Why study at TECH?

Thanks to this TECH Hybrid professional master’s degree, you will acquire a deep understanding of the essential fundamentals of Artificial Intelligence, such as algorithms, data mining and intelligent systems”

##IMAGE##

According to recent data, the use of Artificial Intelligence (AI) in programming has made it possible to automate repetitive and complex tasks, reducing development times and increasing accuracy in error detection. Leading technology companies have integrated AI into their software development workflows, improving efficiency and facilitating the creation of more intelligent and adaptable applications.

In this way, this Hybrid professional master’s degree was created, which will establish the fundamentals of Artificial Intelligence, providing computer scientists with a solid foundation in theory and key concepts. In addition, data types and their efficient management for AI applications will be analyzed, as well as the role of data in AI, including how it can be optimized and used effectively to improve results.

Professionals will also dive into cutting-edge technologies, such as TensorFlow, and specialized applications, such as natural language processing and recurrent neural networks. In this way, they will be prepared to face complex challenges in fields such as bio-inspired computing and productivity improvement. Likewise, the software architecture for QA Testing and the development of web and mobile applications will be explored.

Finally, the curriculum will focus on the implementation of AI to improve the quality of software testing, a comprehensive approach that will ensure that students are prepared to understand Artificial Intelligence in depth, applying it effectively in real-world projects

In this context, TECH has developed a university program that integrates theory, completely online, with a practical stay of 3 weeks in the main companies of the sector. In this way, the first part of the academic itinerary will be adjusted to the graduate's work and personal schedule, who will only need an electronic device with Internet access. Additionally, it will be based on the revolutionary Relearning methodology, which emphasizes the review of key concepts for an effective and natural assimilation of the content.

It focuses you on practical applications of AI in different contexts, such as web projects, mobile applications and QA Testing, hand in hand with the best digital university in the world, according to Forbes: TECH”

This Hybrid professional master’s degree in Artificial Intelligence in Programming contains the most complete and up-to-date program on the market. The most important features include:

  • Development of more than 100 case studies presented by Artificial Intelligence professionals and university professors with extensive experience in its application in programming
  • The graphic, schematic and eminently practical contents with which they are conceived, gather essential information on those procedures and tools essential for professional practice
  • All of this will be complemented by theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments
  • Content that is accessible from any fixed or portable device with an Internet connection
  • Furthermore, you will be able to carry out an internship in one of the best companies

You will analyze the types and life cycle of data, as well as its direct application in data mining, through the best teaching materials, at the forefront of technology and education”

In this Hybrid professional master’s degree proposal, of professionalizing character and blended learning modality, the program is aimed at updating professionals of Artificial Intelligence in Programming, who develop their functions in companies specialized in this field, and who require a high level of qualification. The contents are based on the latest scientific evidence, and oriented in a didactic way to integrate theoretical knowledge in computer science practice, and the theoretical-practical elements will facilitate the updating of knowledge and allow decision making.

Thanks to its multimedia content elaborated with the latest educational technology, they will allow the IT professional to learn in a contextual and situated way, that is to say, a simulated environment that will provide an immersive learning programmed to train in real situations. This program is designed around Problem-Based Learning, whereby the physician must try to solve the different professional practice situations that arise during the course. For this purpose, the students will be assisted by an innovative interactive video system created by renowned and experienced experts.

You will carry out an intensive practical stay of 3 weeks in a prestigious company and will acquire all the knowledge to grow personally and professionally"

##IMAGE##

You will be immersed in advanced topics, such as deep neural networks and their training using tools such as TensorFlow, thanks to a unique and innovative training system"

Syllabus

The academic program will offer a comprehensive and updated curriculum that will address both the theoretical foundations and practical applications of Artificial Intelligence. Among the program contents, essential modules such as “Fundamentals of Artificial Intelligence” and “Types and life cycle of data” have been included, which will lay the foundations for understanding the handling and processing of large volumes of information. Other outstanding modules are “Data Mining: Selection, Preprocessing and Transformation”, ‘Algorithm and Complexity in Artificial Intelligence’ and ‘Intelligent Systems’, which will delve into advanced techniques and algorithms crucial for AI development.

maestria artificial intelligence programming TECH Global University

You will cover specialized areas, such as machine learning, data mining, neural networks and Deep Learning, as well as natural language processing (NLP)”

Module 1. Fundamentals of Artificial Intelligence

1.1. History of Artificial Intelligence 

1.1.1. When Do We Start Talking About Artificial Intelligence?
1.1.2. References in Film 
1.1.3. Importance of Artificial Intelligence 
1.1.4. Technologies that Enable and Support Artificial Intelligence 

1.2. Artificial Intelligence in Games 

1.2.1. Game Theory 
1.2.2. Minimax and Alpha-Beta Pruning 
1.2.3. Simulation: Monte Carlo 

1.3. Neural Networks 

1.3.1. Biological Fundamentals 
1.3.2. Computational Model 
1.3.3. Supervised and Unsupervised Neural Networks 
1.3.4. Simple Perceptron 
1.3.5. Multilayer Perceptron

1.4. Genetic Algorithms 

1.4.1. History 
1.4.2. Biological Basis 
1.4.3. Problem Coding 
1.4.4. Generation of the Initial Population 
1.4.5. Main Algorithm and Genetic Operators 
1.4.6. Evaluation of Individuals: Fitness 

1.5. Thesauri, Vocabularies, Taxonomies 

1.5.1. Vocabulary 
1.5.2. Taxonomy 
1.5.3. Thesauri 
1.5.4. Ontologies 
1.5.5. Knowledge Representation: Semantic Web 

1.6. Semantic Web 

1.6.1. Specifications RDF, RDFS and OWL 
1.6.2. Inference/ Reasoning 
1.6.3. Linked Data 
1.7. Expert systems and DSS 
1.7.1. Expert Systems 
1.7.2. Decision Support Systems 

1.8. Chatbots and Virtual Assistants

1.8.1. Types of Assistants: Voice and Text Assistants
1.8.2. Fundamental Parts for the Development of an Assistant: Intents, Entities and Dialog Flow 
1.8.3. Integrations: Web, Slack, Whatsapp, Facebook 
1.8.4. Assistant Development Tools: Dialog Flow, Watson Assistant

1.9. AI Implementation Strategy 
1.10. Future of Artificial Intelligence

1.10.1. Understand How to Detect Emotions Using Algorithms
1.10.2. Creating a Personality: Language, Expressions and Content
1.10.3. Trends of Artificial Intelligence
1.10.4. Reflections

Module 2. Data Types and Data Life Cycle

2.1. Statistics

2.1.1. Statistics: Descriptive Statistics, Statistical Inferences
2.1.2. Population, Sample, Individual
2.1.3. Variables: Definition, Measurement Scales

2.2. Types of Data Statistics

2.2.1. According to Type

2.2.1.1. Quantitative: Continuous Data and Discrete Data
2.2.1.2. Qualitative: Binomial Data, Nominal Data and Ordinal Data 

