Description

You will be able to optimize the potential of data warehousing thanks to this intensive academic itinerary of TECH, the best digital university in the world according to Forbes” 

##IMAGE##

Machine Learning is in constant growth and demand in various industries, which is generating a high demand for professionals skilled in this area. To take advantage of these opportunities, specialists need to gain competitive advantages that differentiate them from other candidates. The best way to stand out is for experts to have a solid understanding of the subject matter, staying abreast of all developments in the field. In tune with this, it is vital that they acquire advanced skills that will enable them to effectively handle AI tools. Only then will they be able to open the doors to a variety of job opportunities in fields such as technology, healthcare or automotive. 

Precisely to help them with this task, TECH is developing a program that will delve into the essential fundamentals of AI. Designed by experts in the field, the curriculum will delve into the integration of Cognitive Computing in mass-use applications. In this way, students will understand how these platforms serve to optimize both user experiences and operational efficiency. Likewise, the syllabus will address in detail the training of deep neural networks, applying gradient optimization and weight initialization techniques. On the other hand, students will master Autoencoders, GANs and Diffusion Models in order to perform efficient data representations.  

It should be noted that this university degree has a 100% online methodology, in which the graduate only needs a device connected to the internet (such as a cell phone, tablet or computer) to access the Virtual Campus and enjoy the most dynamic teaching resources in the academic market. In addition, the innovative Relearning methodology allows students to assimilate knowledge in a natural way, reinforced with audiovisual resources to ensure that it remains in the memory and over time. 

You will apply the B-Cube Method to your procedures and effectively evaluate the quality of classification in multi-label problems” 

This Professional master’s degree in Artificial Intelligence  contains the most complete and up-to-date program on the market. The most important features include:

  • Development of practical cases presented by experts in Artificial Intelligence 
  • The graphic, schematic and practical contents with which it is conceived provide cutting- Therapeutics and practical information on those disciplines that are essential for professional practice
  • Practical exercises where self-assessment can be used to improve learning
  • Its special emphasis on innovative methodologies  
  • Theoretical lessons, questions to the expert, debate forums on controversial topics, and individual reflection assignments 
  • Content that is accessible from any fixed or portable device with an Internet connection 

You will achieve your objectives thanks to TECH's teaching tools, including explanatory videos and interactive summaries" 

The program’s teaching staff includes professionals from the sector who contribute their work experience to this specializing program, as well as renowned specialists from leading societies and prestigious universities.  

The multimedia content, developed with the latest educational technology, will provide the professional with situated and contextual learning, i.e., a simulated environment that will provide immersive education programmed to learn in real situations.  

This program is designed around Problem-Based Learning, whereby the professional must try to solve the different professional practice situations that arise during the course. For this purpose, students will be assisted by an innovative interactive video system created by renowned and experienced experts.

You will handle data preprocessing with TensorFlow to improve the quality and performance of the final models"

##IMAGE##

The Relearning methodology used in this university degree will allow you to learn in an autonomous and progressive way"

Syllabus

This program will provide students with a solid understanding of Machine Learning. Designed by experts in the field, the curriculum will delve into both the development of algorithms and models that will allow machines to focus on patterns and perform tasks without having been specifically programmed for such work. The syllabus will also delve into Neural Networks, given their importance for training models to perform tasks such as natural language processing. On the other hand, the training will offer advanced strategies of space exploration-exploitation for genetic algorithms. 

##IMAGE##

You will delve into Graph Algorithms to solve a variety of problems involving relationships and connections between elements”

Module 1. Fundamentals of Artificial Intelligence

1.1. History of Artificial Intelligence 

1.1.1. When Do We Start Talking About Artificial Intelligence?
1.1.2. References in Film 
1.1.3. Importance of Artificial Intelligence 
1.1.4. Technologies that Enable and Support Artificial Intelligence 

1.2. Artificial Intelligence in Games 

1.2.1. Game Theory 
1.2.2. Minimax and Alpha-Beta Pruning 
1.2.3. Simulation: Monte Carlo 

1.3. Neural Networks 

1.3.1. Biological Fundamentals 
1.3.2. Computational Model 
1.3.3. Supervised and Unsupervised Neural Networks 
1.3.4. Simple Perceptron 
1.3.5. Multilayer Perceptron 

1.4. Genetic Algorithms 

1.4.1. History 
1.4.2. Biological Basis 
1.4.3. Problem Coding 
1.4.4. Generation of the Initial Population 
1.4.5. Main Algorithm and Genetic Operators 
1.4.6. Evaluation of Individuals: Fitness 

