Diplôme universitaire
La plus grande faculté d’informatique au monde”
Présentation
Se familiariser avec les bases mathématiques du Deep Learning pour créer les réseaux neuronaux les plus avancés"
Aujourd'hui, le Deep Learning est devenu l'une des techniques les plus utilisées en Intelligence Artificielle en raison de sa capacité à former des réseaux neuronaux profonds et à effectuer des tâches complexes avec précision dans une grande variété de domaines. En Robotique, par exemple, le Deep Learning est utilisé pour la navigation autonome et la reconnaissance d'objets. Dans le cas du Traitement du Langage Naturel, il est précieux pour la traduction automatique et la création de Chatbots intelligents.
Cependant, pour utiliser efficacement ces réseaux neuronaux, il est nécessaire d'avoir une solide compréhension des fondements mathématiques sous-jacents. C'est précisément l'objet du certificat en Bases Mathématiques du Deep Learning, qui est conçu pour fournir aux étudiants les bases en Mathématiques Avancées et en Statistiques nécessaires au Deep Learning.
Le programme est structuré autour de sujets traitant de l'Algèbre Linéaire, du Calcul Multivariable, de l'Optimisation et des Probabilités. En ce sens, les étudiants passeront en revue des concepts clés tels que les matrices, les vecteurs, les dérivées partielles, le Gradient descendant, les distributions de probabilité ou les statistiques inférentielles. En outre, le diplôme comprend également plusieurs exemples et exercices pratiques pour aider les étudiants à appliquer les concepts théoriques dans un contexte réel.
La meilleure chose est que ce certificat est 100% en ligne, ce qui signifie que les étudiants peuvent accéder au matériel du programme de n'importe où dans le monde et à n'importe quel moment qui leur convient.
Vous deviendrez un expert des opérations sur les fonctions vectorielles et leurs dérivées"
Ce certificat en Bases Mathématiques du Deep Learning contient le programme académique le plus complet et le plus actuel du marché. Les principales caractéristiques sont les suivantes:
- Le développement d'études de cas présentées par des experts en Bases Mathématiques du Deep Learning
- Les contenus graphiques, schématiques et éminemment pratiques de l'ouvrage fournissent des informations technologiques et pratiques sur les disciplines essentielles à la pratique professionnelle
- Les exercices pratiques où effectuer le processus d’auto-évaluation pour améliorer l’apprentissage
- Il met l'accent sur les méthodologies innovantes
- Cours théoriques, questions à l'expert, forums de discussion sur des sujets controversés et travail de réflexion individuel
- La possibilité d'accéder aux contenus depuis n'importe quel appareil fixe ou portable doté d'une connexion internet
Obtenez toutes les clés pour maîtriser le fonctionnement des modèles fonctionnant sous Apprentissage Supervisé"
Le corps enseignant du programme englobe des spécialistes réputés dans le domaine et qui apportent à ce programme l'expérience de leur travail, ainsi que des spécialistes reconnus dans de grandes sociétés et des universités prestigieuses.
Grâce à son contenu multimédia développé avec les dernières technologies éducatives, les spécialistes bénéficieront d’un apprentissage situé et contextuel, ainsi, ils se formeront dans un environnement simulé qui leur permettra d’apprendre en immersion et de s’entrainer dans des situations réelles.
La conception de ce programme est axée sur l'Apprentissage par les Problèmes, grâce auquel le professionnel doit essayer de résoudre les différentes situations de la pratique professionnelle qui se présentent tout au long du cursus académique. Pour ce faire, l’étudiant sera assisté d'un innovant système de vidéos interactives, créé par des experts reconnus.
Comparez des ensembles de données avec maîtrise grâce aux ressources pédagogiques innovantes du Campus Virtuel"
Te especializarás en ajustar hiperparámetros o manejar técnicas de regularización en solo 300 horas"
Objectifs et compétences
Les étudiants inscrits à ce programme auront l'occasion de développer des connaissances avancées qui leur permettront d'améliorer leurs perspectives de carrière dans le secteur de la technologie, en particulier dans le développement de l'Intelligence Artificielle. Pour aider les étudiants à atteindre leurs objectifs, cette institution académique propose des outils pédagogiques innovants et facilement accessibles, ainsi qu'un corps professoral de premier ordre possédant une vaste expérience dans le domaine de l'IA.