2.2.2. According to their Shape 

2.2.2.1. Numeric
2.2.2.2. Text: 
2.2.2.3. Logical

2.2.3. According to its Source

2.2.3.1. Primary
2.2.3.2. Secondary

2.3. Life Cycle of Data

2.3.1. Stages of the Cycle
2.3.2. Milestones of the Cycle
2.3.3. FAIR Principles

2.4. Initial Stages of the Cycle

2.4.1. Definition of Goals
2.4.2. Determination of Resource Requirements
2.4.3. Gantt Chart
2.4.4. Data Structure

2.5. Data Collection

2.5.1. Methodology of Data Collection
2.5.2. Data Collection Tools
2.5.3. Data Collection Channels

2.6. Data Cleaning

2.6.1. Phases of Data Cleansing
2.6.2. Data Quality
2.6.3. Data Manipulation (with R)

2.7. Data Analysis, Interpretation and Evaluation of Results

2.7.1. Statistical Measures
2.7.2. Relationship Indexes
2.7.3. Data Mining

2.8. Data Warehouse

2.8.1. Elements that Comprise it
2.8.2. Design
2.8.3. Aspects to Consider

2.9. Data Availability

2.9.1. Access
2.9.2. Uses
2.9.3. Security/Safety

Module 3. Data in Artificial Intelligence 

3.1. Data Science 

3.1.1. Data Science 
3.1.2. Advanced Tools for Data Scientists 

3.2. Data, Information and Knowledge 

3.2.1. Data, Information and Knowledge
3.2.2. Types of Data 
3.2.3. Data Sources 

3.3. From Data to Information

3.3.1. Data Analysis 
3.3.2. Types of Analysis 
3.3.3. Extraction of Information from a Dataset 

3.4. Extraction of Information Through Visualization 

3.4.1. Visualization as an Analysis Tool 
3.4.2. Visualization Methods
3.4.3. Visualization of a Data Set 

3.5. Data Quality 

3.5.1. Quality Data 
3.5.2. Data Cleaning
3.5.3. Basic Data Pre-Processing 

3.6. Dataset 

3.6.1. Dataset Enrichment 
3.6.2. The Curse of Dimensionality 
3.6.3. Modification of Our Data Set 

3.7. Unbalance

3.7.1. Classes of Unbalance 
3.7.2. Unbalance Mitigation Techniques 
3.7.3. Balancing a Dataset 

3.8. Unsupervised Models

3.8.1. Unsupervised Model 
3.8.2. Methods 
3.8.3. Classification with Unsupervised Models 

3.9. Supervised Models 

3.9.1. Supervised Model 
3.9.2. Methods 
3.9.3. Classification with Supervised Models 

3.10. Tools and Good Practices 

3.10.1. Good Practices for Data Scientists 
3.10.2. The Best Model
3.10.3. Useful Tools 

Module 4. Data Mining. Selection, Pre-Processing and Transformation 

4.1. Statistical Inference 

4.1.1. Descriptive Statistics vs. Statistical Inference 
4.1.2. Parametric Procedures 
4.1.3. Non-Parametric Procedures 

4.2. Exploratory Analysis 

4.2.1. Descriptive Analysis
4.2.2. Visualization 
4.2.3. Data Preparation 

4.3. Data Preparation 

4.3.1. Integration and Data Cleaning
4.3.2. Normalization of Data 
4.3.3. Transforming Attributes

4.4. Missing Values 

4.4.1. Treatment of Missing Values 
4.4.2. Maximum Likelihood Imputation Methods 
4.4.3. Missing Value Imputation Using Machine Learning 

4.5. Noise in the Data

4.5.1. Noise Classes and Attributes 
4.5.2. Noise Filtering
4.5.3. The Effect of Noise 

4.6. The Curse of Dimensionality 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Multidimensional Data Reduction 

4.7. From Continuous to Discrete Attributes 

4.7.1. Continuous Data Vs. Discreet Data 
4.7.2. Discretization Process 

4.8. The Data

4.8.1. Data Selection
4.8.2. Prospects and Selection Criteria 
4.8.3. Selection Methods

4.9. Instance Selection 

4.9.1. Methods for Instance Selection 
4.9.2. Prototype Selection 
4.9.3. Advanced Methods for Instance Selection 

4.10. Data Pre-Processing in Big Data Environments 

Module 5. Algorithm and Complexity in Artificial Intelligence 

5.1. Introduction to Algorithm Design Strategies 

5.1.1. Recursion 
5.1.2. Divide and Conquer 
5.1.3. Other Strategies 

5.2. Efficiency and Analysis of Algorithms 

5.2.1. Efficiency Measures 
5.2.2. Measuring the Size of the Input 
5.2.3. Measuring Execution Time 
5.2.4. Worst, Best and Average Case 
5.2.5. Asymptotic Notation 
5.2.6. Mathematical Analysis Criteria for Non-Recursive Algorithms 
5.2.7. Mathematical Analysis of Recursive Algorithms 
5.2.8. Empirical Analysis of Algorithms 

5.3. Sorting Algorithms 

5.3.1. Concept of Sorting 
5.3.2. Bubble Sorting 
5.3.3. Sorting by Selection 
5.3.4. Sorting by Insertion 
5.3.5. Merge Sort 
5.3.6. Quick Sort 

5.4. Algorithms with Trees 

5.4.1. Tree Concept 
5.4.2. Binary Trees 
5.4.3. Tree Paths 
5.4.4. Representing Expressions 
5.4.5. Ordered Binary Trees 
5.4.6. Balanced Binary Trees 

5.5. Algorithms Using Heaps 

5.5.1. Heaps 
5.5.2. The Heapsort Algorithm 
5.5.3. Priority Queues 

5.6. Graph Algorithms 

5.6.1. Representation 
5.6.2. Traversal in Width 
5.6.3. Depth Travel 
5.6.4. Topological Sorting 

5.7. Greedy Algorithms 

5.7.1. Greedy Strategy 
5.7.2. Elements of the Greedy Strategy 
5.7.3. Currency Exchange 
5.7.4. Traveler’s Problem 
5.7.5. Backpack Problem 

5.8. Minimal Path Finding 

5.8.1. The Minimum Path Problem 
5.8.2. Negative Arcs and Cycles 
5.8.3. Dijkstra's Algorithm 

5.9. Greedy Algorithms on Graphs 

5.9.1. The Minimum Covering Tree 
5.9.2. Prim's Algorithm
5.9.3. Kruskal’s Algorithm 
5.9.4. Complexity Analysis 

5.10. Backtracking 

5.10.1. Backtracking 
5.10.2. Alternative Techniques 

Module 6. Intelligent Systems 

6.1. Agent Theory 

6.1.1. Concept History 
6.1.2. Agent Definition 
6.1.3. Agents in Artificial Intelligence 
6.1.4. Agents in Software Engineering 

6.2. Agent Architectures 

6.2.1. The Reasoning Process of an Agent 
6.2.2. Reactive Agents 
6.2.3. Deductive Agents 
6.2.4. Hybrid Agents 
6.2.5. Comparison 

6.3. Information and Knowledge 

6.3.1. Difference between Data, Information and Knowledge 
6.3.2. Data Quality Assessment 
6.3.3. Data Collection Methods 
6.3.4. Information Acquisition Methods 
6.3.5. Knowledge Acquisition Methods 

6.4. Knowledge Representation 

6.4.1. The Importance of Knowledge Representation 
6.4.2. Definition of Knowledge Representation According to Roles 
6.4.3. Knowledge Representation Features 

6.5. Ontologies 

6.5.1. Introduction to Metadata 
6.5.2. Philosophical Concept of Ontology 
6.5.3. Computing Concept of Ontology 
6.5.4. Domain Ontologies and Higher-Level Ontologies 
6.5.5. How to Build an Ontology? 

