Why study at TECH?

Water is a natural resource which is essential to the survival of our planet. Learn how to manage its distribution in urban areas and develop new proposals to introduce in the sector” 

##IMAGE##

Everyone agrees that water is an essential resource and for this reason, since long ago, efforts have been made to guarantee a safe, relaible and, above all, high-quality supply is available. Economic investment in this sector has increased in recent years, a factor which has led to the need for support from trained professionals who know and understand how this vital liquid is processed, distributed and reused.

This Advanced master’s degree is a unique opportunity to give students the chance to deepen their understanding of water management and urban waste services. A review will be carried out of everything related to the water cycle in urban areas and the measures which have been adopted by the sector to ensure responsible consumption. All of this is marked by the 2030 Agenda, a proposal which was signed by the member states of the United Nations that aims to move the world towards a sustainable and environmentally friendly society.  

This is essential nowadays, due to the increasing scarcity and the decrease in the quality of the water available to us. As a result, urban areas are constantly in need of a better water supply and, in order to achieve this, the engineers in charge must be trained and specialized with a clear understanding of the new hydraulic pump proposals, which must be built appropriately monitored in unique stations.  

This program will also be of great interest due to its extensive coverage of urban waste management, a necessity brought about as a result of the waste which is produced in cities, such as debris, plastics, organic matter etc. Students will learn all about how the classification system works according to the regulations, its effects on public health, the importance of reducing how much waste is produced and the innovative digitization of refuse by organizations (based on Deep Learning). 

Students who enrol on this Advanced master’s degree in Water and Urban Waste Services Engineering will acquire the necessary skills to improve their professional profile, becoming engineers who are fully capable of working anywhere in the world. This qualification will allow them to professionaly promote technological, social or cultural progress within a knowledge-based society, following sustainable precepts. 

The 2030 Agenda has been adhered to in recent years in order to ensure the responsible use of water in modern society" 

This Advanced master’s degree in Water and Urban Waste Services Engineering contains the most complete and up-to-date educational program on the market. The most important features include:

  • Practical case studies presented by expert engineers in the Water and Urban Waste Services 
  • The graphic, schematic, and eminently practical contents with which they are created, provide scientific and practical information on the disciplines that are essential for professional practice 
  • Practical exercises where self-assessment can be used to improve learning 
  • Special emphasis on innovative methodologies in engineering  
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an Internet connection 

Use a water balance in order to determine which regulatory measures should be implemented in resource management" 

The teaching staff includes professionals from the engineering sector, who bring their experience to this training program, as well as renowned specialists from leading societies and prestigious universities. 

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide an immersive training experience designed to train for real-life situations. 

This program is designed around Problem Based Learning, whereby the student must try to solve the different professional practice situations that arise during the course. For this purpose, the professional will be assisted by an innovative interactive video system created by renowned and experienced experts. 

This Advanced master’s degree will increase your chances of participating in international projects which distribute water all over the world"

##IMAGE##

Water is a precious commodity that must be cared for. Collaborate with the best companies in the industry to create more sustainable measures"

Syllabus

This Advanced master’s degree in Water and Urban Waste Services Engineering is based on a syllabus which includes essential contents for the professional development of students interested in the sector. In this way, the concept of a water footprint will be studied in depth to help implement new and sustainable policies for water distribution and treatment. In addition, students will get to grips with how a treatment plant works and what measures have been taken globally to conserve the vital liquid. 

##IMAGE##

Large companies are looking for new technological projects to guarantee the distribution of safe water. Get involved with these thanks to this program” 

Module 1. Water and Sustainability in the Urban Cycle of Water 

1.1. Social Commitment for the Reduction of Water Consumption in the Urban Cycle 

1.1.1. Water Footprint 
1.1.2. Importance of Our Water Footprint 
1.1.3. Generation of Assets 
1.1.4. Generation of Services 
1.1.5. Social Commitment to Reducing Consumption 
1.1.6. Citizen Involvement 
1.1.7. Public Administration Involvement 
1.1.8. Businesses Involvement R.S.C

1.2. Water Problems in Cities Analysis of Sustainable Use 

1.2.1. Water Stress in Modern Cities 
1.2.2. Water Stress 
1.2.3. Causes and Consequences of Water Stress 
1.2.4. Sustainable Environment 
1.2.5. The Urban Water Cycle as a Vector of Sustainability 
1.2.6. Coping With Water Shortages Possible Answers 

1.3. Sustainability Policies in the Management of the Urban Cycle of Water 

1.3.1. Control of Water Resources 
1.3.2. The Triangle of Sustainable Management: Society, Environment and Efficiency 
1.3.3. Integral Water Management as a Support for Sustainability 
1.3.4. Expectations and Commitments in Sustainable Management 

1.4. Sustainability Indicators Eco-Social Water 

1.4.1. Triangle of Water Sustainability 
1.4.2. Society - Economy - Ecology 
1.4.3. Eco-social Water Scarce Commodity 
1.4.4. Heterogeneity and Innovation as a Challenge in the Fight Against Water Misallocation  

1.5. Agents Implicated in Water Management Role of the Managers 

1.5.1. Those Involved in the Action or Situation of the Water Environment 
1.5.2. Those Involved in Duties and Rights  
1.5.3. Individuals That May Be Affected and/or Benefit From the Action or Situation of the Water Environment 
1.5.4. Role of Managers in the Urban Cycle of Water 

1.6. Uses of Water Training and Good Practices 

1.6.1. Water as a Supply Source 
1.6.2. Water as a Mode of Transport 
1.6.3. Water as a Receiving Medium for Other Water Flows 
1.6.4. Water as a Source and Receiver of Energy 
1.6.5. Good Practices in the Use of Water Training and Information 

1.7. Analysis of the Integral Urban Water Cycle 

1.7.1. High Supply Collection 
1.7.2. Low Supply Distribution 
1.7.3. Sanitation Rainwater Collection 
1.7.4. Waste Water Treatment 
1.7.5. Regeneration of Waste Water Reuse 