1.5. Thesauri, Vocabularies, Taxonomies 

1.5.1. Vocabulary 
1.5.2. Taxonomy 
1.5.3. Thesauri 
1.5.4. Ontologies 
1.5.5. Knowledge Representation: Semantic Web 

1.6. Semantic Web 

1.6.1. Specifications RDF, RDFS and OWL 
1.6.2. Inference/ Reasoning 
1.6.3. Linked Data 

1.7. Expert Systems and DSS 

1.7.1. Expert Systems 
1.7.2. Decision Support Systems 

1.8. Chatbots and Virtual Assistants

1.8.1. Types of Assistants: Voice and Text Assistants
1.8.2. Fundamental Parts for the Development of an Assistant: Intents, Entities and Dialog Flow 
1.8.3. Integrations: Web, Slack, Whatsapp, Facebook 
1.8.4. Assistant Development Tools: Dialog Flow, Watson Assistant

1.9. AI Implementation Strategy 
1.10. Future of Artificial Intelligence

1.10.1. Understand How to Detect Emotions Using Algorithms
1.10.2. Creating a Personality: Language, Expressions and Content
1.10.3. Trends of Artificial Intelligence
1.10.4. Reflections

Module 2. Data Types and Data Life Cycle 

2.1. Statistics

2.1.1. Statistics: Descriptive Statistics, Statistical Inferences
2.1.2. Population, Sample, Individual
2.1.3. Variables: Definition, Measurement Scales

2.2. Types of Data Statistics

2.2.1. According to Type

2.2.1.1. Quantitative: Continuous Data and Discrete Data
2.2.1.2. Qualitative: Binomial Data, Nominal Data and Ordinal Data 