6.6. Ontology Languages and Ontology Creation Software 

6.6.1. Triple RDF, Turtle and N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introduction to Ontology Creation Tools 
6.6.6. Installing and Using Protégé 

6.7. Semantic Web 

6.7.1. Current and Future Status of the Semantic Web 
6.7.2. Semantic Web Applications 

6.8. Other Knowledge Representation Models 

6.8.1. Vocabulary 
6.8.2. Global Vision 
6.8.3. Taxonomy 
6.8.4. Thesauri 
6.8.5. Folksonomy 
6.8.6. Comparison 
6.8.7. Mind Maps 

6.9. Knowledge Representation Assessment and Integration 

6.9.1. Zero-Order Logic 
6.9.2. First-Order Logic 
6.9.3. Descriptive Logic 
6.9.4. Relationship between Different Types of Logic 
6.9.5. Prolog: Programming Based on First-Order Logic 

6.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems 

6.10.1. Concept of Reasoner 
6.10.2. Reasoner Applications 
6.10.3. Knowledge-Based Systems 
6.10.4. MYCIN: History of Expert Systems 
6.10.5. Expert Systems Elements and Architecture 
6.10.6. Creating Expert Systems 

Module 7. Machine Learning and Data Mining 

7.1. Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning 

7.1.1. Key Concepts of Knowledge Discovery Processes 
7.1.2. Historical Perspective of Knowledge Discovery Processes 
7.1.3. Stages of the Knowledge Discovery Processes 
7.1.4. Techniques Used in Knowledge Discovery Processes 
7.1.5. Characteristics of Good Machine Learning Models 
7.1.6. Types of Machine Learning Information 
7.1.7. Basic Learning Concepts 
7.1.8. Basic Concepts of Unsupervised Learning 

7.2. Data Exploration and Pre-processing 

7.2.1. Data Processing 
7.2.2. Data Processing in the Data Analysis Flow 
7.2.3. Types of Data 
7.2.4. Data Transformations 
7.2.5. Visualization and Exploration of Continuous Variables 
7.2.6. Visualization and Exploration of Categorical Variables 
7.2.7. Correlation Measures 
7.2.8. Most Common Graphic Representations 
7.2.9. Introduction to Multivariate Analysis and Dimensionality Reduction 

7.3. Decision Trees 

7.3.1. ID Algorithm 
7.3.2. Algorithm C 
7.3.3. Overtraining and Pruning 
7.3.4. Analysis of Results 

7.4. Evaluation of Classifiers 

7.4.1. Confusion Matrixes 
7.4.2. Numerical Evaluation Matrixes 
7.4.3. Kappa Statistic 
7.4.4. ROC Curves 

7.5. Classification Rules 

7.5.1. Rule Evaluation Measures 
7.5.2. Introduction to Graphic Representation 
7.5.3. Sequential Overlay Algorithm 

7.6. Neural Networks 

7.6.1. Basic Concepts 
7.6.2. Simple Neural Networks 
7.6.3. Backpropagation Algorithm 
7.6.4. Introduction to Recurrent Neural Networks 

7.7. Bayesian Methods 

7.7.1. Basic Probability Concepts 
7.7.2. Bayes' Theorem 
7.7.3. Naive Bayes 
7.7.4. Introduction to Bayesian Networks 

7.8. Regression and Continuous Response Models 

7.8.1. Simple Linear Regression 
7.8.2. Multiple Linear Regression 
7.8.3. Logistic Regression 
7.8.4. Regression Trees 
7.8.5. Introduction to Support Vector Machines (SVM) 
7.8.6. Goodness-of-Fit Measures 

7.9. Clustering 

7.9.1. Basic Concepts 
7.9.2. Hierarchical Clustering 
7.9.3. Probabilistic Methods 
7.9.4. EM Algorithm 
7.9.5. B-Cubed Method 
7.9.6. Implicit Methods 

7.10. Text Mining and Natural Language Processing (NLP) 

7.10.1. Basic Concepts 
7.10.2. Corpus Creation 
7.10.3. Descriptive Analysis 
7.10.4. Introduction to Feelings Analysis 

Module 8. Neural Networks, the Basis of Deep Learning 

8.1. Deep Learning 

8.1.1. Types of Deep Learning 
8.1.2. Applications of Deep Learning 
8.1.3. Advantages and Disadvantages of Deep Learning 

8.2. Surgery 

8.2.1. Sum 
8.2.2. Product 
8.2.3. Transfer 

8.3. Layers 

8.3.1. Input Layer 
8.3.2. Cloak 
8.3.3. Output Layer 

8.4. Union of Layers and Operations 

8.4.1. Architecture Design 
8.4.2. Connection between layers 
8.4.3. Forward propagation 

8.5. Construction of the first neural network 

8.5.1. Network Design 
8.5.2. Establish the Weights 
8.5.3. Network Training 

8.6. Trainer and Optimizer 

8.6.1. Optimizer Selection 
8.6.2. Establishment of a Loss Function 
8.6.3. Establishing a Metric 

8.7. Application of the Principles of Neural Networks 

8.7.1. Activation Functions 
8.7.2. Backward Propagation 
8.7.3. Parameter Adjustment 

8.8. From Biological to Artificial Neurons 

8.8.1. Functioning of a Biological Neuron 
8.8.2. Transfer of Knowledge to Artificial Neurons 
8.8.3. Establish Relations Between the Two 

