16.2.1. Automatización de procesos de contratación y onboarding
16.2.2. Uso de sistemas de gestión de datos del personal basados en IA
16.2.3. Mejora de la experiencia del empleado mediante plataformas inteligentes
16.3. Tecnologías de IA aplicadas a nóminas
16.3.1. Sistemas de IA para el cálculo automático de nóminas
16.3.2. Gestión inteligente de beneficios con plataformas como Gusto
16.3.3. Detección de errores y fraudes en nóminas mediante algoritmos de IA
16.4. Optimización de la asignación de recursos con IA
16.4.1. Planificación de personal con herramientas predictivas de Kronos
16.4.2. Modelos de IA para la optimización de turnos y asignación de tareas
16.4.3. Análisis de carga de trabajo y distribución de recursos con Power BI
16.5. IA en el cumplimiento normativo y legal en RRHH
16.5.1. Automatización del cumplimiento de políticas laborales
16.5.2. Sistemas de IA para asegurar la equidad y transparencia en RRHH
16.5.3. Gestión de contratos y regulaciones con IBM Watson Legal Advisor
16.6. Análisis predictivo en la gestión de personal
16.6.1. Modelos predictivos para retención de empleados con AI de Retain
16.6.2. Análisis de sentimientos en comunicaciones internas
16.6.3. Predicción de necesidades de capacitación y desarrollo
16.7. Automatización de la gestión de beneficios con IA
16.7.1. Administración de beneficios mediante plataformas inteligentes como Zenefits
16.7.2. Personalización de paquetes de beneficios usando IA
16.7.3. Optimización de costes de beneficios mediante análisis de datos
16.8. Integración de sistemas de RRHH con IA
16.8.1. Sistemas integrados para gestión de personal con Salesforce Einstein
16.8.2. Interfaz y usabilidad en sistemas de RRHH basados en IA
16.8.3. Seguridad de datos y privacidad en sistemas integrados
16.9. Formación y desarrollo de personal con apoyo de IA
16.9.1. Sistemas de aprendizaje adaptativo y personalizado
16.9.2. Plataformas de e-Learning impulsadas por IA
16.9.3. Evaluación y seguimiento del rendimiento mediante tecnologías inteligentes
16.10. Gestión de crisis y cambio con IA en RRHH
16.10.1. Uso de IA para la gestión efectiva de cambios organizacionales
16.10.2. Herramientas de predicción para preparación ante crisis con Predictive Layer
16.10.3. Análisis de datos para evaluar y adaptar estrategias de RRHH en tiempos de crisis
Módulo 17. Procesos de Selección e Inteligencia Artificial
17.1. Introducción a la aplicación de Inteligencia Artificial en selección de personal
17.1.1. Definición de Inteligencia Artificial en el contexto de recursos humanos. Entelo
17.1.2. Importancia de aplicar IA en los procesos selectivos
17.1.3. Beneficios de utilizar IA en los procesos de selección
17.2. Automatización de tareas en el proceso de reclutamiento
17.2.1. Uso de IA para la automatización de la publicación de ofertas de trabajo
17.2.2. Implementación de chatbots para responder preguntas frecuentes de los candidatos
17.2.3. Herramientas. XOR
17.3. Análisis de Currículums Vitae con IA
17.3.1. Utilización de algoritmos de IA para analizar y evaluar Currículums Vitae. Talview
17.3.2. Identificación automática de habilidades y experiencia relevantes para el puesto
17.3.3. Ventajas e inconvenientes
17.4. Filtrado y clasificación de candidatos
17.4.1. Aplicación de IA para el filtrado automático de candidatos basado en criterios específicos. Vervoe
17.4.2. Clasificación de candidatos según su idoneidad para el puesto utilizando técnicas de aprendizaje automático
17.4.3. Uso de IA para la personalización dinámica de criterios de filtrado según las necesidades del puesto
17.5. Reconocimiento de patrones en redes sociales y plataformas profesionales
17.5.1. Uso de IA para analizar perfiles de candidatos en redes sociales y plataformas profesionales
17.5.2. Identificación de patrones de comportamiento y tendencias relevantes para la selección
17.5.3. Evaluación de la presencia online y la influencia digital de los candidatos utilizando herramientas de IA
17.6. Entrevistas virtuales asistidas por IA
17.6.1. Implementación de sistemas de entrevistas virtuales con análisis de lenguaje y emociones. Talentoday
17.6.2. Evaluación automática de respuestas de los candidatos utilizando técnicas de procesamiento de lenguaje natural
17.6.3. Desarrollo de feedback automático y personalizado para candidatos basado en análisis de IA de las entrevistas
17.7. Evaluación de habilidades y competencias