2.2.2. According to their Shape 

2.2.2.1. Numeric
2.2.2.2. Text
2.2.2.3. Logical

2.2.3. According to its Source

2.2.3.1. Primary
2.2.3.2. Secondary

2.3. Life Cycle of Data

2.3.1. Stages of the Cycle
2.3.2. Milestones of the Cycle
2.3.3. FAIR Principles

2.4. Initial Stages of the Cycle

2.4.1. Definition of Goals
2.4.2. Determination of Resource Requirements
2.4.3. Gantt Chart
2.4.4. Data Structure

2.5. Data Collection

2.5.1. Methodology of Data Collection
2.5.2. Data Collection Tools
2.5.3. Data Collection Channels

2.6. Data Cleaning

2.6.1. Phases of Data Cleansing
2.6.2. Data Quality
2.6.3. Data Manipulation (with R)

2.7. Data Analysis, Interpretation and Evaluation of Results

2.7.1. Statistical Measures
2.7.2. Relationship Indexes
2.7.3. Data Mining

2.8. Datawarehouse

2.8.1. Elements that Comprise it
2.8.2. Design
2.8.3. Aspects to Consider

2.9. Data Availability

2.9.1. Access
2.9.2. Uses
2.9.3. Security

2.10. Regulatory Framework 

2.10.1. Data Protection Law
2.10.2. Good Practices
2.10.3. Other Regulatory Aspects

Module 3. Data in Artificial Intelligence 

3.1. Data Science 

3.1.1. Data Science 
3.1.2. Advanced Tools for Data Scientists 

3.2. Data, Information and Knowledge 

3.2.1. Data, Information and Knowledge
3.2.2. Types of Data 
3.2.3. Data Sources 

3.3. From Data to Information

3.3.1. Data Analysis 
3.3.2. Types of Analysis 
3.3.3. Extraction of Information from a Dataset 

3.4. Extraction of Information Through Visualization 

3.4.1. Visualization as an Analysis Tool 
3.4.2. Visualization Methods
3.4.3. Visualization of a Data Set 

3.5. Data Quality 

3.5.1. Quality Data 
3.5.2. Data Cleaning
3.5.3. Basic Data Pre-Processing 

3.6. Dataset 

3.6.1. Dataset Enrichment 
3.6.2. The Curse of Dimensionality 
3.6.3. Modification of Our Data Set 

3.7. Unbalance

3.7.1. Classes of Unbalance 
3.7.2. Unbalance Mitigation Techniques 
3.7.3. Balancing a Dataset 

3.8. Unsupervised Models

3.8.1. Unsupervised Model 
3.8.2. Methods 
3.8.3. Classification with Unsupervised Models 

3.9. Supervised Models 

3.9.1. Supervised Model 
3.9.2. Methods 
3.9.3. Classification with Supervised Models 

3.10. Tools and Good Practices 

3.10.1. Good Practices for Data Scientists 
3.10.2. The Best Model
3.10.3. Useful Tools 

Module 4. Data Mining: Selection, Pre-Processing and Transformation 

4.1. Statistical Inference 

4.1.1. Descriptive Statistics vs. Statistical Inference 
4.1.2. Parametric Procedures 
4.1.3. Non-Parametric Procedures 

4.2. Exploratory Analysis 

4.2.1. Descriptive Analysis
4.2.2. Visualization 
4.2.3. Data Preparation 

4.3. Data Preparation 

4.3.1. Integration and Data Cleaning
4.3.2. Normalization of Data 
4.3.3. Transforming Attributes

4.4. Missing Values 

4.4.1. Treatment of Missing Values 
4.4.2. Maximum Likelihood Imputation Methods 
4.4.3. Missing Value Imputation Using Machine Learning 

4.5. Noise in the Data

4.5.1. Noise Classes and Attributes 
4.5.2. Noise Filtering
4.5.3. The Effect of Noise 

4.6. The Curse of Dimensionality 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Multidimensional Data Reduction 

4.7. From Continuous to Discrete Attributes 

4.7.1. Continuous Data Vs. Discreet Data 
4.7.2. Discretization Process 

4.8. The Data

4.8.1. Data Selection
4.8.2. Prospects and Selection Criteria 
4.8.3. Selection Methods

4.9. Instance Selection 

4.9.1. Methods for Instance Selection 
4.9.2. Prototype Selection 
4.9.3. Advanced Methods for Instance Selection 

4.10. Data Pre-Processing in Big Data Environments 

Module 5. Algorithm and Complexity in Artificial Intelligence 

5.1. Introduction to Algorithm Design Strategies 

5.1.1. Recursion 
5.1.2. Divide and Conquer 
5.1.3. Other Strategies 

5.2. Efficiency and Analysis of Algorithms 

5.2.1. Efficiency Measures 
5.2.2. Measuring the Size of the Input 
5.2.3. Measuring Execution Time 
5.2.4. Worst, Best and Average Case 
5.2.5. Asymptotic Notation 
5.2.6. Mathematical Analysis Criteria for Non-Recursive Algorithms 
5.2.7. Mathematical Analysis of Recursive Algorithms 
5.2.8. Empirical Analysis of Algorithms 

5.3. Sorting Algorithms 

5.3.1. Concept of Sorting 
5.3.2. Bubble Sorting 
5.3.3. Sorting by Selection 
5.3.4. Sorting by Insertion 
5.3.5. Merge Sort 
5.3.6. Quick Sort 

5.4. Algorithms with Trees 

5.4.1. Tree Concept 
5.4.2. Binary Trees 
5.4.3. Tree Paths 
5.4.4. Representing Expressions 
5.4.5. Ordered Binary Trees 
5.4.6. Balanced Binary Trees 

5.5. Algorithms Using Heaps 

5.5.1. Heaps 
5.5.2. The Heapsort Algorithm 
5.5.3. Priority Queues 

5.6. Graph Algorithms 

5.6.1. Representation 
5.6.2. Traversal in Width 
5.6.3. Depth Travel 
5.6.4. Topological Sorting 

5.7. Greedy Algorithms 

5.7.1. Greedy Strategy 
5.7.2. Elements of the Greedy Strategy 
5.7.3. Currency Exchange 
5.7.4. Traveler’s Problem 
5.7.5. Backpack Problem 

5.8. Minimal Path Finding 

5.8.1. The Minimum Path Problem 
5.8.2. Negative Arcs and Cycles 
5.8.3. Dijkstra's Algorithm 

5.9. Greedy Algorithms on Graphs 

5.9.1. The Minimum Covering Tree 
5.9.2. Prim's Algorithm 
5.9.3. Kruskal’s Algorithm 
5.9.4. Complexity Analysis 

5.10. Backtracking 

5.10.1. Backtracking 
5.10.2. Alternative Techniques 

Module 6. Intelligent Systems 

6.1. Agent Theory 

6.1.1. Concept History 
6.1.2. Agent Definition 
6.1.3. Agents in Artificial Intelligence 
6.1.4. Agents in Software Engineering 

6.2. Agent Architectures 

6.2.1. The Reasoning Process of an Agent 
6.2.2. Reactive Agents 
6.2.3. Deductive Agents 
6.2.4. Hybrid Agents 
6.2.5. Comparison 

