Presentación

Con este Máster Título Propio descubrirás cómo la inteligencia artificial está transformando industrias y te prepararás para liderar el cambio” 

##IMAGE##

La IA está transformando numerosas industrias, desde la atención médica hasta la logística, pasando por la automoción y el comercio electrónico. Su capacidad para automatizar tareas repetitivas y mejorar la eficiencia ha generado una creciente demanda de profesionales capaces de dominar los diferentes tipos de algoritmos de aprendizaje automático. En un sector tan novedoso y en constante evolución, es imperativo mantenerse actualizado para poder competir dentro de un mercado laboral cada vez más orientado hacia la tecnología.

Precisamente por ello, TECH ha elaborado un programa que se presenta como una respuesta estratégica para mejorar las perspectivas laborales y el potencial de ascenso de los ingenieros. De este modo, se ha elaborado un novedoso plan de estudios en el que los alumnos se adentrarán en los fundamentos de la IA y profundizarán en la minería de datos.

A lo largo del desarrollo de este Máster Título Propio, los egresados se sumergirán en los fundamentos esenciales, trazando la evolución histórica de la IA y explorando sus proyecciones futuras. De esta manera, profundizarán en su integración en aplicaciones de uso masivo, para comprender cómo estas plataformas mejoran la experiencia del usuario y optimizan la eficiencia operativa.

Se trata, por lo tanto, de una titulación académica exclusiva, gracias a la cual los profesionales podrán desarrollar procesos de optimización inspirados en la evolución biológica, encontrando y aplicando soluciones eficientes a problemas complejos con el dominio en profundidad de la Inteligencia Artificial.

Para facilitar la integración de nuevos conocimientos, TECH ha creado este completo programa basado en la exclusiva metodología Relearning. Bajo este enfoque, los estudiantes reforzarán la comprensión mediante la repetición de conceptos clave a lo largo de todo el programa, que le serán presentados en diversos soportes audiovisuales para una adquisición de conocimientos progresiva y eficaz. Todo ello desde un sistema innovador y flexible, totalmente en línea, que permite adaptar el aprendizaje a los horarios de los participantes.

Potencia tu perfil profesional desarrollando soluciones avanzadas, basadas en IA, con el programa más completo del panorama académico digital” 

Este Máster Título Propio en Inteligencia Artificial contiene el programa educativo más completo y actualizado del mercado. Sus características más destacadas son:

  • El desarrollo de casos prácticos presentados por expertos en Inteligencia Artificial
  • Los contenidos gráficos, esquemáticos y eminentemente prácticos con los que está concebido recogen una información actualizada y práctica sobre aquellas disciplinas indispensables para el ejercicio profesional
  • Los ejercicios prácticos donde realizar el proceso de autoevaluación para mejorar el aprendizaje
  • Su especial hincapié en metodologías innovadoras
  • Las lecciones teóricas, preguntas al experto, foros de discusión de temas controvertidos y trabajos de reflexión individual
  • La disponibilidad de acceso a los contenidos desde cualquier dispositivo fijo o portátil con conexión a internet

Abordarás desde la evolución de las redes neuronales hasta el Deep Learning y adquirirás competencias sólidas en la implementación de soluciones avanzadas de Inteligencia Artificial” 

El programa incluye en su cuadro docente a profesionales del sector que vierten en esta capacitación la experiencia de su trabajo, además de reconocidos especialistas de sociedades de referencia y universidades de prestigio.

Su contenido multimedia, elaborado con la última tecnología educativa, permitirá al profesional un aprendizaje situado y contextual, es decir, un entorno simulado que proporcionará una capacitación inmersiva programada para entrenarse ante situaciones reales.

El diseño de este programa se centra en el Aprendizaje Basado en Problemas, mediante el cual el profesional deberá tratar de resolver las distintas situaciones de práctica profesional que se le planteen a lo largo del curso académico. Para ello, contará con la ayuda de un novedoso sistema de vídeo interactivo realizado por reconocidos expertos.

Optimizarás el potencial del almacenamiento de datos en la mejor universidad digital del mundo, según Forbes"

##IMAGE##

Podrás acceder a contenidos exclusivos en el campus virtual las 24 horas del día, sin restricciones geográficas ni horarias"

Temario

Este plan de estudios ha sido diseñado por un equipo de versados en el área de la Inteligencia Artificial, poniendo especial énfasis en los procesos de descubrimiento del conocimiento y el aprendizaje automático. Gracias a ello, el alumno profundizará en el desarrollo de algoritmos y modelos que permiten a las máquinas aprender patrones y realizar tareas, sin haber sido programadas explícitamente para esa labor. Además, TECH emplea la pionera metodología Relearning, gracias a la cual los profesionales integrarán sólidos conocimientos en la evaluación de modelos de una manera progresiva y eficaz.

##IMAGE##

Profundizarás en la formulación de algoritmos genéticos a través de 12 meses de la mejor enseñanza digital. ¡Impulsa con TECH tu desarrollo profesional!” 