1.8. Looking to the Future in Uses of Water 

1.8.1. Water in the 2030 Agenda 
1.8.2. Gurantee of Availability, Management and Sanitation of Water for Everyone 
1.8.3. Resources Uses/ Total Resources Available Short-Term, Medium-Term and Long-Term 
1.8.4. General Participation of Local Communities in Improving Management  

1.9. New Cities The Most Sustainable Management 

1.9.1. Technological and Digitalization Resources 
1.9.2. Urban Resilience Collaboration Between Those Involved 
1.9.3. Factors for Being a Resilient Population 
1.9.4. Urban, Peri-Urban and Rural Area Links 

Module 2. Water Resources in a Supply 

2.1. Subsurface Water Subsurface Hydrology 

2.1.1. Subsurface Water 
2.1.2. Characteristics of Subsurface Water 
2.1.3. Types of Subsurface Water and Location 
2.1.4. Water Flow Through a Porous Medium Darcy's Law 

2.2. Surface Water 

2.2.1. Characteristics of Surface Water 
2.2.2. Division of Surface Water 
2.2.3. Difference Between Subsurface Water and Surface Water 

2.3. Alternative Water Resources 

2.3.1. Use of Groundwater, Runoff and Rain Water 
2.3.2. Renewable Resources vs. Contaminated Resources 
2.3.3. Reusable Water From WWTPs Reused from Buildings 
2.3.4. Initiative, Media and Control Organizations 

2.4. Water Balances 

2.4.1. Methodology and Theoretical Considerations for Water Balance 
2.4.2. Quantitative Water Balance 
2.4.3. Qualitative Water Balance 
2.4.4. Sustainable Environment 
2.4.5. Resource and Risks in Non-Sustainable Environments Climate Change 

2.5. Collection and Storage Environmental Protection 

2.5.1. Components of Collection and Storage 
2.5.2. Surface or Subsurface Collection 
2.5.3. Potabilization (DWTP) 
2.5.4. Storage  
2.5.5. Distribution and Sustainable Consumption 
2.5.6. Sewage Network  
2.5.7. Purification (WWTP) 
2.5.8. Disposal and Reuse 
2.5.9. Ecological Flow 
2.5.10. Eco-Social Urban Water Cycle 

2.6. Optimal Model for Water Management Principles of Supply 

2.6.1. Set of Sustainable Actions and Processes 
2.6.2. Provision of Supply and Sewerage Services 
2.6.3. Assuring Quality Generating Knowledge 
2.6.4. Actions to Take in Assuring Quality of Water and its Installations 
2.6.5. Generating Knowledge to Prevent Errors 

2.7. Optimal Model for Water Management Socio-Economic Principles 

2.7.1. Current Financing Model 
2.7.2. Taxes in the Management Model  
2.7.3. Financing Alternatives Proposals for the Creation of Financing Platforms 
2.7.4. Security of Water Supply (Distribution and Supply) for All 
2.7.5. Involvement of Local, National and International Communities in Financing 

2.8. Monitoring Systems Prediction, Prevention and Contigency Situations 

2.8.1. Identification of Water Bodies and Their Status 
2.8.2. Proposals for Water Distribution According to Needs 
2.8.3. Knowledge and Control of Water  
2.8.4. Maintenance of Facilities 

2.9. Good Practices in Water Supply and Sustainability 

2.9.1. Posadas Peri-Urban Park Córdoba 
2.9.2. Palma del Rio Periurban Park Córdoba 
2.9.3. State of the Art Others 

2.10. 5G in the Management of Water Resources 

2.10.1. 5G Features 
2.10.2. Importance of 5G 
2.10.3. Relationship Between 5G and Water Supply 

Module 3. Pumping Stations 

3.1. Applications 

3.1.1. Supply 
3.1.2. Purification and WWTP's
3.1.3. Singular Applications 

3.2. Hydraulic Pumps 

3.2.1. Evolution of Hydraulic Pumps 
3.2.2. Types of Impellers 
3.2.3. Advantages and Disadvantages of the Different Types of Pumps 

3.3. Engineering and Design of Pumping Stations 

3.3.1. Submersible Pumping Stations 
3.3.2. Dry Chamber Pumping Stations 
3.3.3. Economic Analysis 

3.4. Installation and Functioning 

3.4.1. Economic Analysis 
3.4.2. Designs of Real Cases 
3.4.3. Pump Tests 

3.5. Monitoring and Control of Pumping Stations 

3.5.1. Pump Starting Systems 
3.5.2. Protection Systems in Pumps 
3.5.3. Optimization of Pump Control Systems 

3.6. Enemies of Hydraulic Systems 

3.6.1. Water Hammer 
3.6.2. Cavitation 
3.6.3. Sounds and Vibrations 

3.7. Total Lifetime Cost of a Pumping Operation 

3.7.1. Costs            
3.7.2. Cost of Distribution Models 
3.7.3. Identification of Areas of Opportunity 

3.8. Hydro-Dynamic Solutions CFD Model 

3.8.1. Importance of CFD 
3.8.2. Process of CFD Analysis in Pumping Stations 
3.8.3. Interpretation of Results 

3.9. Latest Innovations Applied in Pumping Stations 

3.9.1. Innovation in Materials 
3.9.2. Intelligent Systems 
3.9.3. Digitization of the Industry 

3.10. Singular Designs 

3.10.1. Singular Design in Supply 
3.10.2. Singular Design in Sanitation 
3.10.3. Pumping Station in Sitges 

Module 4. Desalination. Design and Operation 

4.1. Desalination     

4.1.1. Processes of Separation and Desalination    
4.1.2. Water Salinity 
4.1.3. Characterization of Water 

4.2. Reverse Osmosis       

4.2.1. Process of Reverse Osmosis 
4.2.2. Key Parameters in Osmosis 
4.2.3. Disposition 

4.3. Membranes of Reverse Osmosis    

4.3.1. Materials 
4.3.2. Technical Parameters 
4.3.3. Evolution of Parameters 

4.4. Description of Installation Water Intake 

4.4.1. Pre-Treatment 
4.4.2. High Pressure Pump 
4.4.3. Racks 
4.4.4. Instruments 

4.5. Physical Treatment 

4.5.1. Filtration 
4.5.2. Coagulation and Flocculation 
4.5.3. Membrane Filters 

4.6. Chemical Treatments 

4.6.1. Regulation 
4.6.2. Reduction 
4.6.3. Stabilization 
4.6.4. Remineralization 

4.7. Design 

4.7.1. Water to be Desalinated 
4.7.2. Required Capacity 
4.7.3. Membrane Surface 
4.7.4. Recuperation 
4.7.5. Number of Membranes 
4.7.6. Stages 
4.7.7. Other Aspects 
4.7.8. High-Pressure Pump 