8.9. Implementation of MLP (Multilayer Perceptron) with Keras 

8.9.1. Definition of the Network Structure 
8.9.2. Model Compilation 
8.9.3. Model Training 

8.10. Fine Tuning  Hyperparameters of Neural Networks 

8.10.1. Selection of the Activation Function 
8.10.2. Set the Learning Rate 
8.10.3. Adjustment of Weights 

Module 9. Deep Neural Networks Training 

9.1. Gradient Problems 

9.1.1. Gradient Optimization Techniques 
9.1.2. Stochastic Gradients 
9.1.3. Weight Initialization Techniques 

9.2. Reuse of Pre-Trained Layers 

9.2.1. Learning Transfer Training 
9.2.2. Feature Extraction 
9.2.3. Deep Learning 

9.3. Optimizers 

9.3.1. Stochastic Gradient Descent Optimizers 
9.3.2. Optimizers Adam and RMSprop 
9.3.3. Moment Optimizers 

9.4. Learning Rate Programming 

9.4.1. Automatic Learning Rate Control 
9.4.2. Learning Cycles 
9.4.3. Smoothing Terms 

9.5. Overfitting 

9.5.1. Cross Validation 
9.5.2. Regularization 
9.5.3. Evaluation Metrics 

9.6. Practical Guidelines 

9.6.1. Model Design 
9.6.2. Selection of Metrics and Evaluation Parameters 
9.6.3. Hypothesis Testing 

9.7. Transfer Learning 

9.7.1. Learning Transfer Training 
9.7.2. Feature Extraction 
9.7.3. Deep Learning 

9.8. Data Augmentation 

9.8.1. Image Transformations 
9.8.2. Synthetic Data Generation 
9.8.3. Text Transformation 

9.9. Practical Application of Transfer Learning 

9.9.1. Learning Transfer Training 
9.9.2. Feature Extraction 
9.9.3. Deep Learning 

9.10. Regularization 

9.10.1. L and L 
9.10.2. Regularization by Maximum Entropy 
9.10.3. Dropout 

Module 10. Model Customization and Training with TensorFlow 

10.1. TensorFlow 

10.1.1. Use of the TensorFlow Library 
10.1.2. Model Training with TensorFlow 
10.1.3. Operations with Graphs in TensorFlow 

10.2. TensorFlow and NumPy 

10.2.1. NumPy Computing Environment for TensorFlow 
10.2.2. Using NumPy Arrays with TensorFlow 
10.2.3. NumPy Operations for TensorFlow Graphs 

10.3. Model Customization and Training Algorithms 

10.3.1. Building Custom Models with TensorFlow 
10.3.2. Management of Training Parameters 
10.3.3. Use of Optimization Techniques for Training 

10.4. TensorFlow Features and Graphs 

10.4.1. Functions with TensorFlow 
10.4.2. Use of Graphs for Model Training 
10.4.3. Graphic Optimization with TensorFlow Operations 

10.5. Loading and Preprocessing Data with TensorFlow 

10.5.1. Loading Data Sets with TensorFlo 
10.5.2. Preprocessing Data with TensorFlow 
10.5.3. Using TensorFlow Tools for Data Manipulation 

10.6. The tf.data API 

10.6.1. Using the tf.dataAPI for Data Processing 
10.6.2. Construction of Data Streams with tf.data 
10.6.3. Using the tf.data API for Model Training 

10.7. The TFRecord Format 

10.7.1. Using the TFRecord API for Data Serialization 
10.7.2. TFRecord File Upload with TensorFlow 
10.7.3. Using TFRecord Files for Model Training 

10.8. Keras Preprocessing Layers 

10.8.1. Using the Keras Preprocessing API 
10.8.2. Preprocessing Pipelined Construction with Keras 
10.8.3. Using the Keras Preprocessing API for Model Training 

10.9. The TensorFlow Datasets Project 

10.9.1. Using TensorFlow Datasets  for Data Loading 
10.9.2. Preprocessing Data with TensorFlow Datasets 
10.9.3. Using TensorFlow Datasets  for Model Training 

10.10. Building a Deep Learning App with TensorFlow 

10.10.1. Practical Application 
10.10.2. Building a Deep Learning App with TensorFlow 
10.10.3. Model Training with TensorFlow 
10.10.4. Use of the Application for the Prediction of Results 

Module 11. Deep Computer Vision with Convolutional Neural Networks 

11.1. The Visual Cortex Architecture 

11.1.1. Functions of the Visual Cortex 
11.1.2. Theories of Computational Vision 
11.1.3. Models of Image Processing 

11.2. Convolutional Layers 

11.2.1. Reuse of Weights in Convolution 
11.2.2. Convolution D 
11.2.3. Activation Functions 

11.3. Grouping Layers and Implementation of Grouping Layers with Keras 

11.3.1. Pooling and Striding 
11.3.2. Flattening 
11.3.3. Types of Pooling 

11.4. CNN Architecture 

11.4.1. VGG Architecture 
11.4.2. AlexNet Architecture 
11.4.3. Architecture ResNet 

11.5. Implementing a CNN ResNet- using Keras 

11.5.1. Weight Initialization 
11.5.2. Input Layer Definition 
11.5.3. Output Definition 

11.6. Use of Pre-trained Keras Models 

11.6.1. Characteristics of Pre-trained Models 
11.6.2. Uses of Pre-trained Models 
11.6.3. Advantages of Pre-trained Models 

11.7. Pre-trained Models for Transfer Learning 

11.7.1. Transfer Learning 
11.7.2. Transfer Learning Process 
11.7.3. Advantages of Transfer Learning 

11.8. Deep Computer Vision Classification and Localization 

11.8.1. Image Classification 
11.8.2. Localization of Objects in Images 
11.8.3. Object Detection 

11.9. Object Detection and Object Tracking 

11.9.1. Object Detection Methods 
11.9.2. Object Tracking Algorithms 
11.9.3. Tracking and Localization Techniques 

11.10. Semantic Segmentation 

11.10.1. Deep Learning for Semantic Segmentation 
11.10.2. Edge Detection 
11.10.3. Rule-based Segmentation Methods 

Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention 

12.1. Text Generation using RNN 

12.1.1. Training an RNN for Text Generation 
12.1.2. Natural Language Generation with RNN 
12.1.3. Text Generation Applications with RNN 

12.2. Training Data Set Creation 

12.2.1. Preparation of the Data for Training an RNN 
12.2.2. Storage of the Training Dataset 
12.2.3. Data Cleaning and Transformation 
12.2.4. Sentiment Analysis 

12.3. Classification of Opinions with RNN 

12.3.1. Detection of Themes in Comments 
12.3.2. Sentiment Analysis with Deep Learning Algorithms 

12.4. Encoder-Decoder Network for Neural Machine Translation 

12.4.1. Training an RNN for Machine Translation 
12.4.2. Use of an Encoder-Decoder Network for Machine Translation 
12.4.3. Improving the Accuracy of Machine Translation with RNNs 

12.5. Attention Mechanisms 

12.5.1. Application of Care Mechanisms in RNN 
12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models 
12.5.3. Advantages of Attention Mechanisms in Neural Networks 

12.6. Transformer Models 

12.6.1. Using Transformers Models for Natural Language Processing 
12.6.2. Application of Transformers Models for Vision 
12.6.3. Advantages of Transformers Models 

12.7. Transformers for Vision 

12.7.1. Use of Transformers Models for Vision 
12.7.2. Image Data Preprocessing 
12.7.3. Training a Transformers Model for Vision 