Módulo 1. Fundamentos de la Inteligencia Artificial

1.1. Historia de la Inteligencia artificial 

1.1.1. ¿Cuándo se empieza a hablar de inteligencia artificial?
1.1.2. Referentes en el cine 
1.1.3. Importancia de la inteligencia artificial 
1.1.4. Tecnologías que habilitan y dan soporte a la inteligencia artificial 

1.2. La Inteligencia Artificial en juegos 

1.2.1. Teoría de Juegos 
1.2.2. Minimax y poda Alfa-Beta 
1.2.3. Simulación: Monte Carlo 

1.3. Redes de neuronas 

1.3.1. Fundamentos biológicos 
1.3.2. Modelo computacional 
1.3.3. Redes de neuronas supervisadas y no supervisadas 
1.3.4. Perceptrón simple 
1.3.5. Perceptrón multicapa 

1.4. Algoritmos genéticos 

1.4.1. Historia 
1.4.2. Base biológica 
1.4.3. Codificación de problemas 
1.4.4. Generación de la población inicial 
1.4.5. Algoritmo principal y operadores genéticos 
1.4.6. Evaluación de individuos: Fitness 

1.5. Tesauros, vocabularios, taxonomías 

1.5.1. Vocabularios 
1.5.2. Taxonomías 
1.5.3. Tesauros 
1.5.4. Ontologías 
1.5.5. Representación del conocimiento: web semántica 

1.6. Web semántica 

1.6.1. Especificaciones: RDF, RDFS y OWL 
1.6.2. Inferencia/razonamiento 
1.6.3. Linked Data 

1.7. Sistemas expertos y DSS 

1.7.1. Sistemas expertos 
1.7.2. Sistemas de soporte a la decisión 

1.8. Chatbots y Asistentes Virtuales

1.8.1. Tipos de asistentes: asistentes por voz y por texto
1.8.2. Partes fundamentales para el desarrollo de un asistente: Intents, entidades y flujo de diálogo 
1.8.3. Integraciones: web, Slack, Whatsapp, Facebook 
1.8.4. Herramientas de desarrollo de asistentes: Dialog Flow, Watson Assistant

1.9. Estrategia de implantación de IA 
1.10. Futuro de la inteligencia artificial

1.10.1. Entendemos cómo detectar emociones mediante algoritmos
1.10.2. Creación de una personalidad: lenguaje, expresiones y contenido
1.10.3. Tendencias de la inteligencia artificial
1.10.4. Reflexiones

Módulo 2. Tipos y Ciclo de Vida del Dato 

2.1. La Estadística

2.1.1. Estadística: estadística descriptiva, estadística inferencias
2.1.2. Población, muestra, individuo
2.1.3. Variables: definición, escalas de medida

2.2. Tipos de datos estadísticos

2.2.1. Según tipo

2.2.1.1. Cuantitativos: datos continuos y datos discretos
2.2.1.2. Cualitativos: datos binomiales, datos nominales y datos ordinales 

2.2.2. Según su forma 

2.2.2.1. Numérico
2.2.2.2. Texto 
2.2.2.3. Lógico

2.2.3. Según su fuente

2.2.3.1. Primarios
2.2.3.2. Secundarios

2.3. Ciclo de vida de los datos

2.3.1. Etapas del ciclo
2.3.2. Hitos del ciclo
2.3.3. Principios FAIR

2.4. Etapas iniciales del ciclo

2.4.1. Definición de metas
2.4.2. Determinación de recursos necesarios
2.4.3. Diagrama de Gantt
2.4.4. Estructura de los datos

2.5. Recolección de datos

2.5.1. Metodología de recolección
2.5.2. Herramientas de recolección
2.5.3. Canales de recolección

2.6. Limpieza del dato

2.6.1. Fases de la limpieza de datos
2.6.2. Calidad del dato
2.6.3. Manipulación de datos (con R)

2.7. Análisis de datos, interpretación y valoración de resultados

2.7.1. Medidas estadísticas
2.7.2. Índices de relación
2.7.3. Minería de datos

2.8. Almacén del dato (Datawarehouse)

2.8.1. Elementos que lo integran
2.8.2. Diseño
2.8.3. Aspectos a considerar

2.9. Disponibilidad del dato

2.9.1. Acceso
2.9.2. Utilidad
2.9.3. Seguridad

2.10. Aspectos Normativos 

2.10.1. Ley de protección de datos
2.10.2. Buenas prácticas
2.10.3. Otros aspectos normativos

Módulo 3. El dato en la Inteligencia Artificial 

3.1. Ciencia de datos 

3.1.1. La ciencia de datos 
3.1.2. Herramientas avanzadas para el científico de datos 

3.2. Datos, información y conocimiento 

3.2.1. Datos, información y conocimiento
3.2.2. Tipos de datos 
3.2.3. Fuentes de datos 

3.3. De los datos a la información

3.3.1. Análisis de Datos 
3.3.2. Tipos de análisis 
3.3.3. Extracción de Información de un Dataset 

3.4. Extracción de información mediante visualización 

3.4.1. La visualización como herramienta de análisis 
3.4.2. Métodos de visualización
3.4.3. Visualización de un conjunto de datos 

3.5. Calidad de los datos 

3.5.1. Datos de calidad 
3.5.2. Limpieza de datos
3.5.3. Preprocesamiento básico de datos 

3.6. Dataset 

3.6.1. Enriquecimiento del Dataset 
3.6.2. La maldición de la dimensionalidad 
3.6.3. Modificación de nuestro conjunto de datos 