6.3. Information and Knowledge 

6.3.1. Difference between Data, Information and Knowledge 
6.3.2. Data Quality Assessment 
6.3.3. Data Collection Methods 
6.3.4. Information Acquisition Methods 
6.3.5. Knowledge Acquisition Methods 

6.4. Knowledge Representation 

6.4.1. The Importance of Knowledge Representation 
6.4.2. Definition of Knowledge Representation According to Roles 
6.4.3. Knowledge Representation Features 

6.5. Ontologies 

6.5.1. Introduction to Metadata 
6.5.2. Philosophical Concept of Ontology 
6.5.3. Computing Concept of Ontology 
6.5.4. Domain Ontologies and Higher-Level Ontologies 
6.5.5. How to Build an Ontology 

6.6. Ontology Languages and Ontology Creation Software 

6.6.1. Triple RDF, Turtle and N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introduction to Ontology Creation Tools 
6.6.6. Installing and Using Protégé 

6.7. Semantic Web 

6.7.1. Current and Future Status of the Semantic Web 
6.7.2. Semantic Web Applications 

6.8. Other Knowledge Representation Models 

6.8.1. Vocabulary 
6.8.2. Global Vision 
6.8.3. Taxonomy 
6.8.4. Thesauri 
6.8.5. Folksonomy 
6.8.6. Comparison 
6.8.7. Mind Maps 

6.9. Knowledge Representation Assessment and Integration 

6.9.1. Zero-Order Logic 
6.9.2. First-Order Logic 
6.9.3. Descriptive Logic 
6.9.4. Relationship between Different Types of Logic 
6.9.5. Prolog: Programming Based on First-Order Logic 

6.10. Semantic Reasoners, Knowledge-Based Systems and Expert Systems 

6.10.1. Concept of Reasoner 
6.10.2. Reasoner Applications 
6.10.3. Knowledge-Based Systems 
6.10.4. MYCIN: History of Expert Systems 
6.10.5. Expert Systems Elements and Architecture 
6.10.6. Creating Expert Systems 

Module 7. Machine Learning and Data Mining 

7.1. Introduction to Knowledge Discovery Processes and Basic Concepts of Machine Learning 

7.1.1. Key Concepts of Knowledge Discovery Processes 
7.1.2. Historical Perspective of Knowledge Discovery Processes 
7.1.3. Stages of the Knowledge Discovery Processes 
7.1.4. Techniques Used in Knowledge Discovery Processes 
7.1.5. Characteristics of Good Machine Learning Models 
7.1.6. Types of Machine Learning Information 
7.1.7. Basic Learning Concepts 
7.1.8. Basic Concepts of Unsupervised Learning 

7.2. Data Exploration and Pre-processing 

7.2.1. Data Processing 
7.2.2. Data Processing in the Data Analysis Flow 
7.2.3. Types of Data 
7.2.4. Data Transformations 
7.2.5. Visualization and Exploration of Continuous Variables 
7.2.6. Visualization and Exploration of Categorical Variables 
7.2.7. Correlation Measures 
7.2.8. Most Common Graphic Representations 
7.2.9. Introduction to Multivariate Analysis and Dimensionality Reduction 

7.3. Decision Trees 

7.3.1. ID Algorithm 
7.3.2. Algorithm C 
7.3.3. Overtraining and Pruning 
7.3.4. Result Analysis 

7.4. Evaluation of Classifiers 

7.4.1. Confusion Matrixes 
7.4.2. Numerical Evaluation Matrixes 
7.4.3. Kappa Statistic 
7.4.4. ROC Curves 

7.5. Classification Rules 

7.5.1. Rule Evaluation Measures 
7.5.2. Introduction to Graphic Representation 
7.5.3. Sequential Overlay Algorithm 

7.6. Neural Networks 

7.6.1. Basic Concepts 
7.6.2. Simple Neural Networks 
7.6.3. Backpropagation Algorithm 
7.6.4. Introduction to Recurrent Neural Networks 

7.7. Bayesian Methods 

7.7.1. Basic Probability Concepts 
7.7.2. Bayes' Theorem 
7.7.3. Naive Bayes 
7.7.4. Introduction to Bayesian Networks 

7.8. Regression and Continuous Response Models 

7.8.1. Simple Linear Regression 
7.8.2. Multiple Linear Regression 
7.8.3. Logistic Regression 
7.8.4. Regression Trees 
7.8.5. Introduction to Support Vector Machines (SVM) 
7.8.6. Goodness-of-Fit Measures 