4.8. Operation 

4.8.1. Dependence of the Main Operating Parameters 
4.8.2. Pollution 
4.8.3. Membrane Washing 
4.8.4. Sea Water Spill 

4.9. Materials 

4.9.1. Corrosion 
4.9.2. Selection of Materials 
4.9.3. Collectors 
4.9.4. Deposits 
4.9.5. Pumping Equipment 

4.10. Economic Optimization 

4.10.1. Energy Consumption 
4.10.2. Energetic Optimization 
4.10.3. Energy Recuperation 
4.10.4. Costs 

Module 5. Distribution of Potable Water. Layouts and Practical Criteria in Network Design 

5.1. Types of Distribution Networks       

5.1.1. Classification Criteria 
5.1.2. Branched Distribution Networks 
5.1.3. Mesh Distribution Networks 
5.1.4. Mixed Distribution Networks 
5.1.5. High Distribution Networks 
5.1.6. Low Distribution Networks 
5.1.7. Hierarchy of Pipelines 

5.2. Criteria for Distribution Network Design Modelling 

5.2.1. Modulation of the Demand 
5.2.2. Speed of Circulation 
5.2.3. Pressure 
5.2.4. Chlorine Concentration 
5.2.5. Length of Stay 
5.2.6. Epanet Modelling 

5.3. Elements of a Distribution Network      

5.3.1. Fundamental Principles 
5.3.2. Collection Elements 
5.3.3. Pumps 
5.3.4. Storage Elements 
5.3.5. Distribution Elements 
5.3.6. Control and Regulation Elements (Suction Cups, Valves, Drains, etc.) 
5.3.7. Measuring Elements 

5.4. Pipelines         

5.4.1. Features 
5.4.2. Plastic Pipes  
5.4.3. Non-Plastic Pipes  

5.5. Valves

5.5.1. Cut-Off Valves 
5.5.2. Manhole Valves 
5.5.3. Check or Non-Return Valves 
5.5.4. Regulation and Control Valves 

5.6. Telecontrol and Telemanagement     

5.6.1. Elements of a Telecontrol System  
5.6.2. Communication Systems 
5.6.3. Analog and Digital Information 
5.6.4. Software Management 
5.6.5. Digital Twin 

5.7. Efficiency of Distribution Network     

5.7.1. Fundamental Principles 
5.7.2. Hydraulic Efficiency Calculation 
5.7.3. Efficiency Improvement Minimizing Water Loss 
5.7.4. Monitoring Indicators 

5.8. Maintenance Plans       

5.8.1. Objectives of Maintenance Plans 
5.8.2. Creating a Preventive Maintenance Plan 
5.8.3. Preventive Maintenance Tanks 
5.8.4. Preventive Maintenance of the Distribution Network 
5.8.5. Preventive Maintenance of Collections 
5.8.6. Corrective Maintenance 

5.9. Operational Record

5.9.1. Water Volumes and Flow Rates 
5.9.2. Water Quality 
5.9.3. Energy Consumption 
5.9.4. Malfunctions 
5.9.5. Pressure 
5.9.6. Maintenance Plan Records 

5.10. Financial Management 

5.10.1. Importance of Economic Management 
5.10.2. Income 
5.10.3. Costs 

Module 6. Sewer Networks 

6.1. Importance of Sewer Networks 

6.1.1. Needs of Sewer Networks 
6.1.2. Types of Networks 
6.1.3. Sewer Networks in the Integral Water Cycle 
6.1.4. Normative Framework and Legislation 

6.2. Principle Elements of Gravity Sewer Networks  

6.2.1. General Structure 
6.2.2. Types of Pipelines 
6.2.3. Manholes 
6.2.4. Service Connections and Installations 

6.3. Others Principle Elements of Gravity Sewer Networks 

6.3.1. Surface Drainage 
6.3.2. Overflows 
6.3.3. Other Elements 
6.3.4. Easements 

6.4. Works 

6.4.1. Execution of Works 
6.4.2. Safety Measures 
6.4.3. Trenchless Renovation and Rehabilitation 
6.4.4. Asset Management 

6.5. Wastewater Elevation WWTP 

6.5.1. Intake Work and Coarse Shaft 
6.5.2. Grinding 
6.5.3. Pump Well 
6.5.4. Pumps 
6.5.5. Pressure Piping 

6.6. Complementary Elements of a WWTP 

6.6.1. Valves and Flowmeters 
6.6.2. CS, CT, CCM and Generator Sets 
6.6.3. Other Elements  
6.6.4. Operation and Maintenance 

6.7. Rolling Mills and Storm Tanks 

6.7.1. Features  
6.7.2. Rolling Mills 
6.7.3. Storm Tanks 
6.7.4. Operation and Maintenance 

6.8. Operation of Gravity Drainage Networks 

6.8.1. Monitoring and Cleaning 
6.8.2. Inspection 
6.8.3. Cleaning 
6.8.4. Conservation Works 
6.8.5. Improvement Works 
6.8.6. Common Incidences 

6.9. Network Designs 

6.9.1. Background Information 
6.9.2. Layout 
6.9.3. Materials 
6.9.4. Seals and Joints 
6.9.5. Special Pieces 
6.9.6. Design Flow Rates 
6.9.7. Network Analysis and Modeling with SWWM 

6.10. Management Support Software Tools 

6.10.1. Cartographic Maps, GIS 
6.10.2. Indicident Report 
6.10.3. WPS Support 

Module 7. Urban Drinking Water Treatment Plants Design and Operation 

7.1. Importance of Water Quality           

7.1.1. Water Quality on a Global Level 
7.1.2. Health of the Population 
7.1.3. Water-Borne Diseases 
7.1.4. Short-, Medium- and Long-Term Risks 