3.7. Desbalanceo

3.7.1. Desbalanceo de clases 
3.7.2. Técnicas de mitigación del desbalanceo 
3.7.3. Balanceo de un Dataset 

3.8. Modelos no supervisados

3.8.1. Modelo no supervisado 
3.8.2. Métodos 
3.8.3. Clasificación con modelos no supervisados 

3.9. Modelos supervisados 

3.9.1. Modelo supervisado 
3.9.2. Métodos 
3.9.3. Clasificación con modelos supervisados 

3.10. Herramientas y buenas prácticas 

3.10.1. Buenas prácticas para un científico de datos 
3.10.2. El mejor modelo
3.10.3. Herramientas útiles 

Módulo 4. Minería de Datos. Selección, preprocesamiento y transformación 

4.1. La inferencia estadística 

4.1.1. Estadística descriptiva vs. Inferencia estadística 
4.1.2. Procedimientos paramétricos 
4.1.3. Procedimientos no paramétricos 

4.2. Análisis exploratorio 

4.2.1. Análisis descriptivo
4.2.2. Visualización 
4.2.3. Preparación de datos 

4.3. Preparación de datos 

4.3.1. Integración y limpieza de datos
4.3.2. Normalización de datos 
4.3.3. Transformando atributos

4.4. Los valores perdidos 

4.4.1. Tratamiento de valores perdidos 
4.4.2. Métodos de imputación de máxima verosimilitud 
4.4.3. Imputación de valores perdidos usando aprendizaje automático 

4.5. El ruido en los datos

4.5.1. Clases de ruido y atributos 
4.5.2. Filtrado de ruido
4.5.3. El efecto del ruido 

4.6. La maldición de la dimensionalidad 

4.6.1. Oversampling 
4.6.2. Undersampling 
4.6.3. Reducción de datos multidimensionales 

4.7. De atributos continuos a discretos 

4.7.1. Datos continuos versus discretos 
4.7.2. Proceso de discretización 

4.8. Los datos

4.8.1. Selección de datos
4.8.2. Perspectivas y criterios de selección 
4.8.3. Métodos de selección

4.9. Selección de instancias 

4.9.1. Métodos para la selección de instancias 
4.9.2. Selección de prototipos 
4.9.3. Métodos avanzados para la selección de instancias 

4.10. Preprocesamiento de datos en entornos Big Data 

Módulo 5. Algoritmia y complejidad en Inteligencia Artificial 

5.1. Introducción a las estrategias de diseño de algoritmos 

5.1.1. Recursividad 
5.1.2. Divide y conquista 
5.1.3. Otras estrategias 

5.2. Eficiencia y análisis de los algoritmos 

5.2.1. Medidas de eficiencia 
5.2.2. Medir el tamaño de la entrada 
5.2.3. Medir el tiempo de ejecución 
5.2.4. Caso peor, mejor y medio 
5.2.5. Notación asintónica 
5.2.6. Criterios de Análisis matemático de algoritmos no recursivos 
5.2.7. Análisis matemático de algoritmos recursivos 
5.2.8. Análisis empírico de algoritmos 

5.3. Algoritmos de ordenación 

5.3.1. Concepto de ordenación 
5.3.2. Ordenación de la burbuja 
5.3.3. Ordenación por selección 
5.3.4. Ordenación por inserción 
5.3.5. Ordenación por mezcla (Merge_Sort
5.3.6. Ordenación rápida (Quick_Sort

5.4. Algoritmos con árboles 

5.4.1. Concepto de árbol 
5.4.2. Árboles binarios 
5.4.3. Recorridos de árbol 
5.4.4. Representar expresiones 
5.4.5. Árboles binarios ordenados 
5.4.6. Árboles binarios balanceados 

5.5. Algoritmos con Heaps 

5.5.1. Los Heaps 
5.5.2. El algoritmo Heapsort 
5.5.3. Las colas de prioridad 

5.6. Algoritmos con grafos 

5.6.1. Representación 
5.6.2. Recorrido en anchura 
5.6.3. Recorrido en profundidad 
5.6.4. Ordenación topológica 

5.7. Algoritmos Greedy 

5.7.1. La estrategia Greedy 
5.7.2. Elementos de la estrategia Greedy 
5.7.3. Cambio de monedas 
5.7.4. Problema del viajante 
5.7.5. Problema de la mochila 

5.8. Búsqueda de caminos mínimos 

5.8.1. El problema del camino mínimo 
5.8.2. Arcos negativos y ciclos 
5.8.3. Algoritmo de Dijkstra 

5.9. Algoritmos Greedy sobre grafos 

5.9.1. El árbol de recubrimiento mínimo 
5.9.2. El algoritmo de Prim 
5.9.3. El algoritmo de Kruskal 
5.9.4. Análisis de complejidad 

5.10. Backtracking 

5.10.1. El Backtracking 
5.10.2. Técnicas alternativas 

Módulo 6. Sistemas inteligentes 

6.1. Teoría de agentes 

6.1.1. Historia del concepto 
6.1.2. Definición de agente 
6.1.3. Agentes en Inteligencia Artificial 
6.1.4. Agentes en ingeniería de Software 