7.9. Clustering 

7.9.1. Basic Concepts 
7.9.2. Hierarchical Clustering 
7.9.3. Probabilistic Methods 
7.9.4. EM Algorithm 
7.9.5. B-Cubed Method 
7.9.6. Implicit Methods 

7.10. Text Mining and Natural Language Processing (NLP) 

7.10.1. Basic Concepts 
7.10.2. Corpus Creation 
7.10.3. Descriptive Analysis 
7.10.4. Introduction to Feelings Analysis 

Module 8. Neural Networks, the Basis of Deep Learning 

8.1. Deep Learning 

8.1.1. Types of Deep Learning 
8.1.2. Applications of Deep Learning 
8.1.3. Advantages and Disadvantages of Deep Learning 

8.2. Surgery 

8.2.1. Sum 
8.2.2. Product 
8.2.3. Transfer 

8.3. Layers 

8.3.1. Input Layer 
8.3.2. Hidden Layer 
8.3.3. Output Layer 

8.4. Union of Layers and Operations 

8.4.1. Architecture Design 
8.4.2. Connection between Layers 
8.4.3. Forward Propagation 

8.5. Construction of the First Neural Network 

8.5.1. Network Design 
8.5.2. Establish the Weights 
8.5.3. Network Training 

8.6. Trainer and Optimizer 

8.6.1. Optimizer Selection 
8.6.2. Establishment of a Loss Function 
8.6.3. Establishing a Metric 

8.7. Application of the Principles of Neural Networks 

8.7.1. Activation Functions 
8.7.2. Backward Propagation 
8.7.3. Parameter Adjustment 

8.8. From Biological to Artificial Neurons 

8.8.1. Functioning of a Biological Neuron 
8.8.2. Transfer of Knowledge to Artificial Neurons 
8.8.3. Establish Relations Between the Two 

8.9. Implementation of MLP (Multilayer Perceptron) with Keras 

8.9.1. Definition of the Network Structure 
8.9.2. Model Compilation 
8.9.3. Model Training 

8.10. Fine Tuning Hyperparameters of Neural Networks 

8.10.1. Selection of the Activation Function 
8.10.2. Set the Learning Rate 
8.10.3. Adjustment of Weights 

Module 9. Deep Neural Networks Training 

9.1. Gradient Problems 

9.1.1. Gradient Optimization Techniques 
9.1.2. Stochastic Gradients 
9.1.3. Weight Initialization Techniques 

9.2. Reuse of Pre-Trained Layers 

9.2.1. Learning Transfer Training 
9.2.2. Feature Extraction 
9.2.3. Deep Learning 

9.3. Optimizers 

9.3.1. Stochastic Gradient Descent Optimizers 
9.3.2. Optimizers Adam and RMSprop 
9.3.3. Moment Optimizers 

9.4. Learning Rate Programming 

9.4.1. Automatic Learning Rate Control 
9.4.2. Learning Cycles 
9.4.3. Smoothing Terms 

9.5. Overfitting 

9.5.1. Cross Validation 
9.5.2. Regularization 
9.5.3. Evaluation Metrics 

9.6. Practical Guidelines 

9.6.1. Model Design 
9.6.2. Selection of Metrics and Evaluation Parameters 
9.6.3. Hypothesis Testing 

9.7. Transfer Learning 

9.7.1. Learning Transfer Training 
9.7.2. Feature Extraction 
9.7.3. Deep Learning 

9.8. Data Augmentation 

9.8.1. Image Transformations 
9.8.2. Synthetic Data Generation 
9.8.3. Text Transformation 

9.9. Practical Application of Transfer Learning 

9.9.1. Learning Transfer Training 
9.9.2. Feature Extraction 
9.9.3. Deep Learning 

9.10. Regularization 

9.10.1. L and L 
9.10.2. Regularization by Maximum Entropy 
9.10.3. Dropout 

Module 10. Model Customization and Training with TensorFlow 

10.1. TensorFlow 

10.1.1. Use of the TensorFlow Library 
10.1.2. Model Training with TensorFlow 
10.1.3. Operations with Graphs in TensorFlow 

10.2. TensorFlow and NumPy 

10.2.1. NumPy Computing Environment for TensorFlow 
10.2.2. Using NumPy Arrays with TensorFlow 
10.2.3. NumPy Operations for TensorFlow Graphs 

10.3. Model Customization and Training Algorithms 

10.3.1. Building Custom Models with TensorFlow 
10.3.2. Management of Training Parameters 
10.3.3. Use of Optimization Techniques for Training 