17.7.1. Utilización de herramientas de evaluación basadas en IA para medir habilidades técnicas y blandas. OutMatch
17.7.2. Análisis automático de pruebas y ejercicios de evaluación realizados por los candidatos. Harver
17.7.3. Correlación de resultados de evaluaciones con éxito en el puesto mediante análisis predictivo de IA
17.8. Eliminación de sesgos en la selección
17.8.1. Aplicación de IA para identificar y mitigar sesgos inconscientes en el proceso de selección
17.8.2. Implementación de algoritmos de IA imparciales y equitativos en la toma de decisiones
17.8.3. Entrenamiento y ajuste continuo de modelos de IA para garantizar la equidad en la selección de personal
17.9. Predicción de adecuación y retención
17.9.1. Uso de modelos predictivos de IA para predecir la adecuación y la probabilidad de retención de los candidatos. Hiretual
17.9.2. Análisis de datos históricos y métricas de desempeño para identificar patrones de éxito
17.9.3. Modelos de IA para la simulación de escenarios laborales y su impacto en la retención de candidatos
17.10. Ética y transparencia en la selección con IA
17.10.1. Consideraciones éticas en el uso de IA en los procesos de selección de personal
17.10.2. Garantía de transparencia y explicabilidad en los algoritmos de IA utilizados en la toma de decisiones de contratación
17.10.3. Desarrollo de políticas de auditoría y revisión de decisiones automatizadas
Módulo 18. IA y su Aplicación en la Gestión del Talento y Desarrollo Profesional
18.1. Introducción a la aplicación de IA en gestión del talento y desarrollo profesional
18.1.1. Evolución histórica de la IA en la gestión del talento y cómo ha transformado el sector
18.1.2. Definición de Inteligencia Artificial en el contexto de recursos humanos
18.1.3. Importancia de la gestión del talento y el desarrollo profesional. Glint
18.2. Automatización de procesos de gestión del talento
18.2.1. Uso de IA para la automatización de tareas administrativas en la gestión del talento
18.2.2. Implementación de sistemas de gestión de talento basados en IA
18.2.3. Evaluación de la eficacia operativa y reducción de costes mediante la automatización con IA
18.3. Identificación y retención del talento con IA
18.3.1. Utilización de algoritmos de IA para identificar y retener talento en la organización
18.3.2. Análisis predictivo para la detección de empleados con alto potencial de crecimiento
18.3.3. Integración de IA con sistemas de gestión de Recursos Humanos para seguimiento continuo del desempeño y desarrollo
18.4. Personalización del desarrollo profesional. Leader Amp
18.4.1. Implementación de programas de desarrollo profesional personalizados basados en IA
18.4.2. Uso de algoritmos de recomendación para sugerir oportunidades de aprendizaje y crecimiento
18.4.3. Adaptación de los itinerarios de desarrollo profesional a las predicciones de evolución del mercado laboral utilizando IA
18.5. Análisis de competencias y gaps de habilidades
18.5.1 Utilización de IA para analizar las competencias y habilidades actuales de los empleados
18.5.2. Identificación de brechas de habilidades y necesidades de formación mediante análisis de datos
18.5.3. Implementación de programas de capacitación en tiempo real basados en las recomendaciones automáticas de IA
18.6. Mentoría y coaching virtual
18.6.1. Implementación de sistemas de mentoría virtual asistidos por IA. Crystal
18.6.2. Uso de chatbots y asistentes virtuales para proporcionar coaching personalizado
18.6.3. Evaluación de impacto del coaching virtual mediante análisis de datos y feedback automatizado de IA
18.7. Reconocimiento de logros y rendimiento
18.7.1. Utilización de sistemas de reconocimiento de logros basados en IA para motivar a los empleados. BetterUp
18.7.2. Análisis automático del rendimiento y la productividad de los empleados utilizando IA
18.7.3. Desarrollo de un sistema de recompensas y reconocimientos basado en IA
18.8. Evaluación del potencial de liderazgo
18.8.1. Aplicación de técnicas de IA para evaluar el potencial de liderazgo de los empleados
18.8.2. Identificación de líderes emergentes y desarrollo de programas de liderazgo personalizados
18.8.3. Uso de simulaciones dirigidas por IA para entrenar y evaluar habilidades de liderazgo
18.9. Gestión del cambio y adaptabilidad organizacional
18.9.1. Análisis predictivo para anticipar las necesidades de cambio y promover la resiliencia organizacional
18.9.2. Planificación del cambio organizacional mediante IA
18.9.3. Utilización de IA para gestionar el cambio organizacional y fomentar la adaptabilidad. Cognician