12.8. Hugging Face’s Transformers Library 

12.8.1. Using the Hugging Face's Transformers Library 
12.8.2. Hugging Face’s Transformers Library Application 
12.8.3. Advantages of Hugging Face’s Transformers Library 

12.9. Other Transformers Libraries. Comparison 

12.9.1. Comparison Between Different Transformers Libraries 
12.9.2. Use of the Other Transformers Libraries 
12.9.3. Advantages of the Other Transformers Libraries 

12.10. Development of an NLP Application with RNN and Attention. Practical Application 

12.10.1. Development of a Natural Language Processing Application with RNN and Attention 
12.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application 
12.10.3. Evaluation of the Practical Application 

Module 13. Autoencoders, GANs , and Diffusion Models 

13.1. Representation of Efficient Data 

13.1.1. Dimensionality Reduction 
13.1.2. Deep Learning 
13.1.3. Compact Representations 

13.2. PCA Realization with an Incomplete Linear Automatic Encoder 

13.2.1. Training Process 
13.2.2. Implementation in Python 
13.2.3. Use of Test Data 

13.3. Stacked Automatic Encoders 

13.3.1. Deep Neural Networks 
13.3.2. Construction of Coding Architectures 
13.3.3. Use of Regularization 

13.4. Convolutional Autoencoders 

13.4.1. Design of Convolutional Models 
13.4.2. Convolutional Model Training 
13.4.3. Results Evaluation 

13.5. Automatic Encoder Denoising 

13.5.1. Filter Application 
13.5.2. Design of Coding Models 
13.5.3. Use of Regularization Techniques 

13.6. Sparse Automatic Encoders 

13.6.1. Increasing Coding Efficiency 
13.6.2. Minimizing the Number of Parameters 
13.6.3. Using Regularization Techniques 

13.7. Variational Automatic Encoders 

13.7.1. Use of Variational Optimization 
13.7.2. Unsupervised Deep Learning 
13.7.3. Deep Latent Representations 

13.8. Generation of Fashion MNIST Images 

13.8.1. Pattern Recognition 
13.8.2. Image Generation 
13.8.3. Deep Neural Networks Training 

13.9. Generative Adversarial Networks and Diffusion Models 

13.9.1. Content Generation from Images 
13.9.2. Modeling of Data Distributions 
13.9.3. Use of Adversarial Networks 

13.10. Implementation of the Models 

13.10.1. Practical Application 
13.10.2. Implementation of the Models 
13.10.3. Use of Real Data 
13.10.4. Results Evaluation 

Module 14. Bio-Inspired Computing

14.1. Introduction to Bio-Inspired Computing 

14.1.1. Introduction to Bio-Inspired Computing 

14.2. Social Adaptation Algorithms 

14.2.1. Bio-Inspired Computation Based on Ant Colonies 
14.2.2. Variants of Ant Colony Algorithms 
14.2.3. Particle Cloud Computing 

14.3. Genetic Algorithms 

14.3.1. General Structure 
14.3.2. Implementations of the Major Operators 

14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms 

14.4.1. CHC Algorithm 
14.4.2. Multimodal Problems 

14.5. Evolutionary Computing Models (I) 

14.5.1. Evolutionary Strategies 
14.5.2. Evolutionary Programming 
14.5.3. Algorithms Based on Differential Evolution 

14.6. Evolutionary Computation Models (II) 

14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA) 
14.6.2. Genetic Programming 

14.7. Evolutionary Programming Applied to Learning Problems 

14.7.1. Rules-Based Learning 
14.7.2. Evolutionary Methods in Instance Selection Problems 

14.8. Multi-Objective Problems 

14.8.1. Concept of Dominance 
14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems 

14.9. Neural Networks (I) 

14.9.1. Introduction to Neural Networks 
14.9.2. Practical Example with Neural Networks 

14.10. Neural Networks (II) 

14.10.1. Use Cases of Neural Networks in Medical Research 
14.10.2. Use Cases of Neural Networks in Economics 
14.10.3. Use Cases of Neural Networks in Artificial Vision 

Module 15. Artificial Intelligence: Strategies and Applications

15.1. Financial Services

15.1.1. The Implications of Artificial Intelligence (AI) in Financial Services.  Opportunities and Challenges
15.1.2. Case Uses
15.1.3. Potential Risks Related to the Use of AI
15.1.4. Potential Future Developments/uses of AI

15.2. Implications of Artificial Intelligence in the Healthcare Service

15.2.1. Implications of AI in the Healthcare Sector. Opportunities and Challenges
15.2.2. Case Uses

15.3. Risks Related to the Use of AI in the Health Service

15.3.1. Potential Risks Related to the Use of AI
15.3.2. Potential Future Developments/uses of AI

15.4. Retail

15.4.1. Implications of AI in Retail. Opportunities and Challenges
15.4.2. Case Uses
15.4.3. Potential Risks Related to the Use of AI
15.4.4. Potential Future Developments/uses of AI

15.5. Industry

15.5.1. Implications of AI in Industry. Opportunities and Challenges
15.5.2. Case Uses

15.6. Potential risks related to the use of AI in industry

15.6.1. Case Uses
15.6.2. Potential Risks Related to the Use of AI
15.6.3. Potential Future Developments/uses of AI

15.7. Public Administration

15.7.1. AI implications for public administration. Opportunities and Challenges
15.7.2. Case Uses
15.7.3. Potential Risks Related to the Use of AI
15.7.4. Potential Future Developments/uses of AI

15.8. Education

15.8.1. AI implications for education. Opportunities and Challenges
15.8.2. Case Uses
15.8.3. Potential Risks Related to the Use of AI
15.8.4. Potential Future Developments/uses of AI

15.9. Forestry and Agriculture

15.9.1. Implications of AI in Forestry and Agriculture. Opportunities and Challenges
15.9.2. Case Uses
15.9.3. Potential Risks Related to the Use of AI
15.9.4. Potential Future Developments/uses of AI

15.10 Human Resources

15.10.1. Implications of AI for Human Resources Opportunities and Challenges
15.10.2. Case Uses
15.10.3. Potential Risks Related to the Use of AI
15.10.4. Potential Future Developments/uses of AI

Module 16. Software Development Productivity Improvement with AI 

16.1. Preparing a Suitable Development Environment 

16.1.1. Essential Tools selection for AI Development  
16.1.2. Configuration of the Selected Tools 
16.1.3. Implementation of CI/CD Pipelines Adapted to AI Projects 
16.1.4. Efficient Management of Dependencies and Versions in Development Environments 

16.2. Essential AI Extensions for Visual Studio Code  

16.2.1. Exploring and Selecting AI Extensions for Visual Studio Code 
16.2.2. Integrating Static and Dynamic Analysis Tools into the Integrated Development Environment (IDE) 
16.2.3. Automation of Repetitive Tasks with Specific Extensions 
16.2.4. Customization of the Development Environment to Improve Efficiency 