7.2. Water Quality Criteria. Parameters          

7.2.1. Microbiological Parameters 
7.2.2. Physical Parameters 
7.2.3. Chemical Parameters 

7.3. Water Quality Modeling 

7.3.1. Time Spent on the Network 
7.3.2. Reaction Kinetics 
7.3.3. Water Source 

7.4. Water Disinfection         

7.4.1. Chemical Products Used in Disinfection 
7.4.2. Behavior of Chlorine in Water 
7.4.3. Systems of Chlorine Dosage 
7.4.4. Chlorine Measurement in the Network 

7.5. Turbidity Treatments 

7.5.1. Possible Causes of Turbidity 
7.5.2. Problems of Turbidity in Water 
7.5.3. Turbidity Measurement 
7.5.4. Limits of Turbidity in Water 
7.5.5. Treatment Systems 

7.6. Treatment of Other Pollutants        

7.6.1. Physiochemical Treatment 
7.6.2. Ion Exchange Resins 
7.6.3. Treatment with Membranes 
7.6.4. Active Carbon 

7.7. Cleaning of Tanks and Pipelines 

7.7.1. Water Draining 
7.7.2. Solids Dragging 
7.7.3. Disinfection of Walls 
7.7.4. Rinsing of Walls 
7.7.5. Filling and Service Restitution 

7.8. Quality Control Plan 

7.8.1. Objectives of Control Plans 
7.8.2. Sampling Points 
7.8.3. Types of Analysis and Frequency 
7.8.4. Laboratory Analysis 

7.9. Operational Record            

7.9.1. Chlorine Concentration 
7.9.2. Organoleptic Examination 
7.9.3. Other Specific Pollutants 
7.9.4. Laboratory Analysis 

7.10. Economic Considerations 

7.10.1. Personal 
7.10.2. Cost of Chemical Reagents 
7.10.3. Dosing Equipment 
7.10.4. Other Treatment Equipment 
7.10.5. Cost of Water Analysis 
7.10.6. Cost of Measuring Equipment 
7.10.7. Energy 

Module 8. Waste Water Treatment Plants. Engineering and Construction 

8.1. Auxiliary Stages 

8.1.1. Pumps 
8.1.2. Header Wells 
8.1.3. Reliefs 

8.2. Follow-Up Work 

8.2.1. Management of Subcontracts and Orders 
8.2.2. Economic Monitoring 
8.2.3. Budget Variances and Compliance 

8.3. General Diagram of a WWTP Provisional Works 

8.3.1. Water Line 
8.3.2. Provisional Works 
8.3.3. Bim Distribution of Elements and Interferences 

8.4. Auxiliary Stages 

8.4.1. Pumps 
8.4.2. Header Wells 
8.4.3. Reliefs 

8.5. Pre-Treatment 

8.5.1. Stakeout 
8.5.2. Implementation and Connections 
8.5.3. Finishes 

8.6. Primary Treatment 

8.6.1. Stakeout 
8.6.2. Implementation and Connections 
8.6.3. Finishes 

8.7. Secondary Treatment 

8.7.1. Stakeout 
8.7.2. Implementation and Connections 
8.7.3. Finishes 

8.8. Tertiary Treatment 

8.8.1. Stakeout 
8.8.2. Implementation and Connections 
8.8.3. Finishes 

8.9. Equipment and Automation 

8.9.1. Suitability 
8.9.2. Variants 
8.9.3. Put to Work 

8.10. Software and Certification 

8.10.1. Stockpile Certification 
8.10.2. Work Certifications 
8.10.3. Computer Programs 

Module 9. Reuse 

9.1. Motivation for the Generation of Water 

9.1.1. Municipal Sector 
9.1.2. Industrial Sector 
9.1.3. Connections Between the Municipal and Industrial Sector 

9.2. Uses of Regenerated Water 

9.2.1. Uses of Municipal Sector 
9.2.2. Uses of Industrial Sector 
9.2.3. Derived Problems 

9.3. Treatment Technologies  

9.3.1. Spectrum of Current Processes 
9.3.2. Combination of Processes to Achieve the Objectives of the New European Framework 
9.3.3. Comparative Analysis of a Selection of Processes 

9.4. Fundamental Aspects in the Municipal Sector 

9.4.1. Patterns and Trends in the Reuse of Water on a Global Level 
9.4.2. Agricultural Demand 
9.4.3. Benefits Associated with Reuse in Agricultural Use 

9.5. Fundamental Aspects in the Industrial Sectors 

9.5.1. General Context of the Industrial Sector 
9.5.2. Opportunities in the Industrial Sector 
9.5.3. Risk Analysis. Change to the Business Model 

9.6. Principle Aspects in the Exploitation and Maintenance 

9.6.1. Cost Models 
9.6.2. Disinfection  
9.6.3. Fundamental Problems Brine 

9.7. Level of Adoption of Reclaimed Water in Spain 

9.7.1. Current and Potential Situation 
9.7.2. European Green Pact Investment Proposals in the Urban Water Sector in Spain 
9.7.3. Strategies for the Promotion of Waste Water Reuse 