Atteint les objectifs du titre et développe la Règle de la chaîne pour le calcul des dérivées des fonctions imbriquées"
Objectifs généraux
- Fondamentaliser les concepts clés des fonctions mathématiques et de leurs dérivés
- Appliquer ces principes aux algorithmes d'apprentissage profond pour apprendre automatiquement
- Examiner les concepts clés de l'apprentissage supervisé et la manière dont ils s'appliquent aux modèles de réseaux neuronaux
- Analyser la formation, l'évaluation et l'analyse des modèles de réseaux neuronaux
- Fondamentaux des concepts clés et des principales applications de l'apprentissage profond
- Implémentation et optimisation des réseaux neuronaux avec Keras
- Développer une expertise dans l'entraînement des réseaux neuronaux profonds
- Analyser les mécanismes d'optimisation et de régularisation nécessaires pour l'entraînement des réseaux neuronaux profonds
Objectifs spécifiques
- Développer la règle de la chaîne pour calculer les dérivées des fonctions imbriquées
- Analyser comment de nouvelles fonctions sont créées à partir de fonctions existantes et comment les dérivées sont calculées
- Examiner le concept de Backward Pass et comment les dérivées des fonctions vectorielles sont appliquées à l'apprentissage automatique
- Apprendre à utiliser TensorFlow pour construire des modèles personnalisés
- Comprendre comment charger et traiter des données à l'aide des outils TensorFlow
- Fondamentaliser les concepts clés du traitement du langage naturel NLP avec les RNN et les mécanismes d'attention
- Explorer les fonctionnalités des bibliothèques de transformateurs Hugging Face et d'autres outils de traitement du langage naturel pour les appliquer aux problèmes de vision
- Apprendre à construire et à entraîner des modèles d'autoencodeurs, des GAN et des modèles de diffusion
- Comprendre comment les auto-encodeurs peuvent être utilisés pour coder des données de manière efficace
- Analyser le fonctionnement de la régression linéaire et la manière dont elle peut être appliquée aux modèles de réseaux neuronaux
- Déterminer les principes fondamentaux de l'optimisation des hyperparamètres pour améliorer les performances des modèles de réseaux neuronaux
- Déterminer comment les performances des modèles de réseaux neuronaux peuvent être évaluées à l'aide de l'ensemble de l'apprentissage et de test
Inscrivez-vous dès maintenant et faites passer votre carrière en informatique à la vitesse supérieure en explorant les fonctionnalités des bibliothèques Transformers"
Certificat en Bases Mathématiques du Deep Learning
L'utilisation du Deep Learning est devenue un élément clé dans le développement de nouvelles technologies et applications. C'est pourquoi, à TECH Université Technologique, nous avons conçu le Certificat en Bases Mathématiques du Deep Learning. Ce programme se concentre sur la mise à jour des aspects mathématiques nécessaires à la compréhension de l'apprentissage profond. Le cours de troisième cycle se concentre sur l'étude de la théorie mathématique qui sous-tend l'apprentissage profond, sans négliger son application dans la résolution de problèmes réels.
Notre Certificat en fondements mathématiques de l'apprentissage profond vous donnera les connaissances nécessaires pour comprendre le fonctionnement de l'apprentissage profond. Vos conférenciers vous guideront à travers les techniques, les algorithmes et les outils mathématiques utilisés dans l'apprentissage profond. Le Certificat vous dotera des compétences nécessaires pour concevoir des algorithmes d'apprentissage profond et comprendre les stratégies d'optimisation de l'apprentissage profond. Vous acquerrez ainsi des connaissances approfondies sur les fondements mathématiques de l'apprentissage profond. Cela vous permettra d'améliorer vos performances sur le marché du travail et d'améliorer votre développement professionnel dans le domaine de la technologie.