16.3. No-Code Design of User Interfaces with AI Elements

16.3.1. No-Code Design Principles and their Application to User Interfaces 
16.3.2. Incorporation of AI Elements in Visual Interface Design 
16.3.3. Tools and Platforms for the No-Code Creation of Intelligent Interfaces 
16.3.4. Evaluation and Continuous Improvement of No-code Interfaces with AI 

16.4. Code Optimization Using ChatGPT

16.4.1. Duplicate Code Detection
16.4.2. Refactor 
16.4.3. Create Readable Code
16.4.4. Understanding What Code Does
16.4.5. Improving Variable and Function Naming
16.4.6. Creating Automatic Documentation

16.5. Repository Management with AI

16.5.1. Automation of Version Control Processes with AI Techniques 
16.5.2. Conflict Detection and Automatic Resolution in Collaborative Environments
16.5.3. Predictive Analysis of Changes and Trends in Code Repositories 
16.5.4. Improvements in the Organization and Categorization of Repositories using AI 

16.6. Integration of AI in Database Management

16.6.1. Optimization of Queries and Performance Using AI Techniques 
16.6.2. Predictive Analysis of Database Access Patterns 
16.6.3. Implementation of Recommender Systems to Optimize Database Structure 
16.6.4. Proactive Monitoring and Detection of Potential Database Problems 

16.7. Fault Detection and Creation of Unit Tests with AI ChatGPT

16.7.1. Automatic Generation of Test Cases using AI Techniques 
16.7.2. Early Detection of Vulnerabilities and Bugs using Static Analysis with AI 
16.7.3. Improving Test Coverage by Identifying Critical Areas by AI 

16.8. Pair Programming with GitHub Copilot

16.8.1. Integration and Effective Use of GitHub Copilot in Pair Programming Sessions 
16.8.2. Integration Improvements in Communication and Collaboration among Developers with GitHub Copilot 
16.8.3. Integration Strategies to Maximize the Use of GitHub Copilot-Generated Code suggestions 
16.8.4. Integration Case Studies and Best Practices in AI-Assisted Pair Programming 

16.9. Automatic Translation between Programming Languages ChatGPT

16.9.1. Specific Machine Translation Tools and Services for Programming Languages 
16.9.2. Adaptation of Machine Translation Algorithms to Development Contexts 
16.9.3. Improvement of Interoperability between Different Languages by Machine Translation 
16.9.4. Assessment and Mitigation of Potential Challenges and Limitations in Machine Translation

16.10. Recommended AI Tools to Improve Productivity 

16.10.1. Comparative Analysis of AI Tools for Software Development 
16.10.2. Integration of AI Tools in Workflows
16.10.3. Automation of Routine Tasks with AI Tools
16.10.4. Evaluation and Selection of Tools Based on Project Context and Requirements 

Module 17. Software Architecture with AI

17.1. Optimization and Performance Management in AI Tools with the help of ChatGPT

17.1.1. Performance Analysis and Profiling in AI tools 
17.1.2. Algorithm Optimization Strategies and AI Models 
17.1.3. Implementation of Caching and Parallelization Techniques to Improve Performance 
17.1.4. Tools and Methodologies for Continuous Real-Time Performance Monitoring 

17.2. Scalability in AI Applications Using ChatGPT

17.2.1. calable Architectures Design for AI Applications 
17.2.2. Implementation of Partitioning and Load Sharing Techniques 
17.2.3. Workflow and Workload Management in Scalable Systems 
17.2.4. Strategies for Horizontal and Vertical Expansion in Variable Demand Environments 

17.3. Maintainability of AI Applications Using ChatGPT

17.3.1. Design Principles to Facilitate Maintainability in IA Projects 
17.3.2. Specific Documentation Strategies for AI Models and Algorithms 
17.3.3. Implementation of Unit and Integration Tests to Facilitate Maintainability 
17.3.4. Methods for Refactoring and Continuous Improvement in Systems with AI Components

17.4. Large-Scale System Design

17.4.1. Architectural Principles for Large-Scale System Design 
17.4.2. Decomposition of Complex Systems into Microservices 
17.4.3. Implementation of Specific Design Patterns for Distributed Systems 
17.4.4. Strategies for Complexity Management in Large-Scale Architectures with AI Components

17.5. Large-Scale Data Warehousing for AI Tools

17.5.1. Selection of Scalable Data Storage Technologies 
17.5.2. Design of Database Schemas for Efficient Handling of Large Data Volumes 
17.5.3. Partitioning and Replication Strategies in Massive Data Storage Environments 
17.5.4. Implementation of Data Management Systems to Ensure Integrity and Availability in AI Projects 

17.6. Data Structures with AI Using ChatGPT

17.6.1. Adaptation of Classical Data Structures for Use with AI Algorithms 
17.6.2. Design and Optimization of Specific Data Structures with ChatGPT
17.6.3. Integration of Efficient Data Structures in Data Intensive Systems 
17.6.4. Strategies for Real-Time Data Manipulation and Storage in AI Data Structures

17.7. Programming Algorithms for AI Products

17.7.1. Development and Implementation of Application-Specific Algorithms for AI Applications 
17.7.2. Algorithm Selection Strategies according to Problem Type and Product Requirements 
17.7.3. Adaptation of Classical Algorithms for Integration into AI Systems 
17.7.4. Evaluation and Performance Comparison between Different Algorithms in Development Contexts with AI

17.8. Design Patterns for AI Development

17.8.1. Identification and Application of Common Design Patterns in Projects with AI Components 
17.8.2. Development of Specific Patterns for the Integration of Models and Algorithms into Existing Systems 
17.8.3. Strategies for the Implementation of Patterns to Improve Reusability and Maintainability in AI Projects 
17.8.4. Case Studies and Best Practices in the Application of Design Patterns in AI Architectures 

17.9. Implementation of Clean Architecture using ChatGPT

17.9.1. Fundamental Principles and Concepts of Clean Architecture
17.9.2. Adaptation of Clean Architecture to Projects with AI Components 
17.9.3. Implementation of Layers and Dependencies in Systems with Clean Architecture 
17.9.4. Benefits and Challenges of Implementing Clean Architecture in Software Development with AI 

17.10. Secure Software Development in Web Applications withDeepCode

17.10.1. Principles of Security in the Development of Software with AI Components 
17.10.2. Identification and Mitigation of Potential Vulnerabilities in AI Models and Algorithms 
17.10.3. Implementation of Secure Development Practices in Web Applications with Artificial Intelligence Functionalities 
17.10.4. Strategies for the Protection of Sensitive Data and Prevention of Attacks in AI projects 