9.8. Reuse Projects: Experiences and Lessons Learned 

9.8.1. Benidorm 
9.8.2. Reuse in the Industry 
9.8.3. Lessons Learned 

9.9. Socio-Economic Aspects of Reuse and the Next Challenges 

9.9.1. Barriers in the Implementation of Reused Water 
9.9.2. Aquifer Recharge  
9.9.3. Direct Reuse 

Module 10. Metrology. Measurement and Instruments Used 

10.1. Measuring Parameters 

10.1.1. Metrology 
10.1.2. Problem of Water Contamination 
10.1.3. Selection of Parameters 

10.2. Importance of Process Control 

10.2.1. Technical Aspects 
10.2.2. Relative Aspects of Health and Safety 
10.2.3. Supervision and External Control 

10.3. Pressure Gauges 

10.3.1. Manometry 
10.3.2. Transducers 
10.3.3. Pressure Switches 

10.4. Level Gauges 

10.4.1. Direct Measurement 
10.4.2. With Ultrasound 
10.4.3. Limnemetros 

10.5. Flow Meters 

10.5.1. Open Channels 
10.5.2. Closed Pipelines  
10.5.3. Residual Water 

10.6. Temperature Gauges 

10.6.1. Effects of Temperature 
10.6.2. Measurement of Temperature 
10.6.3. Palliative Actions 

10.7. Volumetric Flow Meters 

10.7.1. Choice of Accountant 
10.7.2. Main Types of Accountants  
10.7.3. Legal Aspects  

10.8. Water Quality Measurement. Analytical Equipment 

10.8.1. Turbidity and PH 
10.8.2. Redox 
10.8.3. Integrated Samples 

10.9. Location of Measuring Equipment Within a Plant 

10.9.1. Inlet and Pretreatment Works 
10.9.2. Primary and Secondary 
10.9.3. Tertiary 

10.10. Aspects to Consider With Respect to the Instruments Used in Telemeasurement and Telecontrol 

10.10.1. Control Loops 
10.10.2. Plcs and Communication Gateways 
10.10.3. Remote Management 

Module 11. Legislation 

11.1. Agenda for the 2030 Sustainable Development 

11.1.1. SDG 6. Clean Water and Sanitation 
11.1.2. SDG 12. Responsible Production and Consumption 

11.2. European Strategy 

11.2.1. Municipal Waste Objective 
11.2.2. Target Waste of Greatest Generation/Impact 
11.2.3. Circular Economy 

11.3. Main European Legislation 

11.3.1. European Waste Directives and Circular Economy 
11.3.2. European Directives on Potable Water 
11.3.3. European Directives on Waste Water 

11.4. National Strategy 

11.4.1. State Inspection Plan for Transboundary Waste Shipments 2017-2019
11.4.2. State Program for Waste Prevention 2014-2020 
11.4.3. State Waste Management Framework Plan (PEMAR) 2016-2022 
11.4.4. Spanish National Integral Waste Plan (PNIR) 
11.4.5. State Waste Management Framework Plan (PEMAR) 2016-2022 
11.4.6. Green Paper on Water Governance 
11.4.7. Spanish Water Technology Platform 

11.5. Main National Legislation 

11.5.1. Waste 
11.5.2. Waste Flow 
11.5.3. Environmental Responsibility 
11.5.4. Water Law 
11.5.5. Potable Water 
11.5.6. Residual Water 

11.6. Regional Master Plans 

11.6.1. Waste Master Plans 
11.6.2. Water Master Plans 

11.7. Main Regional Legal Differences 

11.7.1. Distribution of Skills 
11.7.2. Case Laws 

11.8. Procedures as a Waste Producer 

11.8.1. Discharge Procedures 
11.8.2. Generation Control. Declarations 
11.8.3. Minimization 

11.9. Procedures as a Waste Manager 

11.9.1. Types of Manager and Discharge Procedures 
11.9.2. Transport Control and Management 
11.9.3. Final Destination of Waste. Declarations 

11.10. International Framework 

11.10.1. Environmental Management Systems 
11.10.2. ISO 14001 
11.10.3. EMAS 

Module 12. Circular Economy 

12.1. Aspects and Characteristics of Circular Economy 

12.1.1. Origin of Circular Economy 
12.1.2. Principles of Circular Economy 
12.1.3. Key Features 

12.2. Adapting to Climate Change 

12.2.1. Circular Economy as a Strategy 
12.2.2. Economic Advantages 
12.2.3. Social Advantages 
12.2.4. Business Advantages 
12.2.5. Environmental Advantages 

12.3. Efficient and Sustainable Water Use 

12.3.1. Rain Water 
12.3.2. Gray Water 
12.3.3. Irrigation Water Agriculture and Gardening 
12.3.4. Processed Water. Agri-Food Industry 

12.4. Revaluation of Wastes and By-Products 

12.4.1. Water Footprint of Waste 
12.4.2. From Waste to By-Product 
12.4.3. Classification According to Production Sector 
12.4.4. Revaluation of Enterprises 

12.5. Life Cycle Assessment 

12.5.1. Life Cycle Assessment (LCA) 
12.5.2. Stages 
12.5.3. Reference Guidelines 
12.5.4. Methodology 
12.5.5. Tools 

12.6. Eco Design 

12.6.1. Principles and Criteria of Eco Design 
12.6.2. Product Characteristics 
12.6.3. Methodology of Eco Design 
12.6.4. Eco Design Tools 
12.6.5. Success Stories 

12.7. Zero Discharge 

12.7.1. Principles of Zero Discharge 
12.7.2. Benefits 
12.7.3. Systems and Processes 
12.7.4. Success Stories 

12.8. Green Public Procurement 

12.8.1. Legislation 
12.8.2. Green Procurement Manual 
12.8.3. Guidelines for Public Procurement 
12.8.4. Public Procurement Plan 2018-2025 

12.9. Innovative Public Procurement 

12.9.1. Types of Innovative Public Procurement 
12.9.2. Procurement Process 
12.9.3. Sheet Design 

12.10. Environmental Accountability 

12.10.1. Best Available Environmental Technologies (BAT) 
12.10.2. Ecotaxes 
12.10.3. Ecological Account 
12.10.4. Environmental Cost 

Module 13. Residual Water Treatment 

13.1. Water Pollution Assessment 

13.1.1. Water Transparency 
13.1.2. Water Pollution 
13.1.3. Effects of Water Pollution 
13.1.4. Pollution Parameters 

13.2. Sample Collection 

13.2.1. Collection Procedure and Conditions 
13.2.2. Sample Size 
13.2.3. Sample Frequency 
13.2.4. Sampling Program 

13.3. WWTP Pre-Treatment 

13.3.1. Water Reception 
13.3.2. Dimensioning 
13.3.3. Physical Processes 

13.4. WWTP Primary Treatment 

13.4.1. Sedimentation 
13.4.2. Flocculation-Coagulation 
13.4.3. Types of Decanters 
13.4.4. Design of Decanters 

13.5. WWTP Secondary Treatment (I) 

13.5.1. Biological Processes 
13.5.2. Factors Affecting the Biological Process 
13.5.3. Active Sludge 
13.5.4. Percolating Sludge 
13.5.5. Rotary Biological Contact Reactor 