10.4. TensorFlow Features and Graphs 

10.4.1. Functions with TensorFlow 
10.4.2. Use of Graphs for Model Training 
10.4.3. Grap Optimization with TensorFlow Operations 

10.5. Loading and Preprocessing Data with TensorFlow 

10.5.1. Loading Data Sets with TensorFlow 
10.5.2. Preprocessing Data with TensorFlow 
10.5.3. Using TensorFlow Tools for Data Manipulation 

10.6. The tfdata API 

10.6.1. Using the tf.data API for Data Processing 
10.6.2. Construction of Data Streams with tf.data 
10.6.3. Using the tf.data API for Model Training 

10.7. The TFRecord Format 

10.7.1. Using the TFRecord API for Data Serialization 
10.7.2. TFRecord File Upload with TensorFlow 
10.7.3. Using TFRecord Files for Model Training 

10.8. Keras Preprocessing Layers 

10.8.1. Using the Keras Preprocessing API 
10.8.2. Preprocessing Pipelined Construction with Keras 
10.8.3. Using the Keras Preprocessing API for Model Training 

10.9. The TensorFlow Datasets Project 

10.9.1. Using TensorFlow Datasets for Data Loading 
10.9.2. Preprocessing Data with TensorFlow Datasets 
10.9.3. Using TensorFlow Datasets for Model Training 

10.10. Building a Deep Learning App with TensorFlow 

10.10.1. Practical Application 
10.10.2. Building a Deep Learning App with TensorFlow 
10.10.3. Model Training with TensorFlow 
10.10.4. Use of the Application for the Prediction of Results 

Module 11. Deep Computer Vision with Convolutional Neural Networks 

11.1. The Visual Cortex Architecture 

11.1.1. Functions of the Visual Cortex 
11.1.2. Theories of Computational Vision 
11.1.3. Models of Image Processing 

11.2. Convolutional Layers 

11.2.1. Reuse of Weights in Convolution 
11.2.2. Convolution D 
11.2.3. Activation Functions 

11.3. Grouping Layers and Implementation of Grouping Layers with Keras 

11.3.1. Pooling and Striding 
11.3.2. Flattening 
11.3.3. Types of Pooling 

11.4. CNN Architecture 

11.4.1. VGG Architecture 
11.4.2. AlexNet Architecture 
11.4.3. ResNet Architecture 

11.5. Implementing a CNN ResNet- using Keras 

11.5.1. Weight Initialization 
11.5.2. Input Layer Definition 
11.5.3. Output Definition 

11.6. Use of Pre-trained Keras Models 

11.6.1. Characteristics of Pre-trained Models 
11.6.2. Uses of Pre-trained Models 
11.6.3. Advantages of Pre-trained Models 

11.7. Pre-trained Models for Transfer Learning 

11.7.1. Transfer Learning 
11.7.2. Transfer Learning Process 
11.7.3. Advantages of Transfer Learning 

11.8. Deep Computer Vision Classification and Localization 

11.8.1. Image Classification 
11.8.2. Localization of Objects in Images 
11.8.3. Object Detection 

11.9. Object Detection and Object Tracking 

11.9.1. Object Detection Methods 
11.9.2. Object Tracking Algorithms 
11.9.3. Tracking and Localization Techniques 

11.10. Semantic Segmentation 

11.10.1. Deep Learning for Semantic Segmentation 
11.10.2. Edge Detection 
11.10.3. Rule-based Segmentation Methods 

Module 12. Natural Language Processing (NLP) with Recurrent Neural Networks (RNN) and Attention 

12.1. Text Generation using RNN 

12.1.1. Training an RNN for Text Generation 
12.1.2. Natural Language Generation with RNN 
12.1.3. Text Generation Applications with RNN 

12.2. Training Data Set Creation 

12.2.1. Preparation of the Data for Training an RNN 
12.2.2. Storage of the Training Dataset 
12.2.3. Data Cleaning and Transformation 
12.2.4. Sentiment Analysis 

12.3. Classification of Opinions with RNN 

12.3.1. Detection of Themes in Comments 
12.3.2. Sentiment Analysis with Deep Learning Algorithms 

12.4. Encoder-Decoder Network for Neural Machine Translation 

12.4.1. Training an RNN for Machine Translation 
12.4.2. Use of an Encoder-Decoder Network for Machine Translation 
12.4.3. Improving the Accuracy of Machine Translation with RNNs 