6.2. Arquitecturas de agentes 

6.2.1. El proceso de razonamiento de un agente 
6.2.2. Agentes reactivos 
6.2.3. Agentes deductivos 
6.2.4. Agentes híbridos 
6.2.5. Comparativa 

6.3. Información y conocimiento 

6.3.1. Distinción entre datos, información y conocimiento 
6.3.2. Evaluación de la calidad de los datos 
6.3.3. Métodos de captura de datos 
6.3.4. Métodos de adquisición de información 
6.3.5. Métodos de adquisición de conocimiento 

6.4. Representación del conocimiento 

6.4.1. La importancia de la representación del conocimiento 
6.4.2. Definición de representación del conocimiento a través de sus roles 
6.4.3. Características de una representación del conocimiento 

6.5. Ontologías 

6.5.1. Introducción a los metadatos 
6.5.2. Concepto filosófico de ontología 
6.5.3. Concepto informático de ontología 
6.5.4. Ontologías de dominio y ontologías de nivel superior 
6.5.5. ¿Cómo construir una ontología? 

6.6. Lenguajes para ontologías y Software para la creación de ontologías 

6.6.1. Tripletas RDF, Turtle y N 
6.6.2. RDF Schema 
6.6.3. OWL 
6.6.4. SPARQL 
6.6.5. Introducción a las diferentes herramientas para la creación de ontologías 
6.6.6. Instalación y uso de Protégé 

6.7. La web semántica 

6.7.1. El estado actual y futuro de la web semántica 
6.7.2. Aplicaciones de la web semántica 

6.8. Otros modelos de representación del conocimiento 

6.8.1. Vocabularios 
6.8.2. Visión global 
6.8.3. Taxonomías 
6.8.4. Tesauros 
6.8.5. Folksonomías 
6.8.6. Comparativa 
6.8.7. Mapas mentales 

6.9. Evaluación e integración de representaciones del conocimiento 

6.9.1. Lógica de orden cero 
6.9.2. Lógica de primer orden 
6.9.3. Lógica descriptiva 
6.9.4. Relación entre diferentes tipos de lógica 
6.9.5. Prolog: programación basada en lógica de primer orden 

6.10. Razonadores semánticos, sistemas basados en conocimiento y Sistemas Expertos 

6.10.1. Concepto de razonador 
6.10.2. Aplicaciones de un razonador 
6.10.3. Sistemas basados en el conocimiento 
6.10.4. MYCIN, historia de los Sistemas Expertos 
6.10.5. Elementos y Arquitectura de Sistemas Expertos 
6.10.6. Creación de Sistemas Expertos 

Módulo 7. Aprendizaje automático y minería de datos 

7.1. Introducción a los procesos de descubrimiento del conocimiento y conceptos básicos de aprendizaje automático 

7.1.1. Conceptos clave de los procesos de descubrimiento del conocimiento 
7.1.2. Perspectiva histórica de los procesos de descubrimiento del conocimiento 
7.1.3. Etapas de los procesos de descubrimiento del conocimiento 
7.1.4. Técnicas utilizadas en los procesos de descubrimiento del conocimiento 
7.1.5. Características de los buenos modelos de aprendizaje automático 
7.1.6. Tipos de información de aprendizaje automático 
7.1.7. Conceptos básicos de aprendizaje 
7.1.8. Conceptos básicos de aprendizaje no supervisado 

7.2. Exploración y preprocesamiento de datos 

7.2.1. Tratamiento de datos 
7.2.2. Tratamiento de datos en el flujo de análisis de datos 
7.2.3. Tipos de datos 
7.2.4. Transformaciones de datos 
7.2.5. Visualización y exploración de variables continuas 
7.2.6. Visualización y exploración de variables categóricas 
7.2.7. Medidas de correlación 
7.2.8. Representaciones gráficas más habituales 
7.2.9. Introducción al análisis multivariante y a la reducción de dimensiones 

7.3. Árboles de decisión 

7.3.1. Algoritmo ID 
7.3.2. Algoritmo C 
7.3.3. Sobreentrenamiento y poda 
7.3.4. Análisis de resultados 

7.4. Evaluación de clasificadores 

7.4.1. Matrices de confusión 
7.4.2. Matrices de evaluación numérica 
7.4.3. Estadístico de Kappa 
7.4.4. La curva ROC 

7.5. Reglas de clasificación 

7.5.1. Medidas de evaluación de reglas 
7.5.2. Introducción a la representación gráfica 
7.5.3. Algoritmo de recubrimiento secuencial 

7.6. Redes neuronales 

7.6.1. Conceptos básicos 
7.6.2. Redes de neuronas simples 
7.6.3. Algoritmo de Backpropagation 
7.6.4. Introducción a las redes neuronales recurrentes 

7.7. Métodos bayesianos 

7.7.1. Conceptos básicos de probabilidad 
7.7.2. Teorema de Bayes 
7.7.3. Naive Bayes 
7.7.4. Introducción a las redes bayesianas 

7.8. Modelos de regresión y de respuesta continua 

7.8.1. Regresión lineal simple 
7.8.2. Regresión lineal múltiple 
7.8.3. Regresión logística 
7.8.4. Árboles de regresión 
7.8.5. Introducción a las máquinas de soporte vectorial (SVM) 
7.8.6. Medidas de bondad de ajuste 