13.6. WWTP Secondary Treatment (II) 

13.6.1. Biofiltration 
13.6.2. Digesters 
13.6.3. Agitation Systems 
13.6.4. Aerobic Digesters: Perfect Mixing and Piston Flow 
13.6.5. Active Sludge Digesters 
13.6.6. Secondary Decanter 
13.6.7. Active Sludge Systems 

13.7. Tertiary Treatment (I) 

13.7.1. Removal of Nitrogen 
13.7.2. Removal of Phosphorus 
13.7.3. Membrane Technology 
13.7.4. Oxidation Technologies Applied to Generated Wastes 
13.7.5. Disinfection 

13.8. Tertiary Treatment (II) 

13.8.1. Absorption With Active Carbon 
13.8.2. Steam or Air Entrainment 
13.8.3. Flushing of Gases: Stripping 
13.8.4. Ionic Exchange 
13.8.5. PH Regulation 

13.9. Sludge Study 

13.9.1. Sludge Treatment 
13.9.2. Flotation 
13.9.3. Assisted Flotation 
13.9.4. Dosing and Mixing Tank for Coagulants and Flocculants 
13.9.5. Sludge Stabilization 
13.9.6. High-Load Digester 
13.9.7. Low-Load Digester 
13.9.8. Biogas 

13.10. Low Cost Purification Technologies 

13.10.1. Septic Tanks 
13.10.2. Digester-Decanter Tanks 
13.10.3. Aerobic Lagooning 
13.10.4. Anaerobic Lagooning 
13.10.5. Green Filter 
13.10.6. Sand Filter 
13.10.7. Peat Bed 

Module 14. Energy Production 

14.1. Obtaining Biogas 

14.1.1. Active Sludge Process Products 
14.1.2. Anaerobic Digestion 
14.1.3. Fermenting Stage 
14.1.4. Biodigester 
14.1.5. Production and Characterization of Generated Biogas 

14.2. Conditioning of Biogas 

14.2.1. Hydrogen Sulfide Removal 
14.2.2. Humidity Removal 
14.2.3. CO2 Removal 
14.2.4. Siloxanes Removal 
14.2.5. Removal of Oxygen and Halogenated Organic Compounds 

14.3. Biogas Storage 

14.3.1. Gasometer 
14.3.2. Biogas Storage 
14.3.3. High-Pressure Systems 
14.3.4. Low-Pressure Systems 

14.4. Biogas Burning 

14.4.1. Burners 
14.4.2. Features of Burners 
14.4.3. Installation of Burners 
14.4.4. Flame Control 
14.4.5. Low-Cost Burners 

14.5. Uses of Biogas 

14.5.1. Biogas Boiler 
14.5.2. Gas Motor-Generator 
14.5.3. Turbine 
14.5.4. Gas Rotary Machine 
14.5.5. Injection into the Natural Gas Grid 
14.5.6. Energy Calculations From Natural Gas Usage 

14.6. Current Energy Scene 

14.6.1. Use of Fossil Fuels 
14.6.2. Nuclear Energy 
14.6.3. Renewable Energies 

14.7. Renewable Energies 

14.7.1. Photovoltaic Solar Energy 
14.7.2. Wind Energy 
14.7.3. Hydraulic Energy 
14.7.4. Geothermal Energy 
14.7.5. Energy Storage 

14.8. Hydrogen as an Energy Carrier 

14.8.1. Integration with Renewable Energy 
14.8.2. Hydrogen Economy 
14.8.3. Hydrogen Production 
14.8.4. Use of Hydrogen 
14.8.5. Electric Energy Production 

14.9. Fuel Cells 

14.9.1. Operation 
14.9.2. Types of Fuel Cells 
14.9.3. Microbial Fuel Cells 

14.10. Gas Handling Safety 

14.10.1. Risks: Biogas and Hydrogen 
14.10.2. Safety against Explosions 
14.10.3. Safety Measures 
14.10.4. Inspection 

Module 15. Chemistry of Water 

15.1. Chemistry of Water 

15.1.1. Alchemy 
15.1.2. Evolution of the Chemistry 

15.2. The Water Molecule 

15.2.1. Crystallography 
15.2.2. Crystalline Structure of Water 
15.2.3. Aggregation States 
15.2.4. Links and Properties 

15.3. Physicochemical Properties of Water 

15.3.1. Physical Properties of Water 
15.3.2. Chemical Properties of Water 

15.4. Water as a Solvent 

15.4.1. Ion Solubility 
15.4.2. Solubility of Neutral Molecules 
15.4.3. Hydrophilic and Hydrophobic Interactions 

15.5. Organic Chemistry of Water 

15.5.1. The Water Molecule in Organic Reactions 
15.5.2. Hydration Reactions 
15.5.3. Hydrolysis Reactions 
15.5.4. Hydrolysis of Amides and Esters 
15.5.5. Other Reactions of Water. Enzymatic Hydrolysis 

15.6. Inorganic Chemistry of Water 

15.6.1. Reaction of Hydrogen 
15.6.2. Reaction of Oxygen 
15.6.3. Reactions to Obtain Hydroxides 
15.6.4. Reactions to Obtain Acids 
15.6.5. Reactions to Obtain Salts 

15.7. Analytical Water Chemistry 

15.7.1. Analytical Techniques 
15.7.2. Water Analysis 

15.8. Thermodynamics of the Phases of Water 

15.8.1. Laws of Thermodynamics 
15.8.2. Phase Diagram. Phase Balance 
15.8.3. Triple Point of Water 

15.9. Water Quality 

15.9.1. Organoleptic Characteristics 
15.9.2. Physiochemical Characteristics 
15.9.3. Anions and Cations 
15.9.4. Undesirable Components 
15.9.5. Toxic Components 
15.9.6. Radioactivity 