Module 18. Website Projects with AI

18.1. Working Environment Preparation for Web Development with AI

18.1.1. Configuration of Web Development Environments for Projects with Artificial Intelligence 
18.1.2. Selection and Preparation of Essential Tools for Web Development with AI 
18.1.3. Integration of Specific Libraries and Frameworks for Web Projects with Artificial Intelligence 
18.1.4. Implementation of Best Practices in the Configuration of Collaborative Development Environments 

18.2. Workspace Creation for AI Projects with GitHub Copilot

18.2.1. Effective Design and Organization of Workspaces for Web Projects with Artificial Intelligence Components
18.2.2. Use of Project Management and Version Control Tools in the Workspace 
18.2.3. Strategies for Efficient Collaboration and Communication in the Development Team 
18.2.4. Adaptation of the Workspace to the Specific Needs of AI Web Projects 

18.3. Design Patterns in Github Copilot Products

18.3.1. Identification and Application of Common Design Patterns in User Interfaces with Artificial Intelligence Elements 
18.3.2. Development of Specific Patterns to Improve the User Experience in AI Web Projects 
18.3.3. Integration of Design Patterns in the Overall Architecture of Web Projects with Artificial Intelligence 
18.3.4. Evaluation and Selection of Appropriate Design Patterns According to the Project's Context 

18.4. Frontend Development with GitHub Copilot

18.4.1. Integration of AI Models in the Presentation Layer of Web Projects
18.4.2. Development of Adaptive User Interfaces with Artificial Intelligence Elements 
18.4.3. Implementation of Natural Language Processing (NLP) Functionalities in Frontend Development 
18.4.4. Strategies for Performance Optimization in Frontend Development with AI

18.5. Database Creation using GitHub Copilot

18.5.1. Selection of Database Technologies for Web Projects with Artificial Intelligence 
18.5.2. Design of Database Schemas for Storing and Managing AI-Related Data 
18.5.3. Implementation of Efficient Storage Systems for Large Volumes of Data Generated by AI Models 
18.5.4. Strategies for Security and Protection of Sensitive Data in AI Web Project Databases 

18.6. Back-End Development with GitHub Copilot

18.6.1. Integration of AI Services and Models in the Back-End Business Logic 
18.6.2. Development of Specific APIs and Endpoints for Communication between Front-End and AI Components 
18.6.3. Implementation of Data Processing and Decision-Making Logic in the Backend with Artificial Intelligence 
18.6.4. Strategies for Scalability and Performance in Back-End Development of Web Projects with AI

18.7. Optimization of the Deployment Process of Your Website

18.7.1. Automation of Web Project Build and Deployment Processes with ChatGPT
18.7.2. Implementing CI/CD Pipelines Tailored to Web Applications with Github Copilot
18.7.3. Strategies for Efficient Release and Upgrade Management in Continuous Deployments 
18.7.4. Post-Deployment Monitoring and Analysis for Continuous Process Improvement

18.8. AI in Cloud Computing

18.8.1. Integration of Artificial Intelligence Services in Cloud Computing Platforms 
18.8.2. Development of Scalable and Distributed Solutions using Cloud Services with AI Capabilities 
18.8.3. Strategies for Efficient Resource and Cost Management in Cloud Environments with AI-enabled Web Applications 
18.8.4. Evaluation and Comparison of Cloud Service Providers for AI-enabled Web Projects

18.9. Creating an AI Project for LAMP Environments with the Help of ChatGPT

18.9.1. Adaptation of Web Projects Based on the LAMP Stack to Include Artificial Intelligence Components 
18.9.2. Integration of AI-specific Libraries and Frameworks in LAMP Environments 
18.9.3. Development of AI Functionalities that Complement the Traditional LAMP Architecture
18.9.4. Strategies for Optimization and Maintenance in Web Projects with AI in LAMP Environments

18.10. Creating an AI Project for MEVN Environments Using ChatGPT

18.10.1. Integration of MEVN Stack Technologies and Tools with Artificial Intelligence Components 
18.10.2. Development of Modern and Scalable Web Applications in MEVN Environments with AI Capabilities 
18.10.3. Implementation of Data Processing and Machine Learning functionalities in MEVN Projects 
18.10.4. Strategies for Performance and Security Enhancement of AI-enabled Web Applications in MEVN Environments 

Module 19. Mobile Applications with AI   

19.1. Working Environment Preparation for mobile Development with AI

19.1.1. Configuration of Mobile Development Environments for Projects with Artificial Intelligence
19.1.2. Selection and Preparation of Specific Tools for Mobile Application Development with AI 
19.1.3. Integration of AI-Libraries and Frameworks in Mobile Development Environments 
19.1.4. Configuration of Emulators and Real Devices for Testing Mobile Applications with AI Components 

19.2. Creation of a Workspace with GitHub Copilot

19.2.1. Integration of GitHub Copilot in Mobile Development Environments 
19.2.2. Effective Use of GitHub Copilot for Code Generation in AI Projects 
19.2.3. Strategies for Developer Collaboration when Using GitHub Copilot in the Workspace 
19.2.4. Best Practices and Limitations in the Use of GitHub Copilot in Mobile Application Development with AI

19.3. Firebase Configuration

19.3.1. Initial Configuration of a Firebase Project for Mobile Development 
19.3.2. Firebase Integration in Mobile Applications with Artificial Intelligence Functionality 
19.3.3. Use of Firebase Services as Database, Authentication, and Notifications in AI projects 
19.3.4. Strategies for Real-Time Data and Event Management in Firebase-enabled Mobile Applications

19.4. Concepts of Clean Architecture, DataSources, Repositories

19.4.1. Fundamental Principles of Clean Architecture in Mobile Development with AI 
19.4.2. Implementation of DataSources and Repositories Layers with GitHub Copilot
19.4.3. Design and Structuring of Components in Mobile Projects with Github Copilot
19.4.4. Benefits and Challenges of Implementing Clean Architecture in Mobile Applications with AI

19.5. Creating Authentication Screen with GitHub Copilot

19.5.1. Design and Development of User Interfaces for Authentication Screens in Mobile Applications with IA 
19.5.2. Integration of Authentication Services with Firebase in the Login Screen
19.5.3. Use of Security and Data Protection Techniques in the Authentication Screen 
19.5.4. Personalization and Customization of the User Experience in the Authentication Screen 

19.6. Creating Dashboard and Navigation with GitHub Copilot

19.6.1. Dashboard Design and Development with Artificial Intelligence Elements 
19.6.2. Implementation of Efficient Navigation Systems in Mobile Applications with AI 
19.6.3. Integration of AI Functionalities in the Dashboard to Improve User Experience

19.7. Listing Screen Creation using GitHub Copilot

19.7.1. Development of User Interfaces for Listing Screens in AI-enabled Mobile Applications 
19.7.2. Integration of Recommendation and Filtering Algorithms into the Listing Screen 
19.7.3. Use of Design Patterns for Effective Presentation of Data in the Listing Screen 
19.7.4. Strategies for Efficient Loading of Real-Time Data into the Listing Screen 