7.9. Clustering 

7.9.1. Conceptos básicos 
7.9.2. Clustering jerárquico 
7.9.3. Métodos probabilistas 
7.9.4. Algoritmo EM 
7.9.5. Método B-Cubed 
7.9.6. Métodos implícitos 

7.10. Minería de textos y procesamiento de lenguaje natural (NLP) 

7.10.1. Conceptos básicos 
7.10.2. Creación del corpus 
7.10.3. Análisis descriptivo 
7.10.4. Introducción al análisis de sentimientos 

Módulo 8. Las redes neuronales, base de Deep Learning 

8.1. Aprendizaje Profundo 

8.1.1. Tipos de aprendizaje profundo 
8.1.2. Aplicaciones del aprendizaje profundo 
8.1.3. Ventajas y desventajas del aprendizaje profundo 

8.2. Operaciones 

8.2.1. Suma 
8.2.2. Producto 
8.2.3. Traslado 

8.3. Capas 

8.3.1. Capa de entrada 
8.3.2. Capa oculta 
8.3.3. Capa de salida 

8.4. Unión de Capas y Operaciones 

8.4.1. Diseño de arquitecturas 
8.4.2. Conexión entre capas 
8.4.3. Propagación hacia adelante 

8.5. Construcción de la primera red neuronal 

8.5.1. Diseño de la red 
8.5.2. Establecer los pesos 
8.5.3. Entrenamiento de la red 

8.6. Entrenador y Optimizador 

8.6.1. Selección del optimizador 
8.6.2. Establecimiento de una función de pérdida 
8.6.3. Establecimiento de una métrica 

8.7. Aplicación de los Principios de las Redes Neuronales 

8.7.1. Funciones de activación 
8.7.2. Propagación hacia atrás 
8.7.3. Ajuste de los parámetros 

8.8. De las neuronas biológicas a las artificiales 

8.8.1. Funcionamiento de una neurona biológica 
8.8.2. Transferencia de conocimiento a las neuronas artificiales 
8.8.3. Establecer relaciones entre ambas 

8.9. Implementación de MLP (Perceptrón multicapa) con Keras 

8.9.1. Definición de la estructura de la red 
8.9.2. Compilación del modelo 
8.9.3. Entrenamiento del modelo 

8.10. Hiperparámetros de Fine tuning de Redes Neuronales 

8.10.1. Selección de la función de activación 
8.10.2. Establecer el Learning rate 
8.10.3. Ajuste de los pesos 

Módulo 9. Entrenamiento de redes neuronales profundas 

9.1. Problemas de Gradientes 

9.1.1. Técnicas de optimización de gradiente 
9.1.2. Gradientes Estocásticos 
9.1.3. Técnicas de inicialización de pesos 

9.2. Reutilización de capas preentrenadas 

9.2.1. Entrenamiento de transferencia de aprendizaje 
9.2.2. Extracción de características 
9.2.3. Aprendizaje profundo 

9.3. Optimizadores 

9.3.1. Optimizadores de descenso de gradiente estocástico 
9.3.2. Optimizadores Adam y RMSprop 
9.3.3. Optimizadores de momento 

9.4. Programación de la tasa de aprendizaje 

9.4.1. Control de tasa de aprendizaje automático 
9.4.2. Ciclos de aprendizaje 
9.4.3. Términos de suavizado 

9.5. Sobreajuste 

9.5.1. Validación cruzada 
9.5.2. Regularización 
9.5.3. Métricas de evaluación 

9.6. Directrices Prácticas 

9.6.1. Diseño de modelos 
9.6.2. Selección de métricas y parámetros de evaluación 
9.6.3. Pruebas de hipótesis 

9.7. Transfer Learning 

9.7.1. Entrenamiento de transferencia de aprendizaje 
9.7.2. Extracción de características 
9.7.3. Aprendizaje profundo 

9.8. Data Augmentation 

9.8.1. Transformaciones de imagen 
9.8.2. Generación de datos sintéticos 
9.8.3. Transformación de texto 

9.9. Aplicación Práctica de Transfer Learning 

9.9.1. Entrenamiento de transferencia de aprendizaje 
9.9.2. Extracción de características 
9.9.3. Aprendizaje profundo 

9.10. Regularización 

9.10.1. L y L 
9.10.2. Regularización por máxima entropía 
9.10.3. Dropout 

Módulo 10. Personalización de Modelos y entrenamiento con TensorFlow 

10.1. TensorFlow 

10.1.1. Uso de la biblioteca TensorFlow 
10.1.2. Entrenamiento de modelos con TensorFlow 
10.1.3. Operaciones con gráficos en TensorFlow 

10.2. TensorFlow y NumPy 

10.2.1. Entorno computacional NumPy para TensorFlow 
10.2.2. Utilización de los arrays NumPy con TensorFlow 
10.2.3. Operaciones NumPy para los gráficos de TensorFlow 

10.3. Personalización de modelos y algoritmos de entrenamiento 

10.3.1. Construcción de modelos personalizados con TensorFlow 
10.3.2. Gestión de parámetros de entrenamiento 
10.3.3. Utilización de técnicas de optimización para el entrenamiento 