15.10. Chemical Processes in the Purification of Water 

15.10.1. Demineralization of Water 
15.10.2. Reverse Osmosis 
15.10.3. Decalcification 
15.10.4. Distillation 
15.10.5. Ozone and UV Disinfection 
15.10.6. Filtration 

Module 16. Drinking and Process Water Treatment 

16.1. The Cycle of Water 

16.1.1. The Hydrological Water Cycle 
16.1.2. Contamination of Potable Water 

16.1.2.1. Chemical Contamination 
16.1.2.2. Biological Contamination 

16.1.3. Effects of Potable Water Contamination 

16.2. Drinking Water Treatment Plants (DWTP) 

16.2.1. The Water Purification Process 
16.2.2. Diagram of a DWTP. Stages and Processes 
16.2.3. Functional Calculations and Process Design 
16.2.4. Study of Environmental Impact 

16.3. Flocculation and Coagulation in DWTPs 

16.3.1. Flocculation and Coagulation 
16.3.2. Types of Flocculants and Coagulants 
16.3.3. Mixing Plant Design 
16.3.4. Parameters and Control Strategies 

16.4. Chlorine- Derived Treatment 

16.4.1. Residual Products in Chlorine Treatment 
16.4.2. Disinfection Products 
16.4.3. Chlorine Application Points in DWTP 
16.4.4. Other Forms of Disinfection 

16.5. Water Purification Equipment 

16.5.1. Demineralization Equipment 
16.5.2. Reverse Osmosis Equipment 
16.5.3. Decalcification Equipment 
16.5.4. Filtration Equipment 

16.6. Water Desalination 

16.6.1. Types of Desalination 
16.6.2. Selection of Desalination Method 
16.6.3. Design of a Desalination Plant 
16.6.4. Economic Study 

16.7. Analysis Methods of Potable and Residual Water 

16.7.1. Sample Collection 
16.7.2. Description of Analysis Methods 
16.7.3. Analysis Frequency 
16.7.4. Quality Control 
16.7.5. Results Presentation 

16.8. Water in Industrial Processes 

16.8.1. Water in the Food Industry 
16.8.2. Water in the Pharmaceutical Industry 
16.8.3. Water in the Mining Industry 
16.8.4. Water in the Agricultural Industry 

16.9. Management of Potable Water 

16.9.1. Infrastructures Used in Water Collection 
16.9.2. Costs of Potable Water Production 
16.9.3. Technology for the Storage and Distribution of Potable Water 
16.9.4. Management Tools for Water Shortages 

16.10. Economy of Potable Water 

16.10.1. Economic Considerations 
16.10.2. Service Costs 
16.10.3. Shortage of Freshwater 
16.10.4. The 2030 Agenda 

Module 17. Waste Management 

17.1. What is Considered as Waste?

17.1.1. Evolution of Waste 
17.1.2. Current Situation 
17.1.3. Future Perspectives 

17.2. Existing Waste Flow 

17.2.1. Waste Flow Analysis 
17.2.2. Grouping of Flows 
17.2.3. Flow Characteristics 

17.3. Classification of Waste and Characteristics 

17.3.1. Classification According to Standards 
17.3.2. Classification According to Management 
17.3.3. Classification According to Origin 

17.4. Characteristics and Properties 

17.4.1. Chemical Characteristics 
17.4.2. Physical Characteristics 

17.4.2.1. Humidity 
17.4.2.2. Specific Weight 
17.4.2.3. Grading 

17.4.3. Hazard Characteristics 

17.5. Problems of Waste. Origin and Type of Waste 

17.5.1. Main Problems in Waste Management 
17.5.2. Problems in Generation 
17.5.3. Problems in Transport and Final Treatment 

17.6. Environmental Responsibility 

17.6.1. Responsibility for Damage to the Environment 
17.6.2. Prevention, Mitigation and Reparation of Damage 
17.6.3. Financial Guarantees 
17.6.4. Demanding Environmental Procedures 

17.7. Integrated Pollution Prevention and Control 

17.7.1. Fundamental Aspects 
17.7.2. Demanding Environmental Procedures 
17.7.3. Integrated Environmental Authorization (IEA) and Review of IEAs 
17.7.4. Information and Communication 
17.7.5. Best Available Environmental Technologies (BAT) 

17.8. European Emission Source Inventory 

17.8.1. Emission Inventory Background 
17.8.2. European Pollutant Emission Inventory 
17.8.3. European Pollutant Release and Transfer Register (E-PRTR) 
17.8.4. Legal Framework of PRTR in Spain 
17.8.5. PRTR- Spain 

17.9. Environmental Impact Assessment 

17.9.1. Environmental Impact Assessment (EIA) 
17.9.2. Administrative Procedures of EIA 
17.9.3. Study of Environmental Impact 
17.9.4. Abbreviated Procedures 

17.10. Climate Change and the Fight Against Climate Change 

17.10.1. Elements and Factors Which Determine the Weather 
17.10.2. Definition of Climate Change. Effects of Climate Change 
17.10.3. Actions to Combat Climate Change 
17.10.4. Organizations Fighting Climate Change 
17.10.5. Predictions of Climate Change 
17.10.6. Bibliographical References 

Module 18. Solid Urban Waste Management 

18.1. Sources and Production 

18.1.1. Sources of Origin 
18.1.2. Composition Analysis 
18.1.3. Evolution of Production 

18.2. Solid Urban Waste Management 

18.2.1. Classification According to Standards 
18.2.2. Solid Urban Waste Characteristics 

18.3. Effects on Public Health and the Environment 

18.3.1. Health Effects of Air Pollution 
18.3.2. Health Effects of Chemical Substances 
18.3.3. Effects on Flora and Fauna 