12.5. Attention Mechanisms 

12.5.1. Application of Care Mechanisms in RNN 
12.5.2. Use of Care Mechanisms to Improve the Accuracy of the Models 
12.5.3. Advantages of Attention Mechanisms in Neural Networks 

12.6. Transformer Models 

12.6.1. Using Transformers Models for Natural Language Processing 
12.6.2. Application of Transformers Models for Vision 
12.6.3. Advantages of Transformers Models 

12.7. Transformers for Vision 

12.7.1. Use of Transformers Models for Vision 
12.7.2. Image Data Preprocessing 
12.7.3. Training a Transformers Model for Vision 

12.8. Hugging Face’s Transformers Library 

12.8.1. Using Hugging Face's Transformers Library 
12.8.2. Hugging Face’s Transformers Library Application 
12.8.3. Advantages of Hugging Face’s Transformers Library 

12.9. Other Transformers Libraries. Comparison 

12.9.1. Comparison Between Different Transformers Libraries 
12.9.2. Use of the Other Transformers Libraries 
12.9.3. Advantages of the Other Transformers Libraries 

12.10. Development of an NLP Application with RNN and Attention. Practical Application 

12.10.1. Development of a Natural Language Processing Application with RNN and Attention 
12.10.2. Use of RNN, Attention Mechanisms and Transformers Models in the Application 
12.10.3. Evaluation of the Practical Application 

Module 13. Autoencoders, GANs, and Diffusion Models 

13.1. Representation of Efficient Data 

13.1.1. Dimensionality Reduction 
13.1.2. Deep Learning 
13.1.3. Compact Representations 

13.2. PCA Realization with an Incomplete Linear Automatic Encoder 

13.2.1. Training Process 
13.2.2. Implementation in Python 
13.2.3. Use of Test Data 

13.3. Stacked Automatic Encoders 

13.3.1. Deep Neural Networks 
13.3.2. Construction of Coding Architectures 
13.3.3. Use of Regularization 

13.4. Convolutional Autoencoders 

13.4.1. Design of Convolutional Models 
13.4.2. Convolutional Model Training 
13.4.3. Results Evaluation 

13.5. Noise Suppression of Automatic Encoders 

13.5.1. Filter Application 
13.5.2. Design of Coding Models 
13.5.3. Use of Regularization Techniques 

13.6. Sparse Automatic Encoders 

13.6.1. Increasing Coding Efficiency 
13.6.2. Minimizing the Number of Parameters 
13.6.3. Using Regularization Techniques 

13.7. Variational Automatic Encoders 

13.7.1. Use of Variational Optimization 
13.7.2. Unsupervised Deep Learning 
13.7.3. Deep Latent Representations 

13.8. Generation of Fashion MNIST Images 

13.8.1. Pattern Recognition 
13.8.2. Image Generation 
13.8.3. Deep Neural Networks Training 

13.9. Generative Adversarial Networks and Diffusion Models 

13.9.1. Content Generation from Images 
13.9.2. Modeling of Data Distributions 
13.9.3. Use of Adversarial Networks 

13.10. Implementation of the Models 

13.10.1. Practical Application 
13.10.2. Implementation of the Models 
13.10.3. Use of Real Data 
13.10.4. Results Evaluation 

Module 14. Bio-Inspired Computing

14.1. Introduction to Bio-Inspired Computing 

14.1.1. Introduction to Bio-Inspired Computing 

14.2. Social Adaptation Algorithms 

14.2.1. Bio-Inspired Computation Based on Ant Colonies 
14.2.2. Variants of Ant Colony Algorithms 
14.2.3. Particle Cloud Computing 

14.3. Genetic Algorithms 

14.3.1. General Structure 
14.3.2. Implementations of the Major Operators 

14.4. Space Exploration-Exploitation Strategies for Genetic Algorithms 

14.4.1. CHC Algorithm 
14.4.2. Multimodal Problems 

14.5. Evolutionary Computing Models (I) 

14.5.1. Evolutionary Strategies 
14.5.2. Evolutionary Programming 
14.5.3. Algorithms Based on Differential Evolution 

14.6. Evolutionary Computation Models (II) 

14.6.1. Evolutionary Models Based on Estimation of Distributions (EDA) 
14.6.2. Genetic Programming 

14.7. Evolutionary Programming Applied to Learning Problems 

14.7.1. Rules-Based Learning 
14.7.2. Evolutionary Methods in Instance Selection Problems 

14.8. Multi-Objective Problems 

14.8.1. Concept of Dominance 
14.8.2. Application of Evolutionary Algorithms to Multi-Objective Problems 

14.9. Neural Networks (I) 

14.9.1. Introduction to Neural Networks 
14.9.2. Practical Example with Neural Networks 

14.10. Neural Networks (II) 

14.10.1. Use Cases of Neural Networks in Medical Research 
14.10.2. Use Cases of Neural Networks in Economics 
14.10.3. Use Cases of Neural Networks in Artificial Vision 