10.4. Funciones y gráficos de TensorFlow 

10.4.1. Funciones con TensorFlow 
10.4.2. Utilización de gráficos para el entrenamiento de modelos 
10.4.3. Optimización de gráficos con operaciones de TensorFlow 

10.5. Carga y preprocesamiento de datos con TensorFlow 

10.5.1. Carga de conjuntos de datos con TensorFlow 
10.5.2. Preprocesamiento de datos con TensorFlow 
10.5.3. Utilización de herramientas de TensorFlow para la manipulación de datos 

10.6. La API tfdata 

10.6.1. Utilización de la API tfdata para el procesamiento de datos 
10.6.2. Construcción de flujos de datos con tfdata 
10.6.3. Uso de la API tfdata para el entrenamiento de modelos 

10.7. El formato TFRecord 

10.7.1. Utilización de la API TFRecord para la serialización de datos 
10.7.2. Carga de archivos TFRecord con TensorFlow 
10.7.3. Utilización de archivos TFRecord para el entrenamiento de modelos 

10.8. Capas de preprocesamiento de Keras 

10.8.1. Utilización de la API de preprocesamiento de Keras 
10.8.2. Construcción de pipelined de preprocesamiento con Keras 
10.8.3. Uso de la API de preprocesamiento de Keras para el entrenamiento de modelos 

10.9. El proyecto TensorFlow Datasets 

10.9.1. Utilización de TensorFlow Datasets para la carga de datos 
10.9.2. Preprocesamiento de datos con TensorFlow Datasets 
10.9.3. Uso de TensorFlow Datasets para el entrenamiento de modelos 

10.10. Construcción de una Aplicación de Deep Learning con TensorFlow 

10.10.1. Aplicación Práctica 
10.10.2. Construcción de una aplicación de Deep Learning con TensorFlow 
10.10.3. Entrenamiento de un modelo con TensorFlow 
10.10.4. Utilización de la aplicación para la predicción de resultados 

Módulo 11. Deep Computer Vision con Redes Neuronales Convolucionales 

11.1. La Arquitectura Visual Cortex 

11.1.1. Funciones de la corteza visual 
11.1.2. Teorías de la visión computacional 
11.1.3. Modelos de procesamiento de imágenes 

11.2. Capas convolucionales 

11.2.1. Reutilización de pesos en la convolución 
11.2.2. Convolución D 
11.2.3. Funciones de activación 

11.3. Capas de agrupación e implementación de capas de agrupación con Keras 

11.3.1. Pooling y Striding 
11.3.2. Flattening 
11.3.3. Tipos de Pooling 

11.4. Arquitecturas CNN 

11.4.1. Arquitectura VGG 
11.4.2. Arquitectura AlexNet 
11.4.3. Arquitectura ResNet 

11.5. Implementación de una CNN ResNet- usando Keras 

11.5.1. Inicialización de pesos 
11.5.2. Definición de la capa de entrada 
11.5.3. Definición de la salida 

11.6. Uso de modelos preentrenados de Keras 

11.6.1. Características de los modelos preentrenados 
11.6.2. Usos de los modelos preentrenados 
11.6.3. Ventajas de los modelos preentrenados 

11.7. Modelos preentrenados para el aprendizaje por transferencia 

11.7.1. El Aprendizaje por transferencia 
11.7.2. Proceso de aprendizaje por transferencia 
11.7.3. Ventajas del aprendizaje por transferencia 

11.8. Clasificación y Localización en Deep Computer Vision 

11.8.1. Clasificación de imágenes 
11.8.2. Localización de objetos en imágenes 
11.8.3. Detección de objetos 

11.9. Detección de objetos y seguimiento de objetos 

11.9.1. Métodos de detección de objetos 
11.9.2. Algoritmos de seguimiento de objetos 
11.9.3. Técnicas de rastreo y localización 

11.10. Segmentación semántica 

11.10.1. Aprendizaje profundo para segmentación semántica 
11.10.2. Detección de bordes 
11.10.3. Métodos de segmentación basados en reglas 

Módulo 12. Procesamiento del lenguaje natural (NLP) con Redes Naturales Recurrentes (RNN) y Atención 

12.1. Generación de texto utilizando RNN 

12.1.1. Entrenamiento de una RNN para generación de texto 
12.1.2. Generación de lenguaje natural con RNN 
12.1.3. Aplicaciones de generación de texto con RNN 

12.2. Creación del conjunto de datos de entrenamiento 

12.2.1. Preparación de los datos para el entrenamiento de una RNN 
12.2.2. Almacenamiento del conjunto de datos de entrenamiento 
12.2.3. Limpieza y transformación de los datos 
12.2.4. Análisis de Sentimiento 

12.3. Clasificación de opiniones con RNN 

12.3.1. Detección de temas en los comentarios 
12.3.2. Análisis de sentimiento con algoritmos de aprendizaje profundo 

12.4. Red de codificador-decodificador para la traducción automática neuronal 

12.4.1. Entrenamiento de una RNN para la traducción automática 
12.4.2. Uso de una red encoder-decoder para la traducción automática 
12.4.3. Mejora de la precisión de la traducción automática con RNN 