19.8. Creating Details Screen with GitHub Copilot

19.8.1. Design and Development of Detailed User Interfaces for the Presentation of Specific Information
19.8.2. Integration of AI Functionalities to Enrich the Detailed Screen 
19.8.3. Implementation of Interactions and Animations in the Detailed Screen 
19.8.4. Strategies for Performance Optimization in Loading and Detail Display in AI-enabled Mobile Applications 

19.9. Creating a Settings Screen with GitHub Copilot

19.9.1. Development of User Interfaces for Configuration and Settings in AI-enabled Mobile Applications 
19.9.2. Integration of Customized Settings Related to Artificial Intelligence Components 
19.9.3. Implementation of Customized Options and Preferences in the Settings Screen 
19.9.4. Strategies for Usability and Clarity in the Presentation of Options in the Settings Screen 

19.10. Creation of Icons, Splash and Graphic Resources for Your App with AI  

19.10.1. Design and Creation of Attractive Icons to Represent the AI Mobile Application 
19.10.2. Development of Splash Screens with Impactful Visuals 
19.10.3. Selection and Adaptation of Graphic Resources to Enhance the Aesthetics of the Mobile Application 
19.10.4. Strategies for Consistency and Visual Branding in the Graphic Elements of the Application with AI 

Module 20. AI for QA Testing 

20.1. Software Testing Life Cycle

20.1.1. Description and Understanding of the Testing Life Cycle in Software Development
20.1.2. Phases of the Testing Life Cycle and its Importance in Quality Assurance 
20.1.3. Integration of Artificial Intelligence in Different Stages of the Testing Life Cycle 
20.1.4. Strategies for Continuous Improvement of the Testing Life Cycle using AI 

20.2. Test Cases and Bug Detection with the Help of ChatGPT

20.2.1. Effective Test Case Design and Writing in the Context of QA Testing 
20.2.2. Identification of Bugs and Errors during Test Case Execution 
20.2.3. Application of Early Bug Detection Techniques using Static Analysis 
20.2.4. Use of Artificial Intelligence Tools for the Automatic Identification of Bugs in Test Cases 

20.3. Types of Testing

20.3.1. Exploration of Different Types of Testing in the QA Environment 
20.3.2. Unit, Integration, Functional, and Acceptance Testing: Characteristics and Applications 
20.3.3. Strategies for the Selection and Appropriate Combination of Testing Types in Projects with ChatGPT
20.3.4. Adaptation of Conventional Testing Types to Projects with ChatGPT

20.4. Creation of a Testing Plan Using ChatGPT

20.4.1. Design and Structure of a Comprehensive Testing Plan 
20.4.2. Identification of Requirements and Test Scenarios in AI Projects 
20.4.3. Strategies for Manual and Automated Test Planning 
20.4.4. Continuous Evaluation and Adjustment of the Testing Plan as the Project Develops 

20.5. AI Bug Detection and Reporting

20.5.1. Implementation of Automatic Bug Detection Techniques using Machine Learning Algorithms
20.5.2. Use of ChatGPT for Dynamic Code Analysis to Search for Possible Bugs
20.5.3. Strategies for Automatic Generation of Detailed Reports on Bugs Detected Using ChatGPT 
20.5.4. Effective Collaboration between Development and QA Teams in the Management of AI-Detected Bugs

20.6. Creation of Automated Testing with AI

20.6.1. Development of Automated Test Scripts for Projects Using ChatGPT
20.6.2. Integration of AI-Based Test Automation Tools
20.6.3. Using ChatGPT for Dynamic Generation of Automated Test Cases
20.6.4. Strategies for Efficient Execution and Maintenance of Automated Test Cases in AI Projects

20.7. API Testing

20.7.1. Fundamental Concepts of API Testing and its Importance in QA 
20.7.2. Development of Tests for the Verification of APIs in Environments Using ChatGPT
20.7.3. Strategies for Data and Results Validation in API Testing with ChatGPT
20.7.4. Use of Specific Tools for API Testing in Projects with Artificial Intelligence

20.8. AI Tools for Web Testing

20.8.1. Exploration of Artificial Intelligence Tools for Test Automation in Web Environments 
20.8.2. Integration of Element Recognition and Visual Analysis Technologies in Web Testing 
20.8.3. Strategies for Automatic Detection of Changes and Performance Problems in Web Applications Using ChatGPT
20.8.4. Evaluation of Specific Tools for Improving Efficiency in Web Testing with AI

20.9. Mobile Testing Using AI

20.9.1. Development of Testing Strategies for Mobile Applications with AI Components 
20.9.2. Integration of Specific Testing Tools for AI-Based Mobile Platforms 
20.9.3. Use of ChatGPT for Detecting Performance Problems in Mobile Applications
20.9.4. Strategies for the Validation of Interfaces and Specific Functions of Mobile Applications by AI 

20.10. QA Tools with AI

20.10.1. Exploration of QA Tools and Platforms that Incorporate Artificial Intelligence Functionality
20.10.2. Evaluation of Tools for Efficient Test Management and Test Execution in AI Projects 
20.10.3. Using ChatGPT for the Generation and Optimization of Test Cases
20.10.4. Strategies for Effective Selection and Adoption of QA Tools with AI Capabilities 

estudiar artificial intelligence programming TECH Global University

You will have access to a library of multimedia resources 7 days a week, 24 hours a day"

Hybrid Professional Master's Degree in Artificial Intelligence in Programming

Explore the frontiers of programming with the Hybrid Professional Master's Degree in Artificial Intelligence in Programming from TECH Global University. This innovative program combines online theoretical learning with face-to-face internships at our specialized center, providing you with a comprehensive academic experience tailored to the demands of today's market. At our institute, we are committed to offering an education of excellence that prepares students to face the challenges of the digital world. Our blended learning approach offers you flexibility without sacrificing quality, ensuring that you acquire both in-depth theoretical knowledge and practical skills. The postgraduate program will immerse you in the fascinating world of artificial intelligence applied to programming, exploring everything from the fundamentals of machine learning algorithms to their implementation in real projects. You will learn to develop intelligent systems, optimize processes and solve complex problems using cutting-edge tools and techniques.

Get your degree from the best Faculty of Computer Science

Do you know why TECH is considered one of the best universities in the world? Because we have a catalog of more than ten thousand academic programs, presence in multiple countries, innovative methodologies, unique academic technology and a highly qualified teaching staff; that's why you can't miss the opportunity to study with us. Upon graduation, you will be prepared to lead innovative projects in various areas, from process automation to the creation of advanced solutions for companies and organizations. In addition to advanced technical skills, you will develop competencies in critical analysis, decision making and team collaboration, essential skills to stand out in a competitive and dynamic job market. Join TECH's outstanding Computer Science faculty where you will have access to world-class academic resources and the guidance of industry-experienced professionals. Our goal is to prepare you to be a leader in technology, capable of meeting future challenges with confidence and creativity. Enroll today and take the first step toward a promising future in the digital world.