Module 15. Artificial Intelligence: Strategies and Applications

15.1. Financial Services 

15.1.1. The Implications of Artificial Intelligence (AI) in Financial Services. Opportunities and Challenges
15.1.2. Case Uses
15.1.3. Potential Risks Related to the Use of AI 
15.1.4. Potential Future Developments/Uses of AI 

15.2. Implications of Artificial Intelligence in the Healthcare Service

15.2.1. Implications of AI in the Healthcare Sector Opportunities and Challenges
15.2.2. Case Uses 

15.3. Risks Related to the Use of AI in the Health Service 

15.3.1. Potential Risks Related to the Use of AI 
15.3.2. Potential Future Developments/Uses of AI

15.4. Retail

15.4.1. Implications of AI in Retail. Opportunities and Challenges
15.4.2. Case Uses
15.4.3. Potential Risks Related to the Use of AI
15.4.4. Potential Future Developments/Uses of AI 

15.5. Industry 

15.5.1. Implications of AI in Industry Opportunities and Challenges 
15.5.2. Case Uses 

15.6. Potential Risks Related to the Use of AI in Industry 

15.6.1. Case Uses 
15.6.2. Potential Risks Related to the Use of AI 
15.6.3. Potential Future Developments/Uses of AI

15.7. Public Administration

15.7.1. AI Implications for Public Administration Opportunities and Challenges 
15.7.2. Case Uses
15.7.3. Potential Risks Related to the Use of AI
15.7.4. Potential Future Developments/Uses of AI

15.8. Educational

15.8.1. AI Implications for Education Opportunities and Challenges 
15.8.2. Case Uses
15.8.3. Potential Risks Related to the Use of AI
15.8.4. Potential Future Developments/Uses of AI 

15.9. Forestry and Agriculture

15.9.1. Implications of AI in Forestry and Agriculture. Opportunities and Challenges
15.9.2. Case Uses 
15.9.3. Potential Risks Related to the Use of AI 
15.9.4. Potential Future Developments/Uses of AI

15.10. Human Resources

15.10.1. Implications of AI for Human Resources Opportunities and Challenges 
15.10.2. Case Uses
15.10.3. Potential Risks Related to the Use of AI
15.10.4. Potential Future Developments/Uses of AI

##IMAGE##

TECH presents a unique Professional master’s degree that will allow you to expand your skills in a disruptive way. Don't wait any longer and enroll now"

Professional Master's Degree in Artificial Intelligence

Artificial intelligence revolutionizes computing by enhancing the automation of complex tasks, optimizing processes and enabling advanced analysis of large data sets. Immerse yourself in this fascinating world with the Professional Master's Degree offered by TECH Global University, a cutting-edge educational experience that will challenge you to reach new heights from the comfort of your home, thanks to its online modality. Have you ever wondered how advanced algorithms are applied to solve complex problems? In this program, you will explore aspects of artificial intelligence under the tutelage of an outstanding team of specialized faculty. What skills will you master? From data analysis to the creation of predictive models, you'll be prepared to tackle the most demanding challenges in computing with this new revolution. Here, you not only gain theoretical knowledge, but also participate in practical projects that consolidate your skills. Decipher patterns, optimize processes and discover the infinite possibilities that artificial intelligence offers. This program will immerse you in deep learning, natural language processing and computer vision, equipping you with essential tools to excel in the field.

Earn your degree with a complete Professional Master's Degree in Artificial Intelligence

Imagine learning from experts who have shaped the industry. Here, our professors are recognized leaders who not only teach, but inspire. Would you like to be at the forefront of the technological revolution? This program gives you the opportunity to delve into an academic environment of excellence, where every lesson is a gateway to the future of artificial intelligence. Upon completion, you will receive an internationally recognized certificate that will validate your skills and knowledge. But that's not all, you'll be ready to enter the job market with confidence, as this program trains you to work in areas as diverse as research, product development and specialized consulting. Become an architect of artificial intelligence with the support of TECH Global University, enroll now and dare to explore the future today!