12.5. Mecanismos de atención 

12.5.1. Aplicación de mecanismos de atención en RNN 
12.5.2. Uso de mecanismos de atención para mejorar la precisión de los modelos 
12.5.3. Ventajas de los mecanismos de atención en las redes neuronales 

12.6. Modelos Transformers 

12.6.1. Uso de los modelos Transformers para procesamiento de lenguaje natural 
12.6.2. Aplicación de los modelos Transformers para visión 
12.6.3. Ventajas de los modelos Transformers 

12.7. Transformers para visión 

12.7.1. Uso de los modelos Transformers para visión 
12.7.2. Preprocesamiento de los datos de imagen 
12.7.3. Entrenamiento de un modelo Transformers para visión 

12.8. Librería de Transformers de Hugging Face 

12.8.1. Uso de la librería de Transformers de Hugging Face 
12.8.2. Aplicación de la librería de Transformers de Hugging Face 
12.8.3. Ventajas de la librería de Transformers de Hugging Face 

12.9. Otras Librerías de Transformers. Comparativa 

12.9.1. Comparación entre las distintas librerías de Transformers 
12.9.2. Uso de las demás librerías de Transformers 
12.9.3. Ventajas de las demás librerías de Transformers 

12.10. Desarrollo de una Aplicación de NLP con RNN y Atención. Aplicación Práctica 

12.10.1. Desarrollo de una aplicación de procesamiento de lenguaje natural con RNN y atención 
12.10.2. Uso de RNN, mecanismos de atención y modelos Transformers en la aplicación 
12.10.3. Evaluación de la aplicación práctica 

Módulo 13. Autoencoders, GANs, y Modelos de Difusión 

13.1. Representaciones de datos eficientes 

13.1.1. Reducción de dimensionalidad 
13.1.2. Aprendizaje profundo 
13.1.3. Representaciones compactas 

13.2. Realización de PCA con un codificador automático lineal incompleto 

13.2.1. Proceso de entrenamiento 
13.2.2. Implementación en Python 
13.2.3. Utilización de datos de prueba 

13.3. Codificadores automáticos apilados 

13.3.1. Redes neuronales profundas 
13.3.2. Construcción de arquitecturas de codificación 
13.3.3. Uso de la regularización 

13.4. Autocodificadores convolucionales 

13.4.1. Diseño de modelos convolucionales 
13.4.2. Entrenamiento de modelos convolucionales 
13.4.3. Evaluación de los resultados 

13.5. Eliminación de ruido de codificadores automáticos 

13.5.1. Aplicación de filtros 
13.5.2. Diseño de modelos de codificación 
13.5.3. Uso de técnicas de regularización 

13.6. Codificadores automáticos dispersos 

13.6.1. Incrementar la eficiencia de la codificación 
13.6.2. Minimizando el número de parámetros 
13.6.3. Utilización de técnicas de regularización 

13.7. Codificadores automáticos variacionales 

13.7.1. Utilización de optimización variacional 
13.7.2. Aprendizaje profundo no supervisado 
13.7.3. Representaciones latentes profundas 

13.8. Generación de imágenes MNIST de moda 

13.8.1. Reconocimiento de patrones 
13.8.2. Generación de imágenes 
13.8.3. Entrenamiento de redes neuronales profundas 

13.9. Redes adversarias generativas y modelos de difusión 

13.9.1. Generación de contenido a partir de imágenes 
13.9.2. Modelado de distribuciones de datos 
13.9.3. Uso de redes adversarias 

13.10. Implementación de los Modelos 

13.10.1. Aplicación Práctica 
13.10.2. Implementación de los modelos 
13.10.3. Uso de datos reales 
13.10.4. Evaluación de los resultados 

Módulo 14. Computación bioinspirada

14.1. Introducción a la computación bioinspirada 

14.1.1. Introducción a la computación bioinspirada 

14.2. Algoritmos de adaptación social 

14.2.1. Computación bioinspirada basada en colonia de hormigas 
14.2.2. Variantes de los algoritmos de colonias de hormigas 
14.2.3. Computación basada en nubes de partículas 

14.3. Algoritmos genéticos 

14.3.1. Estructura general 
14.3.2. Implementaciones de los principales operadores 

14.4. Estrategias de exploración-explotación del espacio para algoritmos genéticos 

14.4.1. Algoritmo CHC 
14.4.2. Problemas multimodales 

14.5. Modelos de computación evolutiva (I) 

14.5.1. Estrategias evolutivas 
14.5.2. Programación evolutiva 
14.5.3. Algoritmos basados en evolución diferencial 

14.6. Modelos de computación evolutiva (II) 

14.6.1. Modelos de evolución basados en estimación de distribuciones (EDA) 
14.6.2. Programación genética 

14.7. Programación evolutiva aplicada a problemas de aprendizaje 

14.7.1. Aprendizaje basado en reglas 
14.7.2. Métodos evolutivos en problemas de selección de instancias 

14.8. Problemas multiobjetivo 

14.8.1. Concepto de dominancia 
14.8.2. Aplicación de algoritmos evolutivos a problemas multiobjetivo 

14.9. Redes neuronales (I) 

14.9.1. Introducción a las redes neuronales 
14.9.2. Ejemplo práctico con redes neuronales 

14.10. Redes neuronales (II) 

14.10.1. Casos de uso de las redes neuronales en la investigación médica 
14.10.2. Casos de uso de las redes neuronales en la economía 
14.10.3. Casos de uso de las redes neuronales en la visión artificial 