18.4. Importance of Minimization 

18.4.1. Waste Reduction 
18.4.2. The 5Rs and Their Benefits 
18.4.3. Fractionation and Problems 

18.5. Phases of Operational Waste Management 

18.5.1. Waste Containerization 
18.5.2. Types and Systems of Waste Collection 
18.5.3. Transfer and Transport 

18.6. Types of Urban Waste Treatment I 

18.6.1. Classification Plants 
18.6.2. Compost 
18.6.3. Biomethanization 
18.6.4. Energy Valuation 

18.7. Types of Urban Waste Treatment II 

18.7.1. Landfills 
18.7.2. Environmental Consequences of Landfills 
18.7.3. Landfill Sealing 

18.8. Municipal Management of MSW Landfills 

18.8.1. Social Perception and Physical Location 
18.8.2. Models of MSW Landfill Management 
18.8.3. Current Problem of MSW Landfills 

18.9. Waste as a Business Source 

18.9.1. From Health Protection to Circular Economy 
18.9.2. Economic Activity of Waste Management 
18.9.3. From Waste to Resource 
18.9.4. Waste as a Substitute for Raw Materials 

18.10. Digitalization of the Management Process 

18.10.1. Classification Based on Deep Learning 
18.10.2. Sensorization of Containers 
18.10.3. Smart Bins 

Module 19. Industrial Waste Management 

19.1. Characterization of Industrial Waste 

19.1.1. Classification According to the Proposal at Origin According to RD 833/88 and RD 952/97 
19.1.2. Classification According to Regulation 1357/2014, Based on the Amendments Introduced by Regulation 1272/08 (CLP) and Regulation 1907/06 (REACH)
19.1.3. Classification According to the European Waste List 

19.2. Industrial Waste Management 

19.2.1. Industrial Waste Producer 
19.2.2. Industrial Waste Management 
19.2.3. Fines 

19.3. Internal Management of Industrial Waste 

19.3.1. Compatability and Intitial Segregation 
19.3.2. Internal Waste Transport 
19.3.3. Internal Waste Storage 

19.4. Waste Minimization 

19.4.1. Minimization Methods and Techniques 
19.4.2. Minimization Plan 

19.5. Fines 

19.5.1. Application of Environmental Legislation According to the Nature of the Waste 
19.5.2. Application of Environmental Legislation Whether it’s Local, Regional or National 

19.6. Waste Flow I 

19.6.1. Used Oil Management 
19.6.2. Packaging Waste Management 
19.6.3. Construction and Demolition Waste Management 

19.7. Waste Flow II 

19.7.1. Batteries and Accumulators Management 
19.7.2. Packaging Waste Management 

19.8. Waste Flow III 

19.8.1. Management of Vehicles at the End of Their Life 
19.8.2. Decontamination Methods, Treatment and Management 

19.9. Non- Hazardous Industrial Waste 

19.9.1. Type and Characterization of Non-Hazardous Industrial Waste 
19.9.2. Transportation of Goods According to Their Volume 

19.10. By-Product Market 

19.10.1. Industrial By-Products 
19.10.2. National and European Situation Analysis 
19.10.3. By-Product Exchange 

Module 20. Hazardous Waste 

20.1. Agriculture and Livestock 

20.1.1. Agricultural Waste 
20.1.2. Types of Agricultural Waste 
20.1.3. Types of Livestock Waste 
20.1.4. Valuation of Agricultural Waste 
20.1.5. Valuation of Livestock Waste 

20.2. Trade, Office and Related Activities 

20.2.1. Commercial, Office and Related Waste 
20.2.2. Types Commercial, Office and Related Waste 
20.2.3. Valuation of Commercial, Office and Related Waste 

20.3. Construction and Civil Works 

20.3.1. Construction and Demolition Waste (CDW) 
20.3.2. Types of CDW Waste 
20.3.3. CDW Valuation 

20.4. Integral Water Cycle 

20.4.1. Integral Water Cycle Waste 
20.4.2. Types of Integral Water Cycle Waste 
20.4.3. Valuation of Integral Water Cycle Waste 

20.5. Chemical and Plastic Industry 

20.5.1. Chemical and Plastic Industry Waste 
20.5.2. Types of Chemical and Plastic Industry Waste 
20.5.3. Valuation of Chemical and Plastic Industry Waste 

20.6. Metal and Mechanical Industry 

20.6.1. Metal and Mechanical Industry Waste 
20.6.2. Types of Metal and Mechanical Industry Waste 
20.6.3. Valuation of Metal and Mechanical Industry Waste 

20.7. Sanitary 

20.7.1. Sanitary Waste 
20.7.2. Types of Sanitary Waste 
20.7.3. Valuation of Sanitary Waste 

20.8. IT and Telecommunications 

20.8.1. IT and Telecommunications Waste 
20.8.2. Types of IT and Telecommunications Waste 
20.8.3. Valuation of IT and Telecommunications Waste 

20.9. Energy Industry 

20.9.1. Energy Industry Waste 
20.9.2. Types of Energy Industry Waste 
20.9.3. Valuation of Energy Industry Waste 

20.10. Transport 

20.10.1. Transport Waste 
20.10.2. Types of Transport Waste 
20.10.3. Valuation of Transport Waste 

##IMAGE##

This program will help you get to grips with water service management so you can help guarantee it continues to be distributed in the future" 

Advanced Master's Degree in Water and Urban Waste Services Engineering

.

The economic investment that the water sector has had in recent years has made it possible to implement sophisticated water distribution and treatment methods. This, in turn, has not only made it possible to offer users a service with greater guarantees, safety and quality, but also the development of increasingly specialized infrastructures that optimize their usefulness and propose environmentally sustainable solutions. However, to ensure the proper functioning of these systems, the assistance of professionals who know and understand how this resource is processed, distributed and reused is necessary. At TECH Global University we developed the Advanced Master's Degree in Water Services Engineering and Urban Waste, a program aimed at expanding your technical knowledge in public water management, as well as in the development of new technologies that make water supply accessible to all.

Specialize in the management of water services

.

With this Advanced Master's Degree you will have access to the most important topics in this discipline, including the latest advances and the technical skills you need to participate in new technological projects that guarantee the distribution and healthiness of water. In addition, you will be able to study the layouts and practical criteria of network design for the distribution of drinking water, water resources and their sustainability in the urban cycle; and pumping stations, sanitation infrastructures and desalination operations, among other aspects. If you want to have a competitive edge in the water services job market, studying at the world's largest engineering school can be the first step to achieving it.