18.10. Ética y responsabilidad en la gestión del talento con IA
18.10.1. Consideraciones éticas en el uso de IA en la gestión del talento y desarrollo profesional. Reflektive
18.10.2. Garantía de equidad y transparencia en los algoritmos de IA utilizados en la toma de decisiones de gestión del talento
18.10.3. Implementación de auditorías para supervisar y ajustar los algoritmos de IA a fin de asegurar prácticas éticas
Módulo 19. Evaluaciones de Desempeño
19.1. Introducción a la aplicación de IA en las evaluaciones de desempeño
19.1.1. Definición de Inteligencia Artificial y su papel en las evaluaciones de desempeño. 15Five
19.1.2. Importancia de utilizar IA para mejorar la objetividad y eficiencia de las evaluaciones
19.1.3. Limitaciones de la IA en evaluaciones de desempeño
19.2. Automatización de procesos de evaluación
19.2.1. Uso de IA para automatizar la recopilación y análisis de datos en las evaluaciones de desempeño. Peakon
19.2.2. Implementación de sistemas de evaluación automatizados basados en IA
19.2.3. Estudios de éxito en automatización con IA
19.3. Análisis de datos y métricas de desempeño
19.3.1. Utilización de algoritmos de IA para analizar datos de desempeño y tendencias
19.3.2. Identificación de métricas clave y KPIs utilizando técnicas de análisis de datos avanzadas
19.3.3. Capacitación en análisis de datos de IA
19.4. Evaluación continua y feedback en tiempo real
19.4.1. Implementación de sistemas de evaluación continua asistidos por IA. Lattice
19.4.2. Uso de chatbots y herramientas de retroalimentación en tiempo real para proporcionar feedback a los empleados
19.4.3. Impacto del feedback basado en IA
19.5. Identificación de fortalezas y áreas de mejora
19.5.1. Aplicación de IA para identificar las fortalezas y debilidades de los empleados
19.5.2. Análisis automático de competencias y habilidades utilizando técnicas de aprendizaje automático. Workday Performance Management
19.5.3. Conexión con desarrollo profesional y planificación
19.6. Detección de tendencias y patrones de desempeño
19.6.1. Utilización de IA para detectar tendencias y patrones en el desempeño de los empleados. TAlentSoft
19.6.2. Análisis predictivo para anticipar posibles problemas de desempeño y tomar medidas proactivas
19.6.3. Visualización avanzada de datos y dashboards
19.7. Personalización de objetivos y planes de desarrollo
19.7.1. Implementación de sistemas de establecimiento de objetivos personalizados basados en IA. Reflektive
19.7.2. Uso de algoritmos de recomendación para sugerir planes de desarrollo individualizados
19.7.3. Impacto a largo plazo de objetivos personalizados
19.8. Eliminación de sesgos en las evaluaciones
19.8.1. Aplicación de IA para identificar y mitigar sesgos en las evaluaciones de desempeño
19.8.2. Implementación de algoritmos imparciales y equitativos en los procesos de evaluación
19.8.3. Formación en ética de IA para evaluadores
19.9. Seguridad y protección de datos en las evaluaciones con IA
19.9.1. Consideraciones éticas y legales en el uso de datos personales en las evaluaciones de desempeño con IA. LEver
19.9.2. Garantía de la privacidad y seguridad de la información del empleado en los sistemas de evaluación basados en IA
19.9.3. Implementación de protocolos de acceso a los datos
19.10. Mejora continua y adaptabilidad del sistema
19.10.1. Utilización de feedback y análisis de datos para mejorar continuamente los procesos de evaluación
19.10.2. Adaptación de los sistemas de evaluación a medida que cambian las necesidades y objetivos de la organización
19.10.3. Comité de revisión para ajuste de métricas
Módulo 20. Monitorización y Mejora del Clima Laboral con IA
20.1. Aplicación de la IA en la gestión del clima laboral
20.1.1. Definición y relevancia del clima laboral
20.1.2. Panorama de la IA en la gestión del clima laboral
20.1.3. Beneficios de usar IA para monitorizar el clima laboral
20.2. Herramientas de IA para la recolección de datos laborales
20.2.1. Sistemas de feedback en tiempo real con IBM Watson
20.2.2. Plataformas de encuestas automáticas
20.2.3. Sensores y wearables para la recogida de datos físicos y ambientales
20.3. Análisis de sentimientos con IA
20.3.1. Fundamentos del análisis de sentimientos
20.3.2. Uso de Google Cloud Natural Language para analizar emociones en comunicaciones escritas
20.3.3. Aplicación del análisis de sentimientos en emails y redes sociales corporativas