Módulo 15. Inteligencia Artificial: estrategias y aplicaciones

15.1. Servicios financieros 

15.1.1. Las implicaciones de la Inteligencia Artificial (IA) en los servicios financieros.Oportunidades y desafíos
15.1.2. Casos de uso
15.1.3. Riesgos potenciales relacionados con el uso de IA 
15.1.4. Potenciales desarrollos / usos futuros de la IA 

15.2. Implicaciones de la Inteligencia Artificial en el servicio sanitario

15.2.1. Implicaciones de la IA en el sector sanitario. Oportunidades y desafíos
15.2.2. Casos de uso 

15.3. Riesgos Relacionados con el uso de la IA en el servicio sanitario 

15.3.1. Riesgos potenciales relacionados con el uso de IA 
15.3.2. Potenciales desarrollos / usos futuros de la IA

15.4. Retail

15.4.1. Implicaciones de la IA en Retail. Oportunidades y desafíos
15.4.2. Casos de uso
15.4.3. Riesgos potenciales relacionados con el uso de IA
15.4.4. Potenciales desarrollos / usos futuros de la IA 

15.5. Industria 

15.5.1. Implicaciones de la IA en la Industria. Oportunidades y desafíos 
15.5.2. Casos de uso 

15.6. Riesgos potenciales relacionados con el uso de IA en la Industria 

15.6.1. Casos de uso 
15.6.2. Riesgos potenciales relacionados con el uso de IA 
15.6.3. Potenciales desarrollos / usos futuros de la IA

15.7. Administración Pública

15.7.1. Implicaciones de la IA en la Administración Pública. Oportunidades y desafíos 
15.7.2. Casos de uso
15.7.3. Riesgos potenciales relacionados con el uso de IA
15.7.4. Potenciales desarrollos / usos futuros de la IA

15.8. Educación

15.8.1. Implicaciones de la IA en la educación. Oportunidades y desafíos 
15.8.2. Casos de uso
15.8.3. Riesgos potenciales relacionados con el uso de IA
15.8.4. Potenciales desarrollos / usos futuros de la IA 

15.9. Silvicultura y agricultura

15.9.1. Implicaciones de la IA en la silvicultura y la agricultura. Oportunidades y desafíos
15.9.2. Casos de uso 
15.9.3. Riesgos potenciales relacionados con el uso de IA 
15.9.4. Potenciales desarrollos / usos futuros de la IA

15.10. Recursos Humanos

15.10.1. Implicaciones de la IA en los Recursos Humanos. Oportunidades y desafíos 
15.10.2. Casos de uso
15.10.3. Riesgos potenciales relacionados con el uso de IA
15.10.4. Potenciales desarrollos / usos futuros de la IA

##IMAGE##

Posiciónate en el mercado laboral con un programa 100% online, que se adapta a tus necesidades y te permite un aprendizaje inmersivo y sólido”

Máster en Inteligencia Artificial

¿Te apasiona la tecnología y quieres profundizar tus conocimientos en los últimos avances de ingeniería? Entonces, este Máster en Inteligencia Artificial 100% online es perfecto para ti. Te sumergirás en un mundo de algoritmos, aprendizaje automático, análisis de datos y mucho más. Nuestro posgrado te brindará las herramientas necesarias para desarrollar soluciones innovadoras en diferentes sectores. Desde la medicina hasta la robótica, la inteligencia artificial está transformando la manera en que vivimos y trabajamos. Nuestro plan de estudios ha sido cuidadosamente diseñado por expertos en el campo para ofrecerte una capacitación integral y contemporánea. Aprenderás los fundamentos de la inteligencia artificial, como el procesamiento del lenguaje natural, la visión por computadora y la representación del conocimiento. Además, te familiarizarás con las últimas tendencias en el campo, como el aprendizaje profundo y la automatización de tareas.

Aprende sobre IA con la mejor metodología del mercado

En este posgrado, también tendrás la oportunidad de aplicar tus conocimientos en proyectos prácticos de forma online. Trabajarás en equipo para resolver desafíos reales y desarrollarás habilidades de liderazgo y comunicación. Nuestros profesores, todos expertos en el campo de la inteligencia artificial, estarán a tu lado para guiarte y brindarte retroalimentación. TECH ofrece una plataforma de aprendizaje disponible las 24 horas del día en la que encontrarás lecturas en PDF, biblioteca virtual y foros de participación. Durante las capacitaciones, tendrás la oportunidad de crear networking con otros participantes, lo que en el futuro puede significar opciones de crecimiento profesional. No esperes más y únete a nosotros en este emocionante viaje hacia el futuro de la tecnología y la ingeniería. Si estás interesado en el Máster en Inteligencia Artificial, no dudes en contactarnos. ¡Estamos ansiosos por ayudarte a alcanzar tus metas académicas y profesionales en este campo en constante evolución, aprovecha la oportunidad y matricúlate ahora!