20.4. Machine Learning para la identificación de patrones de comportamiento
20.4.1. Clustering con K-means en Python para segmentar comportamientos laborales
20.4.2. Reconocimiento de patrones en datos de comportamiento
20.4.3. Predicción de tendencias en el clima laboral
20.5. IA en la detección proactiva de problemas laborales
20.5.1. Modelos predictivos para identificar riesgos de conflictos
20.5.2. Sistemas de alerta temprana basados en IA
20.5.3. Detección de acoso y discriminación mediante el análisis de texto con spaCy
20.6. Mejora de la comunicación interna con IA
20.6.1. Chatbots para la comunicación interna
20.6.2. Análisis de redes con IA para mejorar la colaboración utilizando Gephi
20.6.3. Herramientas de IA para personalizar comunicados internos
20.7. Gestión del cambio con soporte de IA
20.7.1. Simulaciones de IA para prever impactos de cambios organizacionales con AnyLogic
20.7.2. Herramientas de IA para gestionar la resistencia al cambio
20.7.3. Modelos de IA para optimizar estrategias de cambio
20.8. Evaluación y mejora continua del clima laboral con IA
20.8.1. Sistemas de monitoreo continuo del clima laboral
20.8.2. Algoritmos para el análisis de la efectividad de intervenciones
20.8.3. IA para la personalización de planes de mejora del clima laboral
20.9. Integración de IA y Psicología Organizacional
20.9.1. Teorías psicológicas aplicadas al análisis de IA
20.9.2. Modelos de IA para entender la motivación y satisfacción laboral
20.9.3. Herramientas de IA para apoyar el bienestar emocional de los empleados
20.10. Ética y privacidad en el uso de IA para monitorizar el clima laboral
20.10.1. Consideraciones éticas del monitoreo laboral
20.10.2. Privacidad de los datos y conformidad con regulaciones
20.10.3. Gestión transparente y responsable de los datos
Aplicarás tecnologías avanzadas en la administración de personal, los procesos de selección, la gestión del talento, las evaluaciones de desempeño y la monitorización del clima laboral”
Máster en Inteligencia Artificial en Departamento de Recursos Humanos
La incorporación de la inteligencia artificial (IA) en el ámbito de los recursos humanos está transformando profundamente la gestión del talento en las empresas. Desde la optimización de los procesos de selección, hasta la personalización del desarrollo profesional, la IA ofrece soluciones innovadoras que mejoran la eficiencia y efectividad de los departamentos de RR. HH. En este contexto, TECH Global University ha creado este Máster en Inteligencia Artificial en Departamento de Recursos Humanos, un programa 100% online que te capacitará en el uso de tecnologías avanzadas que automatizan tareas clave y facilitan la toma de decisiones basadas en datos. Durante esta titulación, estudiarás las aplicaciones más innovadoras de la IA en áreas como el análisis de productividad, la detección de patrones en el comportamiento de los empleados y la implementación de estrategias de retención y motivación a largo plazo. Sabrás manejar e implementar soluciones de IA que te permitirán personalizar la experiencia laboral, identificar factores de desmotivación antes de que afecten la productividad y diseñar programas de formación a medida basados en las necesidades individuales de cada colaborador.
Automatización y análisis predictivo en recursos humanos
La inteligencia artificial ofrece un enfoque revolucionario para optimizar la gestión del talento humano. A través de herramientas de automatización, los departamentos de RR. HH. podrás agilizar procesos como el reclutamiento, la evaluación de desempeño y la planificación de carrera, ahorrando tiempo y recursos. Este programa te proporcionará una comprensión profunda sobre cómo integrar la IA en estas actividades, permitiéndote anticipar las necesidades de la organización y mejorar las dinámicas laborales. Además, se abordarán temas clave como el uso de algoritmos para la selección de candidatos, la creación de modelos predictivos para evaluar el potencial de los empleados y la gestión automatizada de nóminas y beneficios. Además, profundizarás en el análisis de grandes volúmenes de datos para identificar tendencias en el clima organizacional, la satisfacción laboral y las oportunidades de desarrollo profesional. Al finalizar, manejarás las nuevas tendencias en el análisis de datos para el desarrollo de políticas internas que impulsen la innovación y la diversidad, asegurando así un entorno de trabajo dinámico y competitivo. ¡Inscríbete ya!